blob: e7267dec1a0ccd9c82d455c3fc20e62977baa85b [file] [log] [blame]
/* Copyright (c) 2012-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Qualcomm Technologies, Inc. QPNP Pulse Width Modulation (PWM) driver
*
* The HW module is also called LPG (Light Pattern Generator).
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/spmi.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/radix-tree.h>
#include <linux/qpnp/pwm.h>
#define QPNP_LPG_DRIVER_NAME "qcom,qpnp-pwm"
#define QPNP_LPG_CHANNEL_BASE "qpnp-lpg-channel-base"
#define QPNP_LPG_LUT_BASE "qpnp-lpg-lut-base"
#define QPNP_PWM_MODE_ONLY_SUB_TYPE 0x0B
#define QPNP_LPG_CHAN_SUB_TYPE 0x2
#define QPNP_LPG_S_CHAN_SUB_TYPE 0x11
/* LPG Control for LPG_PATTERN_CONFIG */
#define QPNP_RAMP_DIRECTION_SHIFT 4
#define QPNP_RAMP_DIRECTION_MASK 0x10
#define QPNP_PATTERN_REPEAT_SHIFT 3
#define QPNP_PATTERN_REPEAT_MASK 0x08
#define QPNP_RAMP_TOGGLE_SHIFT 2
#define QPNP_RAMP_TOGGLE_MASK 0x04
#define QPNP_EN_PAUSE_HI_SHIFT 1
#define QPNP_EN_PAUSE_HI_MASK 0x02
#define QPNP_EN_PAUSE_LO_MASK 0x01
/* LPG Control for LPG_PWM_SIZE_CLK */
#define QPNP_PWM_SIZE_SHIFT_SUB_TYPE 2
#define QPNP_PWM_SIZE_MASK_SUB_TYPE 0x4
#define QPNP_PWM_FREQ_CLK_SELECT_MASK_SUB_TYPE 0x03
#define QPNP_PWM_SIZE_9_BIT_SUB_TYPE 0x01
#define QPNP_SET_PWM_CLK_SUB_TYPE(val, clk, pwm_size) \
do { \
val = (clk + 1) & QPNP_PWM_FREQ_CLK_SELECT_MASK_SUB_TYPE; \
val |= (((pwm_size > 6 ? QPNP_PWM_SIZE_9_BIT_SUB_TYPE : 0) << \
QPNP_PWM_SIZE_SHIFT_SUB_TYPE) & QPNP_PWM_SIZE_MASK_SUB_TYPE); \
} while (0)
#define QPNP_GET_PWM_SIZE_SUB_TYPE(reg) ((reg & QPNP_PWM_SIZE_MASK_SUB_TYPE) \
>> QPNP_PWM_SIZE_SHIFT_SUB_TYPE)
#define QPNP_PWM_SIZE_SHIFT 4
#define QPNP_PWM_SIZE_MASK 0x30
#define QPNP_PWM_FREQ_CLK_SELECT_MASK 0x03
#define QPNP_MIN_PWM_BIT_SIZE 6
#define QPNP_MAX_PWM_BIT_SIZE 9
#define QPNP_PWM_SIZES_SUPPORTED 10
#define QPNP_SET_PWM_CLK(val, clk, pwm_size) \
do { \
val = (clk + 1) & QPNP_PWM_FREQ_CLK_SELECT_MASK; \
val |= (((pwm_size - QPNP_MIN_PWM_BIT_SIZE) << \
QPNP_PWM_SIZE_SHIFT) & QPNP_PWM_SIZE_MASK); \
} while (0)
#define QPNP_GET_PWM_SIZE(reg) ((reg & QPNP_PWM_SIZE_MASK) \
>> QPNP_PWM_SIZE_SHIFT)
/* LPG Control for LPG_PWM_FREQ_PREDIV_CLK */
#define QPNP_PWM_FREQ_PRE_DIVIDE_SHIFT 5
#define QPNP_PWM_FREQ_PRE_DIVIDE_MASK 0x60
#define QPNP_PWM_FREQ_EXP_MASK 0x07
#define QPNP_SET_PWM_FREQ_PREDIV(val, pre_div, pre_div_exp) \
do { \
val = (pre_div << QPNP_PWM_FREQ_PRE_DIVIDE_SHIFT) & \
QPNP_PWM_FREQ_PRE_DIVIDE_MASK; \
val |= (pre_div_exp & QPNP_PWM_FREQ_EXP_MASK); \
} while (0)
/* LPG Control for LPG_PWM_TYPE_CONFIG */
#define QPNP_EN_GLITCH_REMOVAL_SHIFT 5
#define QPNP_EN_GLITCH_REMOVAL_MASK 0x20
#define QPNP_EN_FULL_SCALE_SHIFT 3
#define QPNP_EN_FULL_SCALE_MASK 0x08
#define QPNP_EN_PHASE_STAGGER_SHIFT 2
#define QPNP_EN_PHASE_STAGGER_MASK 0x04
#define QPNP_PHASE_STAGGER_MASK 0x03
/* LPG Control for PWM_VALUE_LSB */
#define QPNP_PWM_VALUE_LSB_MASK 0xFF
/* LPG Control for PWM_VALUE_MSB */
#define QPNP_PWM_VALUE_MSB_SHIFT 8
#define QPNP_PWM_VALUE_MSB_MASK 0x01
/* LPG Control for ENABLE_CONTROL */
#define QPNP_EN_PWM_HIGH_SHIFT 7
#define QPNP_EN_PWM_HIGH_MASK 0x80
#define QPNP_EN_PWM_LO_SHIFT 6
#define QPNP_EN_PWM_LO_MASK 0x40
#define QPNP_EN_PWM_OUTPUT_SHIFT 5
#define QPNP_EN_PWM_OUTPUT_MASK 0x20
#define QPNP_PWM_SRC_SELECT_SHIFT 2
#define QPNP_PWM_SRC_SELECT_MASK 0x04
#define QPNP_PWM_EN_RAMP_GEN_SHIFT 1
#define QPNP_PWM_EN_RAMP_GEN_MASK 0x02
/* LPG Control for PWM_SYNC */
#define QPNP_PWM_SYNC_VALUE 0x01
#define QPNP_PWM_SYNC_MASK 0x01
/* LPG Control for RAMP_CONTROL */
#define QPNP_RAMP_START_MASK 0x01
#define QPNP_ENABLE_LUT_V0(value) (value |= QPNP_RAMP_START_MASK)
#define QPNP_DISABLE_LUT_V0(value) (value &= ~QPNP_RAMP_START_MASK)
#define QPNP_ENABLE_LUT_V1(value, id) (value |= BIT(id))
/* LPG Control for RAMP_STEP_DURATION_LSB */
#define QPNP_RAMP_STEP_DURATION_LSB_MASK 0xFF
/* LPG Control for RAMP_STEP_DURATION_MSB */
#define QPNP_RAMP_STEP_DURATION_MSB_SHIFT 8
#define QPNP_RAMP_STEP_DURATION_MSB_MASK 0x01
#define QPNP_PWM_1KHZ 1024
#define QPNP_GET_RAMP_STEP_DURATION(ramp_time_ms) \
((ramp_time_ms * QPNP_PWM_1KHZ) / 1000)
/* LPG Control for PAUSE_HI_MULTIPLIER_LSB */
#define QPNP_PAUSE_HI_MULTIPLIER_LSB_MASK 0xFF
/* LPG Control for PAUSE_HI_MULTIPLIER_MSB */
#define QPNP_PAUSE_HI_MULTIPLIER_MSB_SHIFT 8
#define QPNP_PAUSE_HI_MULTIPLIER_MSB_MASK 0x1F
/* LPG Control for PAUSE_LO_MULTIPLIER_LSB */
#define QPNP_PAUSE_LO_MULTIPLIER_LSB_MASK 0xFF
/* LPG Control for PAUSE_LO_MULTIPLIER_MSB */
#define QPNP_PAUSE_LO_MULTIPLIER_MSB_SHIFT 8
#define QPNP_PAUSE_LO_MULTIPLIER_MSB_MASK 0x1F
/* LPG Control for HI_INDEX */
#define QPNP_HI_INDEX_MASK 0x3F
/* LPG Control for LO_INDEX */
#define QPNP_LO_INDEX_MASK 0x3F
/* LPG DTEST */
#define QPNP_LPG_DTEST_LINE_MAX 4
#define QPNP_LPG_DTEST_OUTPUT_MAX 5
#define QPNP_LPG_DTEST_OUTPUT_MASK 0x07
/* PWM DTEST */
#define QPNP_PWM_DTEST_LINE_MAX 2
#define QPNP_PWM_DTEST_OUTPUT_MAX 2
#define QPNP_PWM_DTEST_OUTPUT_MASK 0x03
#define NUM_CLOCKS 3
#define QPNP_PWM_M_MAX 7
#define NSEC_1024HZ (NSEC_PER_SEC / 1024)
#define NSEC_32768HZ (NSEC_PER_SEC / 32768)
#define NSEC_19P2MHZ (NSEC_PER_SEC / 19200000)
#define NUM_LPG_PRE_DIVIDE 4
#define PRE_DIVIDE_1 1
#define PRE_DIVIDE_3 3
#define PRE_DIVIDE_5 5
#define PRE_DIVIDE_6 6
#define SPMI_LPG_REG_BASE_OFFSET 0x40
#define SPMI_LPG_REVISION2_OFFSET 0x1
#define SPMI_LPG_REV1_RAMP_CONTROL_OFFSET 0x86
#define SPMI_LPG_SUB_TYPE_OFFSET 0x5
#define SPMI_LPG_PWM_SYNC 0x7
#define SPMI_LPG_REG_ADDR(b, n) (b + SPMI_LPG_REG_BASE_OFFSET + (n))
#define SPMI_MAX_BUF_LEN 8
#define QPNP_PWM_LUT_NOT_SUPPORTED 0x1
/* Supported PWM sizes */
#define QPNP_PWM_SIZE_6_BIT 6
#define QPNP_PWM_SIZE_7_BIT 7
#define QPNP_PWM_SIZE_8_BIT 8
#define QPNP_PWM_SIZE_9_BIT 9
#define QPNP_PWM_SIZE_6_9_BIT 0x9
#define QPNP_PWM_SIZE_7_8_BIT 0x6
#define QPNP_PWM_SIZE_6_7_9_BIT 0xB
/*
* Registers that don't need to be cached are defined below from an offset
* of SPMI_LPG_REG_BASE_OFFSET.
*/
#define QPNP_LPG_SEC_ACCESS 0x90
#define QPNP_LPG_DTEST 0xA2
/* Supported time levels */
enum time_level {
LVL_NSEC,
LVL_USEC,
};
/* LPG revisions */
enum qpnp_lpg_revision {
QPNP_LPG_REVISION_0 = 0x0,
QPNP_LPG_REVISION_1 = 0x1,
};
/* LPG LUT MODE STATE */
enum qpnp_lut_state {
QPNP_LUT_ENABLE = 0x0,
QPNP_LUT_DISABLE = 0x1,
};
/* PWM MODE STATE */
enum qpnp_pwm_state {
QPNP_PWM_ENABLE = 0x0,
QPNP_PWM_DISABLE = 0x1,
};
/* SPMI LPG registers */
enum qpnp_lpg_registers_list {
QPNP_LPG_PATTERN_CONFIG,
QPNP_LPG_PWM_SIZE_CLK,
QPNP_LPG_PWM_FREQ_PREDIV_CLK,
QPNP_LPG_PWM_TYPE_CONFIG,
QPNP_PWM_VALUE_LSB,
QPNP_PWM_VALUE_MSB,
QPNP_ENABLE_CONTROL,
QPNP_RAMP_CONTROL,
QPNP_RAMP_STEP_DURATION_LSB = QPNP_RAMP_CONTROL + 9,
QPNP_RAMP_STEP_DURATION_MSB,
QPNP_PAUSE_HI_MULTIPLIER_LSB,
QPNP_PAUSE_HI_MULTIPLIER_MSB,
QPNP_PAUSE_LO_MULTIPLIER_LSB,
QPNP_PAUSE_LO_MULTIPLIER_MSB,
QPNP_HI_INDEX,
QPNP_LO_INDEX,
QPNP_TOTAL_LPG_SPMI_REGISTERS
};
/*
* Formula from HSID,
* pause_time (hi/lo) = (pause_cnt- 1)*(ramp_ms)
* OR,
* pause_cnt = (pause_time / ramp_ms) + 1
*/
#define QPNP_SET_PAUSE_CNT(to_pause_cnt, from_pause, ramp_ms) \
(to_pause_cnt = (from_pause / (ramp_ms ? ramp_ms : 1)) + 1)
static unsigned int pt_t[NUM_LPG_PRE_DIVIDE][NUM_CLOCKS] = {
{ PRE_DIVIDE_1 * NSEC_1024HZ,
PRE_DIVIDE_1 * NSEC_32768HZ,
PRE_DIVIDE_1 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_3 * NSEC_1024HZ,
PRE_DIVIDE_3 * NSEC_32768HZ,
PRE_DIVIDE_3 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_5 * NSEC_1024HZ,
PRE_DIVIDE_5 * NSEC_32768HZ,
PRE_DIVIDE_5 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_6 * NSEC_1024HZ,
PRE_DIVIDE_6 * NSEC_32768HZ,
PRE_DIVIDE_6 * NSEC_19P2MHZ,
},
};
struct qpnp_lut_config {
u8 *duty_pct_list;
int list_len;
int ramp_index;
int lo_index;
int hi_index;
int lut_pause_hi_cnt;
int lut_pause_lo_cnt;
int ramp_step_ms;
bool ramp_direction;
bool pattern_repeat;
bool ramp_toggle;
bool enable_pause_hi;
bool enable_pause_lo;
};
struct qpnp_lpg_config {
struct qpnp_lut_config lut_config;
u16 base_addr;
u16 lut_base_addr;
u16 lut_size;
};
struct _qpnp_pwm_config {
int pwm_value;
int pwm_period; /* in microseconds */
int pwm_duty; /* in microseconds */
struct pwm_period_config period;
int supported_sizes;
int force_pwm_size;
bool update_period;
};
/* Public facing structure */
struct qpnp_pwm_chip {
struct platform_device *pdev;
struct regmap *regmap;
struct pwm_chip chip;
bool enabled;
struct _qpnp_pwm_config pwm_config;
struct qpnp_lpg_config lpg_config;
enum pm_pwm_mode pwm_mode;
spinlock_t lpg_lock;
enum qpnp_lpg_revision revision;
u8 sub_type;
u32 flags;
u8 qpnp_lpg_registers[QPNP_TOTAL_LPG_SPMI_REGISTERS];
int channel_id;
const char *channel_owner;
u32 dtest_line;
u32 dtest_output;
bool in_test_mode;
};
/* Internal functions */
static inline struct qpnp_pwm_chip *qpnp_pwm_from_pwm_dev(
struct pwm_device *pwm)
{
return container_of(pwm->chip, struct qpnp_pwm_chip, chip);
}
static inline struct qpnp_pwm_chip *qpnp_pwm_from_pwm_chip(
struct pwm_chip *chip)
{
return container_of(chip, struct qpnp_pwm_chip, chip);
}
static inline void qpnp_set_pattern_config(u8 *val,
struct qpnp_lut_config *lut_config)
{
*val = lut_config->enable_pause_lo & QPNP_EN_PAUSE_LO_MASK;
*val |= (lut_config->enable_pause_hi << QPNP_EN_PAUSE_HI_SHIFT) &
QPNP_EN_PAUSE_HI_MASK;
*val |= (lut_config->ramp_toggle << QPNP_RAMP_TOGGLE_SHIFT) &
QPNP_RAMP_TOGGLE_MASK;
*val |= (lut_config->pattern_repeat << QPNP_PATTERN_REPEAT_SHIFT) &
QPNP_PATTERN_REPEAT_MASK;
*val |= (lut_config->ramp_direction << QPNP_RAMP_DIRECTION_SHIFT) &
QPNP_RAMP_DIRECTION_MASK;
}
static inline void qpnp_set_pwm_type_config(u8 *val, bool glitch,
bool full_scale, bool en_phase, bool phase)
{
*val = phase;
*val |= (en_phase << QPNP_EN_PHASE_STAGGER_SHIFT) &
QPNP_EN_PHASE_STAGGER_MASK;
*val |= (full_scale << QPNP_EN_FULL_SCALE_SHIFT) &
QPNP_EN_FULL_SCALE_MASK;
*val |= (glitch << QPNP_EN_GLITCH_REMOVAL_SHIFT) &
QPNP_EN_GLITCH_REMOVAL_MASK;
}
static int qpnp_set_control(struct qpnp_pwm_chip *chip, bool pwm_hi,
bool pwm_lo, bool pwm_out, bool pwm_src, bool ramp_gen)
{
int value;
value = (ramp_gen << QPNP_PWM_EN_RAMP_GEN_SHIFT) |
(pwm_src << QPNP_PWM_SRC_SELECT_SHIFT) |
(pwm_lo << QPNP_EN_PWM_LO_SHIFT) |
(pwm_hi << QPNP_EN_PWM_HIGH_SHIFT);
if (chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE)
value |= (pwm_out << QPNP_EN_PWM_OUTPUT_SHIFT);
return value;
}
#define QPNP_ENABLE_LUT_CONTROL(chip) \
qpnp_set_control((chip), 0, 0, 0, 0, 1)
#define QPNP_ENABLE_PWM_CONTROL(chip) \
qpnp_set_control((chip), 0, 0, 0, 1, 0)
#define QPNP_ENABLE_PWM_MODE(chip) \
qpnp_set_control((chip), 1, 1, 1, 1, 0)
#define QPNP_ENABLE_PWM_MODE_GPLED_CHANNEL(chip) \
qpnp_set_control((chip), 1, 1, 1, 1, 1)
#define QPNP_ENABLE_LPG_MODE(chip) \
qpnp_set_control((chip), 1, 1, 1, 0, 1)
#define QPNP_DISABLE_PWM_MODE(chip) \
qpnp_set_control((chip), 0, 0, 0, 1, 0)
#define QPNP_DISABLE_LPG_MODE(chip) \
qpnp_set_control((chip), 0, 0, 0, 0, 1)
#define QPNP_IS_PWM_CONFIG_SELECTED(val) (val & QPNP_PWM_SRC_SELECT_MASK)
#define QPNP_ENABLE_PWM_MODE_ONLY_SUB_TYPE 0x80
#define QPNP_DISABLE_PWM_MODE_ONLY_SUB_TYPE 0x0
#define QPNP_PWM_MODE_ONLY_ENABLE_DISABLE_MASK_SUB_TYPE 0x80
static inline void qpnp_convert_to_lut_flags(int *flags,
struct qpnp_lut_config *l_config)
{
*flags = ((l_config->ramp_direction ? PM_PWM_LUT_RAMP_UP : 0) |
(l_config->pattern_repeat ? PM_PWM_LUT_LOOP : 0)|
(l_config->ramp_toggle ? PM_PWM_LUT_REVERSE : 0) |
(l_config->enable_pause_hi ? PM_PWM_LUT_PAUSE_HI_EN : 0) |
(l_config->enable_pause_lo ? PM_PWM_LUT_PAUSE_LO_EN : 0));
}
static inline void qpnp_set_lut_params(struct lut_params *l_params,
struct qpnp_lut_config *l_config, int s_idx, int size)
{
l_params->start_idx = s_idx;
l_params->idx_len = size;
l_params->lut_pause_hi = l_config->lut_pause_hi_cnt;
l_params->lut_pause_lo = l_config->lut_pause_lo_cnt;
l_params->ramp_step_ms = l_config->ramp_step_ms;
qpnp_convert_to_lut_flags(&l_params->flags, l_config);
}
static void qpnp_lpg_save(u8 *u8p, u8 mask, u8 val)
{
*u8p &= ~mask;
*u8p |= val & mask;
}
static int qpnp_lpg_save_and_write(u8 value, u8 mask, u8 *reg, u16 addr,
u16 size, struct qpnp_pwm_chip *chip)
{
qpnp_lpg_save(reg, mask, value);
return regmap_bulk_write(chip->regmap, addr, reg, size);
}
/*
* PWM Frequency = Clock Frequency / (N * T)
* or
* PWM Period = Clock Period * (N * T)
* where
* N = 2^9 or 2^6 for 9-bit or 6-bit PWM size
* T = Pre-divide * 2^m, where m = 0..7 (exponent)
*
* This is the formula to figure out m for the best pre-divide and clock:
* (PWM Period / N) = (Pre-divide * Clock Period) * 2^m
*/
static void qpnp_lpg_calc_period(enum time_level tm_lvl,
unsigned int period_value,
struct qpnp_pwm_chip *chip)
{
int n, m, clk, div;
int best_m, best_div, best_clk;
unsigned int last_err, cur_err, min_err;
unsigned int tmp_p, period_n;
int supported_sizes = chip->pwm_config.supported_sizes;
int force_pwm_size = chip->pwm_config.force_pwm_size;
struct pwm_period_config *period = &chip->pwm_config.period;
/* PWM Period / N */
if (supported_sizes == QPNP_PWM_SIZE_7_8_BIT)
n = 7;
else
n = 6;
if (tm_lvl == LVL_USEC) {
if (period_value < ((unsigned int)(-1) / NSEC_PER_USEC)) {
period_n = (period_value * NSEC_PER_USEC) >> n;
} else {
if (supported_sizes == QPNP_PWM_SIZE_7_8_BIT)
n = 8;
else
n = 9;
period_n = (period_value >> n) * NSEC_PER_USEC;
}
} else {
period_n = period_value >> n;
}
if (force_pwm_size != 0) {
if (n < force_pwm_size)
period_n = period_n >> (force_pwm_size - n);
else
period_n = period_n << (n - force_pwm_size);
n = force_pwm_size;
pr_info("LPG channel '%d' pwm size is forced to=%d\n",
chip->channel_id, n);
}
min_err = last_err = (unsigned int)(-1);
best_m = 0;
best_clk = 0;
best_div = 0;
for (clk = 0; clk < NUM_CLOCKS; clk++) {
for (div = 0; div < NUM_LPG_PRE_DIVIDE; div++) {
/* period_n = (PWM Period / N) */
/* tmp_p = (Pre-divide * Clock Period) * 2^m */
tmp_p = pt_t[div][clk];
for (m = 0; m <= QPNP_PWM_M_MAX; m++) {
if (period_n > tmp_p)
cur_err = period_n - tmp_p;
else
cur_err = tmp_p - period_n;
if (cur_err < min_err) {
min_err = cur_err;
best_m = m;
best_clk = clk;
best_div = div;
}
if (m && cur_err > last_err)
/* Break for bigger cur_err */
break;
last_err = cur_err;
tmp_p <<= 1;
}
}
}
/* Adapt to optimal pwm size, the higher the resolution the better */
if (!force_pwm_size) {
if (supported_sizes == QPNP_PWM_SIZE_7_8_BIT) {
if (n == 7 && best_m >= 1) {
n += 1;
best_m -= 1;
}
} else if (n == 6) {
if (best_m >= 3) {
n += 3;
best_m -= 3;
} else if (best_m >= 1 && (
chip->sub_type != QPNP_PWM_MODE_ONLY_SUB_TYPE &&
chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE)) {
n += 1;
best_m -= 1;
}
}
}
period->pwm_size = n;
period->clk = best_clk;
period->pre_div = best_div;
period->pre_div_exp = best_m;
}
static void qpnp_lpg_calc_pwm_value(struct _qpnp_pwm_config *pwm_config,
unsigned int period_value,
unsigned int duty_value)
{
unsigned int max_pwm_value, tmp;
/* Figure out pwm_value with overflow handling */
tmp = 1 << (sizeof(tmp) * 8 - pwm_config->period.pwm_size);
if (duty_value < tmp) {
tmp = duty_value << pwm_config->period.pwm_size;
pwm_config->pwm_value = tmp / period_value;
} else {
tmp = period_value >> pwm_config->period.pwm_size;
pwm_config->pwm_value = duty_value / tmp;
}
max_pwm_value = (1 << pwm_config->period.pwm_size) - 1;
if (pwm_config->pwm_value > max_pwm_value)
pwm_config->pwm_value = max_pwm_value;
pr_debug("pwm_value: %d\n", pwm_config->pwm_value);
}
static int qpnp_lpg_change_table(struct qpnp_pwm_chip *chip,
int duty_pct[], int raw_value)
{
unsigned int pwm_value, max_pwm_value;
struct qpnp_lut_config *lut = &chip->lpg_config.lut_config;
int i, pwm_size, rc = 0;
int burst_size = SPMI_MAX_BUF_LEN;
int list_len = lut->list_len << 1;
int offset = (lut->lo_index << 1) - 2;
pwm_size = QPNP_GET_PWM_SIZE(
chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]) +
QPNP_MIN_PWM_BIT_SIZE;
max_pwm_value = (1 << pwm_size) - 1;
if (unlikely(lut->list_len != (lut->hi_index - lut->lo_index + 1))) {
pr_err("LUT internal Data structure corruption detected\n");
pr_err("LUT list size: %d\n", lut->list_len);
pr_err("However, index size is: %d\n",
(lut->hi_index - lut->lo_index + 1));
return -EINVAL;
}
for (i = 0; i < lut->list_len; i++) {
if (raw_value)
pwm_value = duty_pct[i];
else
pwm_value = (duty_pct[i] << pwm_size) / 100;
if (pwm_value > max_pwm_value)
pwm_value = max_pwm_value;
if (chip->pwm_config.supported_sizes == QPNP_PWM_SIZE_7_8_BIT) {
lut->duty_pct_list[i] = pwm_value;
} else {
lut->duty_pct_list[i*2] = pwm_value;
lut->duty_pct_list[(i*2)+1] = (pwm_value >>
QPNP_PWM_VALUE_MSB_SHIFT) & QPNP_PWM_VALUE_MSB_MASK;
}
}
/*
* For the Keypad Backlight Lookup Table (KPDBL_LUT),
* offset is lo_index.
*/
if (chip->pwm_config.supported_sizes == QPNP_PWM_SIZE_7_8_BIT)
offset = lut->lo_index;
/* Write with max allowable burst mode, each entry is of two bytes */
for (i = 0; i < list_len; i += burst_size) {
if (i + burst_size >= list_len)
burst_size = list_len - i;
rc = regmap_bulk_write(chip->regmap,
chip->lpg_config.lut_base_addr + offset + i,
lut->duty_pct_list + i,
burst_size);
}
return rc;
}
static void qpnp_lpg_save_period(struct qpnp_pwm_chip *chip)
{
u8 mask, val;
struct _qpnp_pwm_config *pwm_config = &chip->pwm_config;
if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE) {
QPNP_SET_PWM_CLK_SUB_TYPE(val, pwm_config->period.clk,
pwm_config->period.pwm_size);
mask = QPNP_PWM_SIZE_MASK_SUB_TYPE |
QPNP_PWM_FREQ_CLK_SELECT_MASK_SUB_TYPE;
} else {
QPNP_SET_PWM_CLK(val, pwm_config->period.clk,
pwm_config->period.pwm_size);
mask = QPNP_PWM_SIZE_MASK | QPNP_PWM_FREQ_CLK_SELECT_MASK;
}
qpnp_lpg_save(&chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK],
mask, val);
QPNP_SET_PWM_FREQ_PREDIV(val, pwm_config->period.pre_div,
pwm_config->period.pre_div_exp);
mask = QPNP_PWM_FREQ_PRE_DIVIDE_MASK | QPNP_PWM_FREQ_EXP_MASK;
qpnp_lpg_save(&chip->qpnp_lpg_registers[QPNP_LPG_PWM_FREQ_PREDIV_CLK],
mask, val);
}
static int qpnp_lpg_save_pwm_value(struct qpnp_pwm_chip *chip)
{
unsigned int max_pwm_value;
int pwm_size;
u8 mask, value;
struct _qpnp_pwm_config *pwm_config = &chip->pwm_config;
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
int rc;
if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE)
pwm_size = QPNP_GET_PWM_SIZE_SUB_TYPE(
chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]) ?
QPNP_MAX_PWM_BIT_SIZE : QPNP_MIN_PWM_BIT_SIZE;
else
pwm_size = QPNP_GET_PWM_SIZE(
chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]) +
QPNP_MIN_PWM_BIT_SIZE;
max_pwm_value = (1 << pwm_size) - 1;
if (pwm_config->pwm_value > max_pwm_value)
pwm_config->pwm_value = max_pwm_value;
value = pwm_config->pwm_value;
mask = QPNP_PWM_VALUE_LSB_MASK;
pr_debug("pwm_lsb value:%d\n", value & mask);
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_PWM_VALUE_LSB],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_PWM_VALUE_LSB), 1, chip);
if (rc)
return rc;
value = (pwm_config->pwm_value >> QPNP_PWM_VALUE_MSB_SHIFT) &
QPNP_PWM_VALUE_MSB_MASK;
mask = QPNP_PWM_VALUE_MSB_MASK;
pr_debug("pwm_msb value:%d\n", value);
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_PWM_VALUE_MSB],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_PWM_VALUE_MSB), 1, chip);
if (rc)
return rc;
if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE ||
chip->sub_type == QPNP_LPG_S_CHAN_SUB_TYPE) {
value = QPNP_PWM_SYNC_VALUE & QPNP_PWM_SYNC_MASK;
rc = regmap_write(chip->regmap,
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
SPMI_LPG_PWM_SYNC),
value);
}
return rc;
}
static int qpnp_lpg_configure_pattern(struct qpnp_pwm_chip *chip)
{
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
struct qpnp_lut_config *lut_config = &lpg_config->lut_config;
u8 value, mask;
qpnp_set_pattern_config(&value, lut_config);
mask = QPNP_RAMP_DIRECTION_MASK | QPNP_PATTERN_REPEAT_MASK |
QPNP_RAMP_TOGGLE_MASK | QPNP_EN_PAUSE_HI_MASK |
QPNP_EN_PAUSE_LO_MASK;
return qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_LPG_PATTERN_CONFIG],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_LPG_PATTERN_CONFIG), 1, chip);
}
static int qpnp_lpg_glitch_removal(struct qpnp_pwm_chip *chip, bool enable)
{
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
u8 value, mask;
qpnp_set_pwm_type_config(&value, enable ? 1 : 0, 0, 0, 0);
mask = QPNP_EN_GLITCH_REMOVAL_MASK | QPNP_EN_FULL_SCALE_MASK |
QPNP_EN_PHASE_STAGGER_MASK | QPNP_PHASE_STAGGER_MASK;
pr_debug("pwm_type_config: %d\n", value);
return qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_LPG_PWM_TYPE_CONFIG],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_LPG_PWM_TYPE_CONFIG), 1, chip);
}
static int qpnp_lpg_configure_pwm(struct qpnp_pwm_chip *chip)
{
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
int rc;
pr_debug("pwm_size_clk: %d\n",
chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]);
rc = regmap_write(chip->regmap,
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_LPG_PWM_SIZE_CLK),
*&chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]);
if (rc)
return rc;
pr_debug("pwm_freq_prediv_clk: %d\n",
chip->qpnp_lpg_registers[QPNP_LPG_PWM_FREQ_PREDIV_CLK]);
rc = regmap_write(chip->regmap,
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_LPG_PWM_FREQ_PREDIV_CLK),
*&chip->qpnp_lpg_registers[QPNP_LPG_PWM_FREQ_PREDIV_CLK]);
if (rc)
return rc;
/* Disable glitch removal when LPG/PWM is configured */
rc = qpnp_lpg_glitch_removal(chip, false);
if (rc) {
pr_err("Error in disabling glitch control, rc=%d\n", rc);
return rc;
}
return rc;
}
static int qpnp_configure_pwm_control(struct qpnp_pwm_chip *chip)
{
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
u8 value, mask;
if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE)
return 0;
value = QPNP_ENABLE_PWM_CONTROL(chip);
mask = QPNP_EN_PWM_HIGH_MASK | QPNP_EN_PWM_LO_MASK |
QPNP_PWM_SRC_SELECT_MASK | QPNP_PWM_EN_RAMP_GEN_MASK;
if (chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE)
mask |= QPNP_EN_PWM_OUTPUT_MASK;
return qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_ENABLE_CONTROL), 1, chip);
}
static int qpnp_configure_lpg_control(struct qpnp_pwm_chip *chip)
{
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
u8 value, mask;
value = QPNP_ENABLE_LUT_CONTROL(chip);
mask = QPNP_EN_PWM_HIGH_MASK | QPNP_EN_PWM_LO_MASK |
QPNP_PWM_SRC_SELECT_MASK | QPNP_PWM_EN_RAMP_GEN_MASK;
if (chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE)
mask |= QPNP_EN_PWM_OUTPUT_MASK;
return qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_ENABLE_CONTROL), 1, chip);
}
static int qpnp_lpg_configure_ramp_step_duration(struct qpnp_pwm_chip *chip)
{
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
struct qpnp_lut_config lut_config = lpg_config->lut_config;
int rc, value;
u8 val, mask;
value = QPNP_GET_RAMP_STEP_DURATION(lut_config.ramp_step_ms);
val = value & QPNP_RAMP_STEP_DURATION_LSB_MASK;
mask = QPNP_RAMP_STEP_DURATION_LSB_MASK;
rc = qpnp_lpg_save_and_write(val, mask,
&chip->qpnp_lpg_registers[QPNP_RAMP_STEP_DURATION_LSB],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_RAMP_STEP_DURATION_LSB), 1, chip);
if (rc)
return rc;
val = (value >> QPNP_RAMP_STEP_DURATION_MSB_SHIFT) &
QPNP_RAMP_STEP_DURATION_MSB_MASK;
mask = QPNP_RAMP_STEP_DURATION_MSB_MASK;
return qpnp_lpg_save_and_write(val, mask,
&chip->qpnp_lpg_registers[QPNP_RAMP_STEP_DURATION_MSB],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_RAMP_STEP_DURATION_MSB), 1, chip);
}
static int qpnp_lpg_configure_pause(struct qpnp_pwm_chip *chip)
{
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
struct qpnp_lut_config lut_config = lpg_config->lut_config;
u8 value, mask;
int rc = 0;
if (lut_config.enable_pause_hi) {
value = lut_config.lut_pause_hi_cnt;
mask = QPNP_PAUSE_HI_MULTIPLIER_LSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_PAUSE_HI_MULTIPLIER_LSB],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_PAUSE_HI_MULTIPLIER_LSB), 1, chip);
if (rc)
return rc;
value = (lut_config.lut_pause_hi_cnt >>
QPNP_PAUSE_HI_MULTIPLIER_MSB_SHIFT) &
QPNP_PAUSE_HI_MULTIPLIER_MSB_MASK;
mask = QPNP_PAUSE_HI_MULTIPLIER_MSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_PAUSE_HI_MULTIPLIER_MSB],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_PAUSE_HI_MULTIPLIER_MSB), 1, chip);
} else {
value = 0;
mask = QPNP_PAUSE_HI_MULTIPLIER_LSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_PAUSE_HI_MULTIPLIER_LSB],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_PAUSE_HI_MULTIPLIER_LSB), 1, chip);
if (rc)
return rc;
mask = QPNP_PAUSE_HI_MULTIPLIER_MSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_PAUSE_HI_MULTIPLIER_MSB],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_PAUSE_HI_MULTIPLIER_MSB), 1, chip);
if (rc)
return rc;
}
if (lut_config.enable_pause_lo) {
value = lut_config.lut_pause_lo_cnt;
mask = QPNP_PAUSE_LO_MULTIPLIER_LSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_PAUSE_LO_MULTIPLIER_LSB],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_PAUSE_LO_MULTIPLIER_LSB), 1, chip);
if (rc)
return rc;
value = (lut_config.lut_pause_lo_cnt >>
QPNP_PAUSE_LO_MULTIPLIER_MSB_SHIFT) &
QPNP_PAUSE_LO_MULTIPLIER_MSB_MASK;
mask = QPNP_PAUSE_LO_MULTIPLIER_MSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_PAUSE_LO_MULTIPLIER_MSB],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_PAUSE_LO_MULTIPLIER_MSB), 1, chip);
} else {
value = 0;
mask = QPNP_PAUSE_LO_MULTIPLIER_LSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_PAUSE_LO_MULTIPLIER_LSB],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_PAUSE_LO_MULTIPLIER_LSB), 1, chip);
if (rc)
return rc;
mask = QPNP_PAUSE_LO_MULTIPLIER_MSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_PAUSE_LO_MULTIPLIER_MSB],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_PAUSE_LO_MULTIPLIER_MSB), 1, chip);
return rc;
}
return rc;
}
static int qpnp_lpg_configure_index(struct qpnp_pwm_chip *chip)
{
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
struct qpnp_lut_config lut_config = lpg_config->lut_config;
u8 value, mask;
int rc = 0;
value = lut_config.hi_index;
mask = QPNP_HI_INDEX_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_HI_INDEX],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_HI_INDEX), 1, chip);
if (rc)
return rc;
value = lut_config.lo_index;
mask = QPNP_LO_INDEX_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_LO_INDEX],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_LO_INDEX), 1, chip);
return rc;
}
static int qpnp_lpg_change_lut(struct qpnp_pwm_chip *chip)
{
int rc;
rc = qpnp_lpg_configure_pattern(chip);
if (rc) {
pr_err("Failed to configure LUT pattern");
return rc;
}
rc = qpnp_lpg_configure_pwm(chip);
if (rc) {
pr_err("Failed to configure LUT pattern");
return rc;
}
rc = qpnp_configure_lpg_control(chip);
if (rc) {
pr_err("Failed to configure pause registers");
return rc;
}
rc = qpnp_lpg_configure_ramp_step_duration(chip);
if (rc) {
pr_err("Failed to configure duty time");
return rc;
}
rc = qpnp_lpg_configure_pause(chip);
if (rc) {
pr_err("Failed to configure pause registers");
return rc;
}
rc = qpnp_lpg_configure_index(chip);
if (rc) {
pr_err("Failed to configure index registers");
return rc;
}
return rc;
}
static int qpnp_dtest_config(struct qpnp_pwm_chip *chip, bool enable)
{
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
u8 value;
u8 mask;
u16 addr;
int rc = 0;
value = 0xA5;
addr = SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_LPG_SEC_ACCESS);
rc = regmap_write(chip->regmap, addr, value);
if (rc) {
pr_err("Couldn't set the access for test mode\n");
return rc;
}
addr = SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_LPG_DTEST + chip->dtest_line - 1);
if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE)
mask = QPNP_PWM_DTEST_OUTPUT_MASK;
else
mask = QPNP_LPG_DTEST_OUTPUT_MASK;
if (enable)
value = chip->dtest_output & mask;
else
value = 0;
pr_debug("Setting TEST mode for channel %d addr:%x value: %x\n",
chip->channel_id, addr, value);
rc = regmap_write(chip->regmap, addr, value);
return rc;
}
static int qpnp_lpg_configure_lut_state(struct qpnp_pwm_chip *chip,
enum qpnp_lut_state state)
{
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
u8 value1, value2, mask1, mask2;
u8 *reg1, *reg2;
u16 addr, addr1;
int rc;
bool test_enable;
value1 = chip->qpnp_lpg_registers[QPNP_RAMP_CONTROL];
reg1 = &chip->qpnp_lpg_registers[QPNP_RAMP_CONTROL];
reg2 = &chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL];
mask2 = QPNP_EN_PWM_HIGH_MASK | QPNP_EN_PWM_LO_MASK |
QPNP_PWM_SRC_SELECT_MASK | QPNP_PWM_EN_RAMP_GEN_MASK;
if (chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE)
mask2 |= QPNP_EN_PWM_OUTPUT_MASK;
if (chip->sub_type == QPNP_LPG_CHAN_SUB_TYPE
&& chip->revision == QPNP_LPG_REVISION_0) {
if (state == QPNP_LUT_ENABLE) {
QPNP_ENABLE_LUT_V0(value1);
value2 = QPNP_ENABLE_LPG_MODE(chip);
} else {
QPNP_DISABLE_LUT_V0(value1);
value2 = QPNP_DISABLE_LPG_MODE(chip);
}
mask1 = QPNP_RAMP_START_MASK;
addr1 = SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_RAMP_CONTROL);
} else if ((chip->sub_type == QPNP_LPG_CHAN_SUB_TYPE
&& chip->revision == QPNP_LPG_REVISION_1)
|| chip->sub_type == QPNP_LPG_S_CHAN_SUB_TYPE) {
if (state == QPNP_LUT_ENABLE) {
QPNP_ENABLE_LUT_V1(value1,
lpg_config->lut_config.ramp_index);
value2 = QPNP_ENABLE_LPG_MODE(chip);
} else {
value2 = QPNP_DISABLE_LPG_MODE(chip);
}
mask1 = value1;
addr1 = lpg_config->lut_base_addr +
SPMI_LPG_REV1_RAMP_CONTROL_OFFSET;
} else {
pr_err("Unsupported LPG subtype 0x%02x, revision 0x%02x\n",
chip->sub_type, chip->revision);
return -EINVAL;
}
addr = SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_ENABLE_CONTROL);
if (chip->in_test_mode) {
test_enable = (state == QPNP_LUT_ENABLE) ? 1 : 0;
rc = qpnp_dtest_config(chip, test_enable);
if (rc)
pr_err("Failed to configure TEST mode\n");
}
rc = qpnp_lpg_save_and_write(value2, mask2, reg2,
addr, 1, chip);
if (rc)
return rc;
if (state == QPNP_LUT_ENABLE
|| (chip->sub_type == QPNP_LPG_CHAN_SUB_TYPE
&& chip->revision == QPNP_LPG_REVISION_0))
rc = qpnp_lpg_save_and_write(value1, mask1, reg1,
addr1, 1, chip);
return rc;
}
static inline int qpnp_enable_pwm_mode(struct qpnp_pwm_chip *chip)
{
if (chip->pwm_config.supported_sizes == QPNP_PWM_SIZE_7_8_BIT)
return QPNP_ENABLE_PWM_MODE_GPLED_CHANNEL(chip);
return QPNP_ENABLE_PWM_MODE(chip);
}
static int qpnp_lpg_configure_pwm_state(struct qpnp_pwm_chip *chip,
enum qpnp_pwm_state state)
{
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
u8 value, mask;
int rc;
bool test_enable;
if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE) {
if (state == QPNP_PWM_ENABLE)
value = QPNP_ENABLE_PWM_MODE_ONLY_SUB_TYPE;
else
value = QPNP_DISABLE_PWM_MODE_ONLY_SUB_TYPE;
mask = QPNP_PWM_MODE_ONLY_ENABLE_DISABLE_MASK_SUB_TYPE;
} else {
if (state == QPNP_PWM_ENABLE)
value = qpnp_enable_pwm_mode(chip);
else
value = QPNP_DISABLE_PWM_MODE(chip);
mask = QPNP_EN_PWM_HIGH_MASK | QPNP_EN_PWM_LO_MASK |
QPNP_PWM_SRC_SELECT_MASK | QPNP_PWM_EN_RAMP_GEN_MASK;
if (chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE)
mask |= QPNP_EN_PWM_OUTPUT_MASK;
}
if (chip->in_test_mode) {
test_enable = (state == QPNP_PWM_ENABLE) ? 1 : 0;
rc = qpnp_dtest_config(chip, test_enable);
if (rc)
pr_err("Failed to configure TEST mode\n");
}
pr_debug("pwm_enable_control: %d\n", value);
rc = qpnp_lpg_save_and_write(value, mask,
&chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL],
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_ENABLE_CONTROL), 1, chip);
if (rc)
goto out;
/*
* Due to LPG hardware bug, in the PWM mode, having enabled PWM,
* We have to write PWM values one more time.
*/
if (state == QPNP_PWM_ENABLE)
return qpnp_lpg_save_pwm_value(chip);
out:
return rc;
}
static int _pwm_config(struct qpnp_pwm_chip *chip,
enum time_level tm_lvl,
int duty_value, int period_value)
{
int rc;
struct _qpnp_pwm_config *pwm_config = &chip->pwm_config;
struct pwm_period_config *period = &pwm_config->period;
pwm_config->pwm_duty = (tm_lvl == LVL_USEC) ? duty_value :
duty_value / NSEC_PER_USEC;
qpnp_lpg_calc_pwm_value(pwm_config, period_value, duty_value);
rc = qpnp_lpg_save_pwm_value(chip);
if (rc)
goto out;
if (pwm_config->update_period) {
rc = qpnp_lpg_configure_pwm(chip);
if (rc)
goto out;
rc = qpnp_configure_pwm_control(chip);
if (rc)
goto out;
if (!rc && chip->enabled) {
rc = qpnp_lpg_configure_pwm_state(chip,
QPNP_PWM_ENABLE);
if (rc) {
pr_err("Error in configuring pwm state, rc=%d\n",
rc);
return rc;
}
/* Enable the glitch removal after PWM is enabled */
rc = qpnp_lpg_glitch_removal(chip, true);
if (rc) {
pr_err("Error in enabling glitch control, rc=%d\n",
rc);
return rc;
}
}
}
pr_debug("duty/period=%u/%u %s: pwm_value=%d (of %d)\n",
(unsigned int)duty_value, (unsigned int)period_value,
(tm_lvl == LVL_USEC) ? "usec" : "nsec",
pwm_config->pwm_value, 1 << period->pwm_size);
out:
return rc;
}
static int _pwm_lut_config(struct qpnp_pwm_chip *chip, int period_us,
int duty_pct[], struct lut_params lut_params)
{
struct qpnp_lpg_config *lpg_config;
struct qpnp_lut_config *lut_config;
struct pwm_period_config *period;
struct _qpnp_pwm_config *pwm_config;
int start_idx = lut_params.start_idx;
int len = lut_params.idx_len;
int flags = lut_params.flags;
int raw_lut, ramp_step_ms;
int rc = 0;
pwm_config = &chip->pwm_config;
lpg_config = &chip->lpg_config;
lut_config = &lpg_config->lut_config;
period = &pwm_config->period;
if (flags & PM_PWM_LUT_NO_TABLE)
goto after_table_write;
raw_lut = 0;
if (flags & PM_PWM_LUT_USE_RAW_VALUE)
raw_lut = 1;
lut_config->list_len = len;
lut_config->lo_index = start_idx + 1;
lut_config->hi_index = start_idx + len;
rc = qpnp_lpg_change_table(chip, duty_pct, raw_lut);
if (rc) {
pr_err("qpnp_lpg_change_table: rc=%d\n", rc);
return -EINVAL;
}
after_table_write:
ramp_step_ms = lut_params.ramp_step_ms;
if (ramp_step_ms > PM_PWM_LUT_RAMP_STEP_TIME_MAX)
ramp_step_ms = PM_PWM_LUT_RAMP_STEP_TIME_MAX;
QPNP_SET_PAUSE_CNT(lut_config->lut_pause_lo_cnt,
lut_params.lut_pause_lo, ramp_step_ms);
if (lut_config->lut_pause_lo_cnt > PM_PWM_MAX_PAUSE_CNT)
lut_config->lut_pause_lo_cnt = PM_PWM_MAX_PAUSE_CNT;
QPNP_SET_PAUSE_CNT(lut_config->lut_pause_hi_cnt,
lut_params.lut_pause_hi, ramp_step_ms);
if (lut_config->lut_pause_hi_cnt > PM_PWM_MAX_PAUSE_CNT)
lut_config->lut_pause_hi_cnt = PM_PWM_MAX_PAUSE_CNT;
lut_config->ramp_step_ms = ramp_step_ms;
lut_config->ramp_direction = !!(flags & PM_PWM_LUT_RAMP_UP);
lut_config->pattern_repeat = !!(flags & PM_PWM_LUT_LOOP);
lut_config->ramp_toggle = !!(flags & PM_PWM_LUT_REVERSE);
lut_config->enable_pause_hi = !!(flags & PM_PWM_LUT_PAUSE_HI_EN);
lut_config->enable_pause_lo = !!(flags & PM_PWM_LUT_PAUSE_LO_EN);
rc = qpnp_lpg_change_lut(chip);
if (!rc && chip->enabled)
rc = qpnp_lpg_configure_lut_state(chip, QPNP_LUT_ENABLE);
return rc;
}
/* lpg_lock should be held while calling _pwm_enable() */
static int _pwm_enable(struct qpnp_pwm_chip *chip)
{
int rc = 0;
if (QPNP_IS_PWM_CONFIG_SELECTED(
chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL]) ||
chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED) {
rc = qpnp_lpg_configure_pwm_state(chip, QPNP_PWM_ENABLE);
} else if (!(chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED)) {
rc = qpnp_lpg_configure_lut_state(chip, QPNP_LUT_ENABLE);
}
if (!rc)
chip->enabled = true;
return rc;
}
/* lpg_lock should be held while calling _pwm_change_mode() */
static int _pwm_change_mode(struct qpnp_pwm_chip *chip, enum pm_pwm_mode mode)
{
int rc;
if (mode == PM_PWM_MODE_LPG)
rc = qpnp_configure_lpg_control(chip);
else
rc = qpnp_configure_pwm_control(chip);
if (rc)
pr_err("Failed to change the mode\n");
return rc;
}
/* APIs */
/**
* qpnp_pwm_free - free a PWM device
* @pwm_chip: the PWM chip
* @pwm: the PWM device
*/
static void qpnp_pwm_free(struct pwm_chip *pwm_chip,
struct pwm_device *pwm)
{
struct qpnp_pwm_chip *chip = qpnp_pwm_from_pwm_chip(pwm_chip);
unsigned long flags;
spin_lock_irqsave(&chip->lpg_lock, flags);
qpnp_lpg_configure_pwm_state(chip, QPNP_PWM_DISABLE);
if (!(chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED))
qpnp_lpg_configure_lut_state(chip, QPNP_LUT_DISABLE);
chip->enabled = false;
spin_unlock_irqrestore(&chip->lpg_lock, flags);
}
/**
* qpnp_pwm_config - change a PWM device configuration
* @pwm: the PWM device
* @period_ns: period in nanoseconds
* @duty_ns: duty cycle in nanoseconds
*/
static int qpnp_pwm_config(struct pwm_chip *pwm_chip,
struct pwm_device *pwm, int duty_ns, int period_ns)
{
int rc;
unsigned long flags;
struct qpnp_pwm_chip *chip = qpnp_pwm_from_pwm_chip(pwm_chip);
int prev_period_us = chip->pwm_config.pwm_period;
if ((unsigned int)period_ns < PM_PWM_PERIOD_MIN * NSEC_PER_USEC) {
pr_err("Invalid pwm handle or parameters\n");
return -EINVAL;
}
spin_lock_irqsave(&chip->lpg_lock, flags);
chip->pwm_config.update_period = false;
if (prev_period_us > INT_MAX / NSEC_PER_USEC ||
prev_period_us * NSEC_PER_USEC != period_ns) {
qpnp_lpg_calc_period(LVL_NSEC, period_ns, chip);
qpnp_lpg_save_period(chip);
pwm->state.period = period_ns;
chip->pwm_config.pwm_period = period_ns / NSEC_PER_USEC;
chip->pwm_config.update_period = true;
}
rc = _pwm_config(chip, LVL_NSEC, duty_ns, period_ns);
spin_unlock_irqrestore(&chip->lpg_lock, flags);
if (rc)
pr_err("Failed to configure PWM mode\n");
return rc;
}
/**
* qpnp_pwm_enable - start a PWM output toggling
* @pwm_chip: the PWM chip
* @pwm: the PWM device
*/
static int qpnp_pwm_enable(struct pwm_chip *pwm_chip,
struct pwm_device *pwm)
{
int rc;
struct qpnp_pwm_chip *chip = qpnp_pwm_from_pwm_chip(pwm_chip);
unsigned long flags;
spin_lock_irqsave(&chip->lpg_lock, flags);
rc = _pwm_enable(chip);
if (rc)
pr_err("Failed to enable PWM channel: %d\n", chip->channel_id);
spin_unlock_irqrestore(&chip->lpg_lock, flags);
return rc;
}
/**
* qpnp_pwm_disable - stop a PWM output toggling
* @pwm_chip: the PWM chip
* @pwm: the PWM device
*/
static void qpnp_pwm_disable(struct pwm_chip *pwm_chip,
struct pwm_device *pwm)
{
struct qpnp_pwm_chip *chip = qpnp_pwm_from_pwm_chip(pwm_chip);
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&chip->lpg_lock, flags);
if (QPNP_IS_PWM_CONFIG_SELECTED(
chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL]) ||
chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED)
rc = qpnp_lpg_configure_pwm_state(chip,
QPNP_PWM_DISABLE);
else if (!(chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED))
rc = qpnp_lpg_configure_lut_state(chip,
QPNP_LUT_DISABLE);
if (!rc)
chip->enabled = false;
spin_unlock_irqrestore(&chip->lpg_lock, flags);
if (rc)
pr_err("Failed to disable PWM channel: %d\n",
chip->channel_id);
}
/**
* pwm_change_mode - Change the PWM mode configuration
* @pwm: the PWM device
* @mode: Mode selection value
*/
int pwm_change_mode(struct pwm_device *pwm, enum pm_pwm_mode mode)
{
int rc = 0;
unsigned long flags;
struct qpnp_pwm_chip *chip;
if (pwm == NULL || IS_ERR(pwm) || pwm->chip == NULL) {
pr_err("Invalid pwm handle or no pwm_chip\n");
return -EINVAL;
}
if (mode < PM_PWM_MODE_PWM || mode > PM_PWM_MODE_LPG) {
pr_err("Invalid mode value\n");
return -EINVAL;
}
chip = qpnp_pwm_from_pwm_dev(pwm);
spin_lock_irqsave(&chip->lpg_lock, flags);
if (chip->pwm_mode != mode) {
rc = _pwm_change_mode(chip, mode);
if (rc) {
pr_err("Failed to change mode: %d, rc=%d\n", mode, rc);
goto unlock;
}
chip->pwm_mode = mode;
if (chip->enabled) {
rc = _pwm_enable(chip);
if (rc) {
pr_err("Failed to enable PWM, rc=%d\n", rc);
goto unlock;
}
}
}
unlock:
spin_unlock_irqrestore(&chip->lpg_lock, flags);
return rc;
}
EXPORT_SYMBOL(pwm_change_mode);
/**
* pwm_config_period - change PWM period
*
* @pwm: the PWM device
* @pwm_p: period in struct qpnp_lpg_period
*/
int pwm_config_period(struct pwm_device *pwm,
struct pwm_period_config *period)
{
struct _qpnp_pwm_config *pwm_config;
struct qpnp_lpg_config *lpg_config;
struct qpnp_pwm_chip *chip;
unsigned long flags;
int rc = 0;
if (pwm == NULL || IS_ERR(pwm) || period == NULL)
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
chip = qpnp_pwm_from_pwm_dev(pwm);
pwm_config = &chip->pwm_config;
lpg_config = &chip->lpg_config;
spin_lock_irqsave(&chip->lpg_lock, flags);
pwm_config->period.pwm_size = period->pwm_size;
pwm_config->period.clk = period->clk;
pwm_config->period.pre_div = period->pre_div;
pwm_config->period.pre_div_exp = period->pre_div_exp;
qpnp_lpg_save_period(chip);
rc = regmap_write(chip->regmap,
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_LPG_PWM_SIZE_CLK),
*&chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]);
if (rc) {
pr_err("Write failed: QPNP_LPG_PWM_SIZE_CLK register, rc: %d\n",
rc);
goto out_unlock;
}
rc = regmap_write(chip->regmap,
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_LPG_PWM_FREQ_PREDIV_CLK),
*&chip->qpnp_lpg_registers[QPNP_LPG_PWM_FREQ_PREDIV_CLK]);
if (rc) {
pr_err("Failed to write to QPNP_LPG_PWM_FREQ_PREDIV_CLK\n");
pr_err("register, rc = %d\n", rc);
}
out_unlock:
spin_unlock_irqrestore(&chip->lpg_lock, flags);
return rc;
}
EXPORT_SYMBOL(pwm_config_period);
/**
* pwm_config_pwm_value - change a PWM device configuration
* @pwm: the PWM device
* @pwm_value: the duty cycle in raw PWM value (< 2^pwm_size)
*/
int pwm_config_pwm_value(struct pwm_device *pwm, int pwm_value)
{
struct qpnp_lpg_config *lpg_config;
struct _qpnp_pwm_config *pwm_config;
struct qpnp_pwm_chip *chip;
unsigned long flags;
int rc = 0;
if (pwm == NULL || IS_ERR(pwm)) {
pr_err("Invalid parameter passed\n");
return -EINVAL;
}
if (pwm->chip == NULL) {
pr_err("Invalid device handle\n");
return -ENODEV;
}
chip = qpnp_pwm_from_pwm_dev(pwm);
lpg_config = &chip->lpg_config;
pwm_config = &chip->pwm_config;
spin_lock_irqsave(&chip->lpg_lock, flags);
if (pwm_config->pwm_value == pwm_value)
goto out_unlock;
pwm_config->pwm_value = pwm_value;
rc = qpnp_lpg_save_pwm_value(chip);
if (rc)
pr_err("Could not update PWM value for channel %d rc=%d\n",
chip->channel_id, rc);
out_unlock:
spin_unlock_irqrestore(&chip->lpg_lock, flags);
return rc;
}
EXPORT_SYMBOL(pwm_config_pwm_value);
/**
* pwm_config_us - change a PWM device configuration
* @pwm: the PWM device
* @period_us: period in microseconds
* @duty_us: duty cycle in microseconds
*/
int pwm_config_us(struct pwm_device *pwm, int duty_us, int period_us)
{
int rc;
unsigned long flags;
struct qpnp_pwm_chip *chip;
if (pwm == NULL || IS_ERR(pwm) ||
duty_us > period_us ||
(unsigned int)period_us > PM_PWM_PERIOD_MAX ||
(unsigned int)period_us < PM_PWM_PERIOD_MIN) {
pr_err("Invalid pwm handle or parameters\n");
return -EINVAL;
}
chip = qpnp_pwm_from_pwm_dev(pwm);
spin_lock_irqsave(&chip->lpg_lock, flags);
chip->pwm_config.update_period = false;
if (chip->pwm_config.pwm_period != period_us) {
qpnp_lpg_calc_period(LVL_USEC, period_us, chip);
qpnp_lpg_save_period(chip);
chip->pwm_config.pwm_period = period_us;
if ((unsigned int)period_us >
(unsigned int)(-1) / NSEC_PER_USEC)
pwm->state.period = 0;
else
pwm->state.period
= (unsigned int)period_us * NSEC_PER_USEC;
chip->pwm_config.update_period = true;
}
rc = _pwm_config(chip, LVL_USEC, duty_us, period_us);
spin_unlock_irqrestore(&chip->lpg_lock, flags);
if (rc)
pr_err("Failed to configure PWM mode\n");
return rc;
}
EXPORT_SYMBOL(pwm_config_us);
/**
* pwm_lut_config - change LPG LUT device configuration
* @pwm: the PWM device
* @period_us: period in micro second
* @duty_pct: array of duty cycles in percent, like 20, 50.
* @lut_params: Lookup table parameters
*/
int pwm_lut_config(struct pwm_device *pwm, int period_us,
int duty_pct[], struct lut_params lut_params)
{
unsigned long flags;
struct qpnp_pwm_chip *chip;
int rc = 0;
if (pwm == NULL || IS_ERR(pwm) || !lut_params.idx_len) {
pr_err("Invalid pwm handle or idx_len=0\n");
return -EINVAL;
}
if (pwm->chip == NULL)
return -ENODEV;
if (duty_pct == NULL && !(lut_params.flags & PM_PWM_LUT_NO_TABLE)) {
pr_err("Invalid duty_pct with flag\n");
return -EINVAL;
}
chip = qpnp_pwm_from_pwm_dev(pwm);
if (chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED) {
pr_err("LUT mode isn't supported\n");
return -EINVAL;
}
if ((lut_params.start_idx + lut_params.idx_len) >
chip->lpg_config.lut_size) {
pr_err("Exceed LUT limit\n");
return -EINVAL;
}
if ((unsigned int)period_us > PM_PWM_PERIOD_MAX ||
(unsigned int)period_us < PM_PWM_PERIOD_MIN) {
pr_err("Period out of range\n");
return -EINVAL;
}
spin_lock_irqsave(&chip->lpg_lock, flags);
if (chip->pwm_config.pwm_period != period_us) {
qpnp_lpg_calc_period(LVL_USEC, period_us, chip);
qpnp_lpg_save_period(chip);
chip->pwm_config.pwm_period = period_us;
}
rc = _pwm_lut_config(chip, period_us, duty_pct, lut_params);
spin_unlock_irqrestore(&chip->lpg_lock, flags);
if (rc)
pr_err("Failed to configure LUT\n");
return rc;
}
EXPORT_SYMBOL(pwm_lut_config);
static int qpnp_parse_pwm_dt_config(struct device_node *of_pwm_node,
struct device_node *of_parent, struct qpnp_pwm_chip *chip)
{
int rc, period;
rc = of_property_read_u32(of_parent, "qcom,period", (u32 *)&period);
if (rc) {
pr_err("node is missing PWM Period prop");
return rc;
}
rc = of_property_read_u32(of_pwm_node, "qcom,duty",
&chip->pwm_config.pwm_duty);
if (rc) {
pr_err("node is missing PWM Duty prop");
return rc;
}
if (period < chip->pwm_config.pwm_duty || period > PM_PWM_PERIOD_MAX ||
period < PM_PWM_PERIOD_MIN) {
pr_err("Invalid pwm period(%d) or duty(%d)\n", period,
chip->pwm_config.pwm_duty);
return -EINVAL;
}
qpnp_lpg_calc_period(LVL_USEC, period, chip);
qpnp_lpg_save_period(chip);
chip->pwm_config.pwm_period = period;
chip->pwm_config.update_period = true;
rc = _pwm_config(chip, LVL_USEC, chip->pwm_config.pwm_duty, period);
return rc;
}
static int qpnp_parse_lpg_dt_config(struct device_node *of_lpg_node,
struct device_node *of_parent, struct qpnp_pwm_chip *chip)
{
int rc, period, list_size, start_idx, *duty_pct_list;
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
struct qpnp_lut_config *lut_config = &lpg_config->lut_config;
struct lut_params lut_params;
rc = of_property_read_u32(of_parent, "qcom,period", &period);
if (rc) {
pr_err("node is missing PWM Period prop\n");
return rc;
}
if (!of_get_property(of_lpg_node, "qcom,duty-percents", &list_size)) {
pr_err("node is missing duty-pct list\n");
return rc;
}
rc = of_property_read_u32(of_lpg_node, "cell-index", &start_idx);
if (rc) {
pr_err("Missing start index\n");
return rc;
}
list_size /= sizeof(u32);
if (list_size + start_idx > lpg_config->lut_size) {
pr_err("duty pct list size overflows\n");
return -EINVAL;
}
duty_pct_list = kcalloc(list_size, sizeof(*duty_pct_list), GFP_KERNEL);
if (!duty_pct_list)
return -ENOMEM;
rc = of_property_read_u32_array(of_lpg_node, "qcom,duty-percents",
duty_pct_list, list_size);
if (rc) {
pr_err("invalid or missing property: qcom,duty-pcts-list\n");
goto out;
}
/* Read optional properties */
rc = of_property_read_u32(of_lpg_node, "qcom,ramp-step-duration",
&lut_config->ramp_step_ms);
if (rc && rc != -EINVAL)
goto out;
rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-pause-hi",
&lut_config->lut_pause_hi_cnt);
if (rc && rc != -EINVAL)
goto out;
rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-pause-lo",
&lut_config->lut_pause_lo_cnt);
if (rc && rc != -EINVAL)
goto out;
rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-ramp-direction",
(u32 *)&lut_config->ramp_direction);
if (rc && rc != -EINVAL)
goto out;
rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-pattern-repeat",
(u32 *)&lut_config->pattern_repeat);
if (rc && rc != -EINVAL)
goto out;
rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-ramp-toggle",
(u32 *)&lut_config->ramp_toggle);
if (rc && rc != -EINVAL)
goto out;
rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-enable-pause-hi",
(u32 *)&lut_config->enable_pause_hi);
if (rc && rc != -EINVAL)
goto out;
rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-enable-pause-lo",
(u32 *)&lut_config->enable_pause_lo);
if (rc && rc != -EINVAL)
goto out;
rc = 0;
qpnp_set_lut_params(&lut_params, lut_config, start_idx, list_size);
_pwm_lut_config(chip, period, duty_pct_list, lut_params);
out:
kfree(duty_pct_list);
return rc;
}
static int qpnp_lpg_get_rev_subtype(struct qpnp_pwm_chip *chip)
{
int rc;
uint val;
rc = regmap_read(chip->regmap,
chip->lpg_config.base_addr + SPMI_LPG_SUB_TYPE_OFFSET,
&val);
if (rc) {
pr_err("Couldn't read subtype rc: %d\n", rc);
goto out;
}
chip->sub_type = (u8)val;
rc = regmap_read(chip->regmap,
chip->lpg_config.base_addr + SPMI_LPG_REVISION2_OFFSET,
&val);
if (rc) {
pr_err("Couldn't read revision2 rc: %d\n", rc);
goto out;
}
chip->revision = (u8)val;
if (chip->revision < QPNP_LPG_REVISION_0 ||
chip->revision > QPNP_LPG_REVISION_1) {
pr_err("Unknown LPG revision detected, rev:%d\n",
chip->revision);
rc = -EINVAL;
goto out;
}
if (chip->sub_type != QPNP_PWM_MODE_ONLY_SUB_TYPE
&& chip->sub_type != QPNP_LPG_CHAN_SUB_TYPE
&& chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE) {
pr_err("Unknown LPG/PWM subtype detected, subtype:%d\n",
chip->sub_type);
rc = -EINVAL;
}
out:
pr_debug("LPG rev 0x%02x subtype 0x%02x rc: %d\n", chip->revision,
chip->sub_type, rc);
return rc;
}
/* Fill in lpg device elements based on values found in device tree. */
static int qpnp_parse_dt_config(struct platform_device *pdev,
struct qpnp_pwm_chip *chip)
{
int rc, mode, lut_entry_size, list_size, i;
const char *label;
const __be32 *prop;
u32 size;
struct device_node *node;
int found_pwm_subnode = 0;
int found_lpg_subnode = 0;
struct device_node *of_node = pdev->dev.of_node;
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
struct qpnp_lut_config *lut_config = &lpg_config->lut_config;
struct _qpnp_pwm_config *pwm_config = &chip->pwm_config;
int force_pwm_size = 0;
int pwm_size_list[QPNP_PWM_SIZES_SUPPORTED];
rc = of_property_read_u32(of_node, "qcom,channel-id",
&chip->channel_id);
if (rc) {
dev_err(&pdev->dev, "%s: node is missing LPG channel id\n",
__func__);
return -EINVAL;
}
if (!of_get_property(of_node, "qcom,supported-sizes", &list_size)) {
pr_err("Missing qcom,supported-size list\n");
return -EINVAL;
}
list_size /= sizeof(u32);
if (list_size > QPNP_PWM_SIZES_SUPPORTED) {
pr_err(" qcom,supported-size list is too big\n");
return -EINVAL;
}
rc = of_property_read_u32_array(of_node, "qcom,supported-sizes",
pwm_size_list, list_size);
if (rc) {
pr_err("Invalid qcom,supported-size property\n");
return rc;
}
for (i = 0; i < list_size; i++) {
pwm_config->supported_sizes |=
(1 << (pwm_size_list[i] - QPNP_MIN_PWM_BIT_SIZE));
}
if (!(pwm_config->supported_sizes == QPNP_PWM_SIZE_6_9_BIT ||
pwm_config->supported_sizes == QPNP_PWM_SIZE_7_8_BIT ||
pwm_config->supported_sizes == QPNP_PWM_SIZE_6_7_9_BIT)) {
pr_err("PWM sizes list qcom,supported-size is not proper\n");
return -EINVAL;
}
/*
* For cetrain LPG channels PWM size can be forced. So that
* for every requested pwm period closest pwm frequency is
* selected in qpnp_lpg_calc_period() for the forced pwm size.
*/
rc = of_property_read_u32(of_node, "qcom,force-pwm-size",
&force_pwm_size);
if (pwm_config->supported_sizes == QPNP_PWM_SIZE_7_8_BIT) {
if (!(force_pwm_size == QPNP_PWM_SIZE_7_BIT ||
force_pwm_size == QPNP_PWM_SIZE_8_BIT))
force_pwm_size = 0;
} else if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE) {
if (!(force_pwm_size == QPNP_PWM_SIZE_6_BIT ||
force_pwm_size == QPNP_PWM_SIZE_9_BIT))
force_pwm_size = 0;
} else if (pwm_config->supported_sizes == QPNP_PWM_SIZE_6_7_9_BIT) {
if (!(force_pwm_size == QPNP_PWM_SIZE_6_BIT ||
force_pwm_size == QPNP_PWM_SIZE_7_BIT ||
force_pwm_size == QPNP_PWM_SIZE_9_BIT))
force_pwm_size = 0;
}
pwm_config->force_pwm_size = force_pwm_size;
prop = of_get_address_by_name(pdev->dev.of_node, QPNP_LPG_CHANNEL_BASE,
0, 0);
if (!prop) {
dev_err(&pdev->dev, "Couldnt find channel's base addr rc %d\n",
rc);
return rc;
}
lpg_config->base_addr = be32_to_cpu(*prop);
rc = qpnp_lpg_get_rev_subtype(chip);
if (rc)
return rc;
prop = of_get_address_by_name(pdev->dev.of_node, QPNP_LPG_LUT_BASE,
0, 0);
if (!prop) {
chip->flags |= QPNP_PWM_LUT_NOT_SUPPORTED;
} else {
lpg_config->lut_base_addr = be32_to_cpu(*prop);
rc = of_property_read_u32(of_node, "qcom,lpg-lut-size", &size);
if (rc < 0) {
dev_err(&pdev->dev, "Error reading qcom,lpg-lut-size, rc=%d\n",
rc);
return rc;
}
/*
* Each entry of LUT is of 2 bytes for generic LUT and of 1 byte
* for KPDBL/GLED LUT.
*/
lpg_config->lut_size = size >> 1;
lut_entry_size = sizeof(u16);
if (pwm_config->supported_sizes == QPNP_PWM_SIZE_7_8_BIT) {
lpg_config->lut_size = size;
lut_entry_size = sizeof(u8);
}
lut_config->duty_pct_list = kcalloc(lpg_config->lut_size,
lut_entry_size, GFP_KERNEL);
if (!lut_config->duty_pct_list)
return -ENOMEM;
rc = of_property_read_u32(of_node, "qcom,ramp-index",
&lut_config->ramp_index);
if (rc) {
pr_err("Missing LPG qcom,ramp-index property\n");
kfree(lut_config->duty_pct_list);
return rc;
}
}
rc = of_property_read_u32(of_node, "qcom,dtest-line",
&chip->dtest_line);
if (rc) {
chip->in_test_mode = 0;
} else {
rc = of_property_read_u32(of_node, "qcom,dtest-output",
&chip->dtest_output);
if (rc) {
pr_err("Missing DTEST output configuration\n");
return rc;
}
chip->in_test_mode = 1;
}
if (chip->in_test_mode) {
if ((chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE) &&
(chip->dtest_line > QPNP_PWM_DTEST_LINE_MAX ||
chip->dtest_output > QPNP_PWM_DTEST_OUTPUT_MAX)) {
pr_err("DTEST line/output values are improper for PWM channel %d\n",
chip->channel_id);
return -EINVAL;
} else if (chip->dtest_line > QPNP_LPG_DTEST_LINE_MAX ||
chip->dtest_output > QPNP_LPG_DTEST_OUTPUT_MAX) {
pr_err("DTEST line/output values are improper for LPG channel %d\n",
chip->channel_id);
return -EINVAL;
}
}
for_each_child_of_node(of_node, node) {
rc = of_property_read_string(node, "label", &label);
if (rc) {
dev_err(&pdev->dev, "%s: Missing label property\n",
__func__);
goto out;
}
if (!strcmp(label, "pwm")) {
rc = qpnp_parse_pwm_dt_config(node, of_node, chip);
if (rc)
goto out;
found_pwm_subnode = 1;
} else if (!strcmp(label, "lpg") &&
!(chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED)) {
rc = qpnp_parse_lpg_dt_config(node, of_node, chip);
if (rc)
goto out;
found_lpg_subnode = 1;
} else {
dev_err(&pdev->dev,
"%s: Invalid value for lable prop",
__func__);
}
}
rc = of_property_read_u32(of_node, "qcom,mode-select", &mode);
if (rc)
goto read_opt_props;
if (mode > PM_PWM_MODE_LPG ||
(mode == PM_PWM_MODE_PWM && found_pwm_subnode == 0) ||
(mode == PM_PWM_MODE_LPG && found_lpg_subnode == 0)) {
dev_err(&pdev->dev, "%s: Invalid mode select\n", __func__);
rc = -EINVAL;
goto out;
}
chip->pwm_mode = mode;
_pwm_change_mode(chip, mode);
_pwm_enable(chip);
read_opt_props:
/* Initialize optional config parameters from DT if provided */
of_property_read_string(node, "qcom,channel-owner",
&chip->channel_owner);
return 0;
out:
kfree(lut_config->duty_pct_list);
return rc;
}
static struct pwm_ops qpnp_pwm_ops = {
.enable = qpnp_pwm_enable,
.disable = qpnp_pwm_disable,
.config = qpnp_pwm_config,
.free = qpnp_pwm_free,
.owner = THIS_MODULE,
};
static int qpnp_pwm_probe(struct platform_device *pdev)
{
struct qpnp_pwm_chip *pwm_chip;
int rc;
pwm_chip = kzalloc(sizeof(*pwm_chip), GFP_KERNEL);
if (pwm_chip == NULL)
return -ENOMEM;
pwm_chip->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!pwm_chip->regmap) {
dev_err(&pdev->dev, "Couldn't get parent's regmap\n");
return -EINVAL;
}
spin_lock_init(&pwm_chip->lpg_lock);
pwm_chip->pdev = pdev;
dev_set_drvdata(&pdev->dev, pwm_chip);
rc = qpnp_parse_dt_config(pdev, pwm_chip);
if (rc) {
pr_err("Failed parsing DT parameters, rc=%d\n", rc);
goto failed_config;
}
pwm_chip->chip.dev = &pdev->dev;
pwm_chip->chip.ops = &qpnp_pwm_ops;
pwm_chip->chip.base = -1;
pwm_chip->chip.npwm = 1;
rc = pwmchip_add(&pwm_chip->chip);
if (rc < 0) {
pr_err("pwmchip_add() failed: %d\n", rc);
goto failed_insert;
}
if (pwm_chip->channel_owner)
pwm_chip->chip.pwms[0].label = pwm_chip->channel_owner;
pr_debug("PWM device channel:%d probed successfully\n",
pwm_chip->channel_id);
return 0;
failed_insert:
kfree(pwm_chip->lpg_config.lut_config.duty_pct_list);
failed_config:
dev_set_drvdata(&pdev->dev, NULL);
kfree(pwm_chip);
return rc;
}
static int qpnp_pwm_remove(struct platform_device *pdev)
{
struct qpnp_pwm_chip *pwm_chip;
struct qpnp_lpg_config *lpg_config;
pwm_chip = dev_get_drvdata(&pdev->dev);
dev_set_drvdata(&pdev->dev, NULL);
if (pwm_chip) {
lpg_config = &pwm_chip->lpg_config;
pwmchip_remove(&pwm_chip->chip);
kfree(lpg_config->lut_config.duty_pct_list);
kfree(pwm_chip);
}
return 0;
}
static const struct of_device_id spmi_match_table[] = {
{ .compatible = QPNP_LPG_DRIVER_NAME, },
{}
};
static const struct platform_device_id qpnp_lpg_id[] = {
{ QPNP_LPG_DRIVER_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(spmi, qpnp_lpg_id);
static struct platform_driver qpnp_lpg_driver = {
.driver = {
.name = QPNP_LPG_DRIVER_NAME,
.of_match_table = spmi_match_table,
.owner = THIS_MODULE,
},
.probe = qpnp_pwm_probe,
.remove = qpnp_pwm_remove,
.id_table = qpnp_lpg_id,
};
/**
* qpnp_lpg_init() - register spmi driver for qpnp-lpg
*/
int __init qpnp_lpg_init(void)
{
return platform_driver_register(&qpnp_lpg_driver);
}
static void __exit qpnp_lpg_exit(void)
{
platform_driver_unregister(&qpnp_lpg_driver);
}
MODULE_DESCRIPTION("QPNP PMIC LPG driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" QPNP_LPG_DRIVER_NAME);
subsys_initcall(qpnp_lpg_init);
module_exit(qpnp_lpg_exit);