| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| * |
| * TILE Huge TLB Page Support for Kernel. |
| * Taken from i386 hugetlb implementation: |
| * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/hugetlb.h> |
| #include <linux/pagemap.h> |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/sysctl.h> |
| #include <linux/mman.h> |
| #include <asm/tlb.h> |
| #include <asm/tlbflush.h> |
| #include <asm/setup.h> |
| |
| #ifdef CONFIG_HUGETLB_SUPER_PAGES |
| |
| /* |
| * Provide an additional huge page size (in addition to the regular default |
| * huge page size) if no "hugepagesz" arguments are specified. |
| * Note that it must be smaller than the default huge page size so |
| * that it's possible to allocate them on demand from the buddy allocator. |
| * You can change this to 64K (on a 16K build), 256K, 1M, or 4M, |
| * or not define it at all. |
| */ |
| #define ADDITIONAL_HUGE_SIZE (1024 * 1024UL) |
| |
| /* "Extra" page-size multipliers, one per level of the page table. */ |
| int huge_shift[HUGE_SHIFT_ENTRIES] = { |
| #ifdef ADDITIONAL_HUGE_SIZE |
| #define ADDITIONAL_HUGE_SHIFT __builtin_ctzl(ADDITIONAL_HUGE_SIZE / PAGE_SIZE) |
| [HUGE_SHIFT_PAGE] = ADDITIONAL_HUGE_SHIFT |
| #endif |
| }; |
| |
| #endif |
| |
| pte_t *huge_pte_alloc(struct mm_struct *mm, |
| unsigned long addr, unsigned long sz) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| |
| addr &= -sz; /* Mask off any low bits in the address. */ |
| |
| pgd = pgd_offset(mm, addr); |
| pud = pud_alloc(mm, pgd, addr); |
| |
| #ifdef CONFIG_HUGETLB_SUPER_PAGES |
| if (sz >= PGDIR_SIZE) { |
| BUG_ON(sz != PGDIR_SIZE && |
| sz != PGDIR_SIZE << huge_shift[HUGE_SHIFT_PGDIR]); |
| return (pte_t *)pud; |
| } else { |
| pmd_t *pmd = pmd_alloc(mm, pud, addr); |
| if (sz >= PMD_SIZE) { |
| BUG_ON(sz != PMD_SIZE && |
| sz != (PMD_SIZE << huge_shift[HUGE_SHIFT_PMD])); |
| return (pte_t *)pmd; |
| } |
| else { |
| if (sz != PAGE_SIZE << huge_shift[HUGE_SHIFT_PAGE]) |
| panic("Unexpected page size %#lx\n", sz); |
| return pte_alloc_map(mm, NULL, pmd, addr); |
| } |
| } |
| #else |
| BUG_ON(sz != PMD_SIZE); |
| return (pte_t *) pmd_alloc(mm, pud, addr); |
| #endif |
| } |
| |
| static pte_t *get_pte(pte_t *base, int index, int level) |
| { |
| pte_t *ptep = base + index; |
| #ifdef CONFIG_HUGETLB_SUPER_PAGES |
| if (!pte_present(*ptep) && huge_shift[level] != 0) { |
| unsigned long mask = -1UL << huge_shift[level]; |
| pte_t *super_ptep = base + (index & mask); |
| pte_t pte = *super_ptep; |
| if (pte_present(pte) && pte_super(pte)) |
| ptep = super_ptep; |
| } |
| #endif |
| return ptep; |
| } |
| |
| pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| #ifdef CONFIG_HUGETLB_SUPER_PAGES |
| pte_t *pte; |
| #endif |
| |
| /* Get the top-level page table entry. */ |
| pgd = (pgd_t *)get_pte((pte_t *)mm->pgd, pgd_index(addr), 0); |
| |
| /* We don't have four levels. */ |
| pud = pud_offset(pgd, addr); |
| #ifndef __PAGETABLE_PUD_FOLDED |
| # error support fourth page table level |
| #endif |
| if (!pud_present(*pud)) |
| return NULL; |
| |
| /* Check for an L0 huge PTE, if we have three levels. */ |
| #ifndef __PAGETABLE_PMD_FOLDED |
| if (pud_huge(*pud)) |
| return (pte_t *)pud; |
| |
| pmd = (pmd_t *)get_pte((pte_t *)pud_page_vaddr(*pud), |
| pmd_index(addr), 1); |
| if (!pmd_present(*pmd)) |
| return NULL; |
| #else |
| pmd = pmd_offset(pud, addr); |
| #endif |
| |
| /* Check for an L1 huge PTE. */ |
| if (pmd_huge(*pmd)) |
| return (pte_t *)pmd; |
| |
| #ifdef CONFIG_HUGETLB_SUPER_PAGES |
| /* Check for an L2 huge PTE. */ |
| pte = get_pte((pte_t *)pmd_page_vaddr(*pmd), pte_index(addr), 2); |
| if (!pte_present(*pte)) |
| return NULL; |
| if (pte_super(*pte)) |
| return pte; |
| #endif |
| |
| return NULL; |
| } |
| |
| int pmd_huge(pmd_t pmd) |
| { |
| return !!(pmd_val(pmd) & _PAGE_HUGE_PAGE); |
| } |
| |
| int pud_huge(pud_t pud) |
| { |
| return !!(pud_val(pud) & _PAGE_HUGE_PAGE); |
| } |
| |
| int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) |
| { |
| return 0; |
| } |
| |
| #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA |
| static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file, |
| unsigned long addr, unsigned long len, |
| unsigned long pgoff, unsigned long flags) |
| { |
| struct hstate *h = hstate_file(file); |
| struct vm_unmapped_area_info info; |
| |
| info.flags = 0; |
| info.length = len; |
| info.low_limit = TASK_UNMAPPED_BASE; |
| info.high_limit = TASK_SIZE; |
| info.align_mask = PAGE_MASK & ~huge_page_mask(h); |
| info.align_offset = 0; |
| return vm_unmapped_area(&info); |
| } |
| |
| static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file, |
| unsigned long addr0, unsigned long len, |
| unsigned long pgoff, unsigned long flags) |
| { |
| struct hstate *h = hstate_file(file); |
| struct vm_unmapped_area_info info; |
| unsigned long addr; |
| |
| info.flags = VM_UNMAPPED_AREA_TOPDOWN; |
| info.length = len; |
| info.low_limit = PAGE_SIZE; |
| info.high_limit = current->mm->mmap_base; |
| info.align_mask = PAGE_MASK & ~huge_page_mask(h); |
| info.align_offset = 0; |
| addr = vm_unmapped_area(&info); |
| |
| /* |
| * A failed mmap() very likely causes application failure, |
| * so fall back to the bottom-up function here. This scenario |
| * can happen with large stack limits and large mmap() |
| * allocations. |
| */ |
| if (addr & ~PAGE_MASK) { |
| VM_BUG_ON(addr != -ENOMEM); |
| info.flags = 0; |
| info.low_limit = TASK_UNMAPPED_BASE; |
| info.high_limit = TASK_SIZE; |
| addr = vm_unmapped_area(&info); |
| } |
| |
| return addr; |
| } |
| |
| unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, |
| unsigned long len, unsigned long pgoff, unsigned long flags) |
| { |
| struct hstate *h = hstate_file(file); |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| |
| if (len & ~huge_page_mask(h)) |
| return -EINVAL; |
| if (len > TASK_SIZE) |
| return -ENOMEM; |
| |
| if (flags & MAP_FIXED) { |
| if (prepare_hugepage_range(file, addr, len)) |
| return -EINVAL; |
| return addr; |
| } |
| |
| if (addr) { |
| addr = ALIGN(addr, huge_page_size(h)); |
| vma = find_vma(mm, addr); |
| if (TASK_SIZE - len >= addr && |
| (!vma || addr + len <= vma->vm_start)) |
| return addr; |
| } |
| if (current->mm->get_unmapped_area == arch_get_unmapped_area) |
| return hugetlb_get_unmapped_area_bottomup(file, addr, len, |
| pgoff, flags); |
| else |
| return hugetlb_get_unmapped_area_topdown(file, addr, len, |
| pgoff, flags); |
| } |
| #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */ |
| |
| #ifdef CONFIG_HUGETLB_SUPER_PAGES |
| static __init int __setup_hugepagesz(unsigned long ps) |
| { |
| int log_ps = __builtin_ctzl(ps); |
| int level, base_shift; |
| |
| if ((1UL << log_ps) != ps || (log_ps & 1) != 0) { |
| pr_warn("Not enabling %ld byte huge pages; must be a power of four\n", |
| ps); |
| return -EINVAL; |
| } |
| |
| if (ps > 64*1024*1024*1024UL) { |
| pr_warn("Not enabling %ld MB huge pages; largest legal value is 64 GB\n", |
| ps >> 20); |
| return -EINVAL; |
| } else if (ps >= PUD_SIZE) { |
| static long hv_jpage_size; |
| if (hv_jpage_size == 0) |
| hv_jpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_JUMBO); |
| if (hv_jpage_size != PUD_SIZE) { |
| pr_warn("Not enabling >= %ld MB huge pages: hypervisor reports size %ld\n", |
| PUD_SIZE >> 20, hv_jpage_size); |
| return -EINVAL; |
| } |
| level = 0; |
| base_shift = PUD_SHIFT; |
| } else if (ps >= PMD_SIZE) { |
| level = 1; |
| base_shift = PMD_SHIFT; |
| } else if (ps > PAGE_SIZE) { |
| level = 2; |
| base_shift = PAGE_SHIFT; |
| } else { |
| pr_err("hugepagesz: huge page size %ld too small\n", ps); |
| return -EINVAL; |
| } |
| |
| if (log_ps != base_shift) { |
| int shift_val = log_ps - base_shift; |
| if (huge_shift[level] != 0) { |
| int old_shift = base_shift + huge_shift[level]; |
| pr_warn("Not enabling %ld MB huge pages; already have size %ld MB\n", |
| ps >> 20, (1UL << old_shift) >> 20); |
| return -EINVAL; |
| } |
| if (hv_set_pte_super_shift(level, shift_val) != 0) { |
| pr_warn("Not enabling %ld MB huge pages; no hypervisor support\n", |
| ps >> 20); |
| return -EINVAL; |
| } |
| printk(KERN_DEBUG "Enabled %ld MB huge pages\n", ps >> 20); |
| huge_shift[level] = shift_val; |
| } |
| |
| hugetlb_add_hstate(log_ps - PAGE_SHIFT); |
| |
| return 0; |
| } |
| |
| static bool saw_hugepagesz; |
| |
| static __init int setup_hugepagesz(char *opt) |
| { |
| if (!saw_hugepagesz) { |
| saw_hugepagesz = true; |
| memset(huge_shift, 0, sizeof(huge_shift)); |
| } |
| return __setup_hugepagesz(memparse(opt, NULL)); |
| } |
| __setup("hugepagesz=", setup_hugepagesz); |
| |
| #ifdef ADDITIONAL_HUGE_SIZE |
| /* |
| * Provide an additional huge page size if no "hugepagesz" args are given. |
| * In that case, all the cores have properly set up their hv super_shift |
| * already, but we need to notify the hugetlb code to enable the |
| * new huge page size from the Linux point of view. |
| */ |
| static __init int add_default_hugepagesz(void) |
| { |
| if (!saw_hugepagesz) { |
| BUILD_BUG_ON(ADDITIONAL_HUGE_SIZE >= PMD_SIZE || |
| ADDITIONAL_HUGE_SIZE <= PAGE_SIZE); |
| BUILD_BUG_ON((PAGE_SIZE << ADDITIONAL_HUGE_SHIFT) != |
| ADDITIONAL_HUGE_SIZE); |
| BUILD_BUG_ON(ADDITIONAL_HUGE_SHIFT & 1); |
| hugetlb_add_hstate(ADDITIONAL_HUGE_SHIFT); |
| } |
| return 0; |
| } |
| arch_initcall(add_default_hugepagesz); |
| #endif |
| |
| #endif /* CONFIG_HUGETLB_SUPER_PAGES */ |