| /* |
| * Copyright (C) Ericsson AB 2007-2008 |
| * Copyright (C) ST-Ericsson SA 2008-2010 |
| * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson |
| * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson |
| * License terms: GNU General Public License (GPL) version 2 |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/dmaengine.h> |
| #include <linux/platform_device.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/amba/bus.h> |
| |
| #include <plat/ste_dma40.h> |
| |
| #include "ste_dma40_ll.h" |
| |
| #define D40_NAME "dma40" |
| |
| #define D40_PHY_CHAN -1 |
| |
| /* For masking out/in 2 bit channel positions */ |
| #define D40_CHAN_POS(chan) (2 * (chan / 2)) |
| #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan)) |
| |
| /* Maximum iterations taken before giving up suspending a channel */ |
| #define D40_SUSPEND_MAX_IT 500 |
| |
| /* Hardware requirement on LCLA alignment */ |
| #define LCLA_ALIGNMENT 0x40000 |
| |
| /* Max number of links per event group */ |
| #define D40_LCLA_LINK_PER_EVENT_GRP 128 |
| #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP |
| |
| /* Attempts before giving up to trying to get pages that are aligned */ |
| #define MAX_LCLA_ALLOC_ATTEMPTS 256 |
| |
| /* Bit markings for allocation map */ |
| #define D40_ALLOC_FREE (1 << 31) |
| #define D40_ALLOC_PHY (1 << 30) |
| #define D40_ALLOC_LOG_FREE 0 |
| |
| /** |
| * enum 40_command - The different commands and/or statuses. |
| * |
| * @D40_DMA_STOP: DMA channel command STOP or status STOPPED, |
| * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN. |
| * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible. |
| * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED. |
| */ |
| enum d40_command { |
| D40_DMA_STOP = 0, |
| D40_DMA_RUN = 1, |
| D40_DMA_SUSPEND_REQ = 2, |
| D40_DMA_SUSPENDED = 3 |
| }; |
| |
| /** |
| * struct d40_lli_pool - Structure for keeping LLIs in memory |
| * |
| * @base: Pointer to memory area when the pre_alloc_lli's are not large |
| * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if |
| * pre_alloc_lli is used. |
| * @dma_addr: DMA address, if mapped |
| * @size: The size in bytes of the memory at base or the size of pre_alloc_lli. |
| * @pre_alloc_lli: Pre allocated area for the most common case of transfers, |
| * one buffer to one buffer. |
| */ |
| struct d40_lli_pool { |
| void *base; |
| int size; |
| dma_addr_t dma_addr; |
| /* Space for dst and src, plus an extra for padding */ |
| u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)]; |
| }; |
| |
| /** |
| * struct d40_desc - A descriptor is one DMA job. |
| * |
| * @lli_phy: LLI settings for physical channel. Both src and dst= |
| * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if |
| * lli_len equals one. |
| * @lli_log: Same as above but for logical channels. |
| * @lli_pool: The pool with two entries pre-allocated. |
| * @lli_len: Number of llis of current descriptor. |
| * @lli_current: Number of transferred llis. |
| * @lcla_alloc: Number of LCLA entries allocated. |
| * @txd: DMA engine struct. Used for among other things for communication |
| * during a transfer. |
| * @node: List entry. |
| * @is_in_client_list: true if the client owns this descriptor. |
| * the previous one. |
| * |
| * This descriptor is used for both logical and physical transfers. |
| */ |
| struct d40_desc { |
| /* LLI physical */ |
| struct d40_phy_lli_bidir lli_phy; |
| /* LLI logical */ |
| struct d40_log_lli_bidir lli_log; |
| |
| struct d40_lli_pool lli_pool; |
| int lli_len; |
| int lli_current; |
| int lcla_alloc; |
| |
| struct dma_async_tx_descriptor txd; |
| struct list_head node; |
| |
| bool is_in_client_list; |
| bool cyclic; |
| }; |
| |
| /** |
| * struct d40_lcla_pool - LCLA pool settings and data. |
| * |
| * @base: The virtual address of LCLA. 18 bit aligned. |
| * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used. |
| * This pointer is only there for clean-up on error. |
| * @pages: The number of pages needed for all physical channels. |
| * Only used later for clean-up on error |
| * @lock: Lock to protect the content in this struct. |
| * @alloc_map: big map over which LCLA entry is own by which job. |
| */ |
| struct d40_lcla_pool { |
| void *base; |
| dma_addr_t dma_addr; |
| void *base_unaligned; |
| int pages; |
| spinlock_t lock; |
| struct d40_desc **alloc_map; |
| }; |
| |
| /** |
| * struct d40_phy_res - struct for handling eventlines mapped to physical |
| * channels. |
| * |
| * @lock: A lock protection this entity. |
| * @num: The physical channel number of this entity. |
| * @allocated_src: Bit mapped to show which src event line's are mapped to |
| * this physical channel. Can also be free or physically allocated. |
| * @allocated_dst: Same as for src but is dst. |
| * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as |
| * event line number. |
| */ |
| struct d40_phy_res { |
| spinlock_t lock; |
| int num; |
| u32 allocated_src; |
| u32 allocated_dst; |
| }; |
| |
| struct d40_base; |
| |
| /** |
| * struct d40_chan - Struct that describes a channel. |
| * |
| * @lock: A spinlock to protect this struct. |
| * @log_num: The logical number, if any of this channel. |
| * @completed: Starts with 1, after first interrupt it is set to dma engine's |
| * current cookie. |
| * @pending_tx: The number of pending transfers. Used between interrupt handler |
| * and tasklet. |
| * @busy: Set to true when transfer is ongoing on this channel. |
| * @phy_chan: Pointer to physical channel which this instance runs on. If this |
| * point is NULL, then the channel is not allocated. |
| * @chan: DMA engine handle. |
| * @tasklet: Tasklet that gets scheduled from interrupt context to complete a |
| * transfer and call client callback. |
| * @client: Cliented owned descriptor list. |
| * @active: Active descriptor. |
| * @queue: Queued jobs. |
| * @dma_cfg: The client configuration of this dma channel. |
| * @configured: whether the dma_cfg configuration is valid |
| * @base: Pointer to the device instance struct. |
| * @src_def_cfg: Default cfg register setting for src. |
| * @dst_def_cfg: Default cfg register setting for dst. |
| * @log_def: Default logical channel settings. |
| * @lcla: Space for one dst src pair for logical channel transfers. |
| * @lcpa: Pointer to dst and src lcpa settings. |
| * @runtime_addr: runtime configured address. |
| * @runtime_direction: runtime configured direction. |
| * |
| * This struct can either "be" a logical or a physical channel. |
| */ |
| struct d40_chan { |
| spinlock_t lock; |
| int log_num; |
| /* ID of the most recent completed transfer */ |
| int completed; |
| int pending_tx; |
| bool busy; |
| struct d40_phy_res *phy_chan; |
| struct dma_chan chan; |
| struct tasklet_struct tasklet; |
| struct list_head client; |
| struct list_head pending_queue; |
| struct list_head active; |
| struct list_head queue; |
| struct stedma40_chan_cfg dma_cfg; |
| bool configured; |
| struct d40_base *base; |
| /* Default register configurations */ |
| u32 src_def_cfg; |
| u32 dst_def_cfg; |
| struct d40_def_lcsp log_def; |
| struct d40_log_lli_full *lcpa; |
| /* Runtime reconfiguration */ |
| dma_addr_t runtime_addr; |
| enum dma_data_direction runtime_direction; |
| }; |
| |
| /** |
| * struct d40_base - The big global struct, one for each probe'd instance. |
| * |
| * @interrupt_lock: Lock used to make sure one interrupt is handle a time. |
| * @execmd_lock: Lock for execute command usage since several channels share |
| * the same physical register. |
| * @dev: The device structure. |
| * @virtbase: The virtual base address of the DMA's register. |
| * @rev: silicon revision detected. |
| * @clk: Pointer to the DMA clock structure. |
| * @phy_start: Physical memory start of the DMA registers. |
| * @phy_size: Size of the DMA register map. |
| * @irq: The IRQ number. |
| * @num_phy_chans: The number of physical channels. Read from HW. This |
| * is the number of available channels for this driver, not counting "Secure |
| * mode" allocated physical channels. |
| * @num_log_chans: The number of logical channels. Calculated from |
| * num_phy_chans. |
| * @dma_both: dma_device channels that can do both memcpy and slave transfers. |
| * @dma_slave: dma_device channels that can do only do slave transfers. |
| * @dma_memcpy: dma_device channels that can do only do memcpy transfers. |
| * @log_chans: Room for all possible logical channels in system. |
| * @lookup_log_chans: Used to map interrupt number to logical channel. Points |
| * to log_chans entries. |
| * @lookup_phy_chans: Used to map interrupt number to physical channel. Points |
| * to phy_chans entries. |
| * @plat_data: Pointer to provided platform_data which is the driver |
| * configuration. |
| * @phy_res: Vector containing all physical channels. |
| * @lcla_pool: lcla pool settings and data. |
| * @lcpa_base: The virtual mapped address of LCPA. |
| * @phy_lcpa: The physical address of the LCPA. |
| * @lcpa_size: The size of the LCPA area. |
| * @desc_slab: cache for descriptors. |
| */ |
| struct d40_base { |
| spinlock_t interrupt_lock; |
| spinlock_t execmd_lock; |
| struct device *dev; |
| void __iomem *virtbase; |
| u8 rev:4; |
| struct clk *clk; |
| phys_addr_t phy_start; |
| resource_size_t phy_size; |
| int irq; |
| int num_phy_chans; |
| int num_log_chans; |
| struct dma_device dma_both; |
| struct dma_device dma_slave; |
| struct dma_device dma_memcpy; |
| struct d40_chan *phy_chans; |
| struct d40_chan *log_chans; |
| struct d40_chan **lookup_log_chans; |
| struct d40_chan **lookup_phy_chans; |
| struct stedma40_platform_data *plat_data; |
| /* Physical half channels */ |
| struct d40_phy_res *phy_res; |
| struct d40_lcla_pool lcla_pool; |
| void *lcpa_base; |
| dma_addr_t phy_lcpa; |
| resource_size_t lcpa_size; |
| struct kmem_cache *desc_slab; |
| }; |
| |
| /** |
| * struct d40_interrupt_lookup - lookup table for interrupt handler |
| * |
| * @src: Interrupt mask register. |
| * @clr: Interrupt clear register. |
| * @is_error: true if this is an error interrupt. |
| * @offset: start delta in the lookup_log_chans in d40_base. If equals to |
| * D40_PHY_CHAN, the lookup_phy_chans shall be used instead. |
| */ |
| struct d40_interrupt_lookup { |
| u32 src; |
| u32 clr; |
| bool is_error; |
| int offset; |
| }; |
| |
| /** |
| * struct d40_reg_val - simple lookup struct |
| * |
| * @reg: The register. |
| * @val: The value that belongs to the register in reg. |
| */ |
| struct d40_reg_val { |
| unsigned int reg; |
| unsigned int val; |
| }; |
| |
| static struct device *chan2dev(struct d40_chan *d40c) |
| { |
| return &d40c->chan.dev->device; |
| } |
| |
| static bool chan_is_physical(struct d40_chan *chan) |
| { |
| return chan->log_num == D40_PHY_CHAN; |
| } |
| |
| static bool chan_is_logical(struct d40_chan *chan) |
| { |
| return !chan_is_physical(chan); |
| } |
| |
| static void __iomem *chan_base(struct d40_chan *chan) |
| { |
| return chan->base->virtbase + D40_DREG_PCBASE + |
| chan->phy_chan->num * D40_DREG_PCDELTA; |
| } |
| |
| #define d40_err(dev, format, arg...) \ |
| dev_err(dev, "[%s] " format, __func__, ## arg) |
| |
| #define chan_err(d40c, format, arg...) \ |
| d40_err(chan2dev(d40c), format, ## arg) |
| |
| static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d, |
| int lli_len) |
| { |
| bool is_log = chan_is_logical(d40c); |
| u32 align; |
| void *base; |
| |
| if (is_log) |
| align = sizeof(struct d40_log_lli); |
| else |
| align = sizeof(struct d40_phy_lli); |
| |
| if (lli_len == 1) { |
| base = d40d->lli_pool.pre_alloc_lli; |
| d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli); |
| d40d->lli_pool.base = NULL; |
| } else { |
| d40d->lli_pool.size = lli_len * 2 * align; |
| |
| base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT); |
| d40d->lli_pool.base = base; |
| |
| if (d40d->lli_pool.base == NULL) |
| return -ENOMEM; |
| } |
| |
| if (is_log) { |
| d40d->lli_log.src = PTR_ALIGN(base, align); |
| d40d->lli_log.dst = d40d->lli_log.src + lli_len; |
| |
| d40d->lli_pool.dma_addr = 0; |
| } else { |
| d40d->lli_phy.src = PTR_ALIGN(base, align); |
| d40d->lli_phy.dst = d40d->lli_phy.src + lli_len; |
| |
| d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev, |
| d40d->lli_phy.src, |
| d40d->lli_pool.size, |
| DMA_TO_DEVICE); |
| |
| if (dma_mapping_error(d40c->base->dev, |
| d40d->lli_pool.dma_addr)) { |
| kfree(d40d->lli_pool.base); |
| d40d->lli_pool.base = NULL; |
| d40d->lli_pool.dma_addr = 0; |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d) |
| { |
| if (d40d->lli_pool.dma_addr) |
| dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr, |
| d40d->lli_pool.size, DMA_TO_DEVICE); |
| |
| kfree(d40d->lli_pool.base); |
| d40d->lli_pool.base = NULL; |
| d40d->lli_pool.size = 0; |
| d40d->lli_log.src = NULL; |
| d40d->lli_log.dst = NULL; |
| d40d->lli_phy.src = NULL; |
| d40d->lli_phy.dst = NULL; |
| } |
| |
| static int d40_lcla_alloc_one(struct d40_chan *d40c, |
| struct d40_desc *d40d) |
| { |
| unsigned long flags; |
| int i; |
| int ret = -EINVAL; |
| int p; |
| |
| spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); |
| |
| p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP; |
| |
| /* |
| * Allocate both src and dst at the same time, therefore the half |
| * start on 1 since 0 can't be used since zero is used as end marker. |
| */ |
| for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { |
| if (!d40c->base->lcla_pool.alloc_map[p + i]) { |
| d40c->base->lcla_pool.alloc_map[p + i] = d40d; |
| d40d->lcla_alloc++; |
| ret = i; |
| break; |
| } |
| } |
| |
| spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); |
| |
| return ret; |
| } |
| |
| static int d40_lcla_free_all(struct d40_chan *d40c, |
| struct d40_desc *d40d) |
| { |
| unsigned long flags; |
| int i; |
| int ret = -EINVAL; |
| |
| if (chan_is_physical(d40c)) |
| return 0; |
| |
| spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); |
| |
| for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { |
| if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num * |
| D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) { |
| d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num * |
| D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL; |
| d40d->lcla_alloc--; |
| if (d40d->lcla_alloc == 0) { |
| ret = 0; |
| break; |
| } |
| } |
| } |
| |
| spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); |
| |
| return ret; |
| |
| } |
| |
| static void d40_desc_remove(struct d40_desc *d40d) |
| { |
| list_del(&d40d->node); |
| } |
| |
| static struct d40_desc *d40_desc_get(struct d40_chan *d40c) |
| { |
| struct d40_desc *desc = NULL; |
| |
| if (!list_empty(&d40c->client)) { |
| struct d40_desc *d; |
| struct d40_desc *_d; |
| |
| list_for_each_entry_safe(d, _d, &d40c->client, node) |
| if (async_tx_test_ack(&d->txd)) { |
| d40_pool_lli_free(d40c, d); |
| d40_desc_remove(d); |
| desc = d; |
| memset(desc, 0, sizeof(*desc)); |
| break; |
| } |
| } |
| |
| if (!desc) |
| desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT); |
| |
| if (desc) |
| INIT_LIST_HEAD(&desc->node); |
| |
| return desc; |
| } |
| |
| static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) |
| { |
| |
| d40_pool_lli_free(d40c, d40d); |
| d40_lcla_free_all(d40c, d40d); |
| kmem_cache_free(d40c->base->desc_slab, d40d); |
| } |
| |
| static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) |
| { |
| list_add_tail(&desc->node, &d40c->active); |
| } |
| |
| static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc) |
| { |
| struct d40_phy_lli *lli_dst = desc->lli_phy.dst; |
| struct d40_phy_lli *lli_src = desc->lli_phy.src; |
| void __iomem *base = chan_base(chan); |
| |
| writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG); |
| writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT); |
| writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR); |
| writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK); |
| |
| writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG); |
| writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT); |
| writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR); |
| writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK); |
| } |
| |
| static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc) |
| { |
| struct d40_lcla_pool *pool = &chan->base->lcla_pool; |
| struct d40_log_lli_bidir *lli = &desc->lli_log; |
| int lli_current = desc->lli_current; |
| int lli_len = desc->lli_len; |
| bool cyclic = desc->cyclic; |
| int curr_lcla = -EINVAL; |
| int first_lcla = 0; |
| bool linkback; |
| |
| /* |
| * We may have partially running cyclic transfers, in case we did't get |
| * enough LCLA entries. |
| */ |
| linkback = cyclic && lli_current == 0; |
| |
| /* |
| * For linkback, we need one LCLA even with only one link, because we |
| * can't link back to the one in LCPA space |
| */ |
| if (linkback || (lli_len - lli_current > 1)) { |
| curr_lcla = d40_lcla_alloc_one(chan, desc); |
| first_lcla = curr_lcla; |
| } |
| |
| /* |
| * For linkback, we normally load the LCPA in the loop since we need to |
| * link it to the second LCLA and not the first. However, if we |
| * couldn't even get a first LCLA, then we have to run in LCPA and |
| * reload manually. |
| */ |
| if (!linkback || curr_lcla == -EINVAL) { |
| unsigned int flags = 0; |
| |
| if (curr_lcla == -EINVAL) |
| flags |= LLI_TERM_INT; |
| |
| d40_log_lli_lcpa_write(chan->lcpa, |
| &lli->dst[lli_current], |
| &lli->src[lli_current], |
| curr_lcla, |
| flags); |
| lli_current++; |
| } |
| |
| if (curr_lcla < 0) |
| goto out; |
| |
| for (; lli_current < lli_len; lli_current++) { |
| unsigned int lcla_offset = chan->phy_chan->num * 1024 + |
| 8 * curr_lcla * 2; |
| struct d40_log_lli *lcla = pool->base + lcla_offset; |
| unsigned int flags = 0; |
| int next_lcla; |
| |
| if (lli_current + 1 < lli_len) |
| next_lcla = d40_lcla_alloc_one(chan, desc); |
| else |
| next_lcla = linkback ? first_lcla : -EINVAL; |
| |
| if (cyclic || next_lcla == -EINVAL) |
| flags |= LLI_TERM_INT; |
| |
| if (linkback && curr_lcla == first_lcla) { |
| /* First link goes in both LCPA and LCLA */ |
| d40_log_lli_lcpa_write(chan->lcpa, |
| &lli->dst[lli_current], |
| &lli->src[lli_current], |
| next_lcla, flags); |
| } |
| |
| /* |
| * One unused LCLA in the cyclic case if the very first |
| * next_lcla fails... |
| */ |
| d40_log_lli_lcla_write(lcla, |
| &lli->dst[lli_current], |
| &lli->src[lli_current], |
| next_lcla, flags); |
| |
| dma_sync_single_range_for_device(chan->base->dev, |
| pool->dma_addr, lcla_offset, |
| 2 * sizeof(struct d40_log_lli), |
| DMA_TO_DEVICE); |
| |
| curr_lcla = next_lcla; |
| |
| if (curr_lcla == -EINVAL || curr_lcla == first_lcla) { |
| lli_current++; |
| break; |
| } |
| } |
| |
| out: |
| desc->lli_current = lli_current; |
| } |
| |
| static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) |
| { |
| if (chan_is_physical(d40c)) { |
| d40_phy_lli_load(d40c, d40d); |
| d40d->lli_current = d40d->lli_len; |
| } else |
| d40_log_lli_to_lcxa(d40c, d40d); |
| } |
| |
| static struct d40_desc *d40_first_active_get(struct d40_chan *d40c) |
| { |
| struct d40_desc *d; |
| |
| if (list_empty(&d40c->active)) |
| return NULL; |
| |
| d = list_first_entry(&d40c->active, |
| struct d40_desc, |
| node); |
| return d; |
| } |
| |
| static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc) |
| { |
| list_add_tail(&desc->node, &d40c->pending_queue); |
| } |
| |
| static struct d40_desc *d40_first_pending(struct d40_chan *d40c) |
| { |
| struct d40_desc *d; |
| |
| if (list_empty(&d40c->pending_queue)) |
| return NULL; |
| |
| d = list_first_entry(&d40c->pending_queue, |
| struct d40_desc, |
| node); |
| return d; |
| } |
| |
| static struct d40_desc *d40_first_queued(struct d40_chan *d40c) |
| { |
| struct d40_desc *d; |
| |
| if (list_empty(&d40c->queue)) |
| return NULL; |
| |
| d = list_first_entry(&d40c->queue, |
| struct d40_desc, |
| node); |
| return d; |
| } |
| |
| static int d40_psize_2_burst_size(bool is_log, int psize) |
| { |
| if (is_log) { |
| if (psize == STEDMA40_PSIZE_LOG_1) |
| return 1; |
| } else { |
| if (psize == STEDMA40_PSIZE_PHY_1) |
| return 1; |
| } |
| |
| return 2 << psize; |
| } |
| |
| /* |
| * The dma only supports transmitting packages up to |
| * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of |
| * dma elements required to send the entire sg list |
| */ |
| static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2) |
| { |
| int dmalen; |
| u32 max_w = max(data_width1, data_width2); |
| u32 min_w = min(data_width1, data_width2); |
| u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w); |
| |
| if (seg_max > STEDMA40_MAX_SEG_SIZE) |
| seg_max -= (1 << max_w); |
| |
| if (!IS_ALIGNED(size, 1 << max_w)) |
| return -EINVAL; |
| |
| if (size <= seg_max) |
| dmalen = 1; |
| else { |
| dmalen = size / seg_max; |
| if (dmalen * seg_max < size) |
| dmalen++; |
| } |
| return dmalen; |
| } |
| |
| static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len, |
| u32 data_width1, u32 data_width2) |
| { |
| struct scatterlist *sg; |
| int i; |
| int len = 0; |
| int ret; |
| |
| for_each_sg(sgl, sg, sg_len, i) { |
| ret = d40_size_2_dmalen(sg_dma_len(sg), |
| data_width1, data_width2); |
| if (ret < 0) |
| return ret; |
| len += ret; |
| } |
| return len; |
| } |
| |
| /* Support functions for logical channels */ |
| |
| static int d40_channel_execute_command(struct d40_chan *d40c, |
| enum d40_command command) |
| { |
| u32 status; |
| int i; |
| void __iomem *active_reg; |
| int ret = 0; |
| unsigned long flags; |
| u32 wmask; |
| |
| spin_lock_irqsave(&d40c->base->execmd_lock, flags); |
| |
| if (d40c->phy_chan->num % 2 == 0) |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; |
| else |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; |
| |
| if (command == D40_DMA_SUSPEND_REQ) { |
| status = (readl(active_reg) & |
| D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> |
| D40_CHAN_POS(d40c->phy_chan->num); |
| |
| if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) |
| goto done; |
| } |
| |
| wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num)); |
| writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)), |
| active_reg); |
| |
| if (command == D40_DMA_SUSPEND_REQ) { |
| |
| for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) { |
| status = (readl(active_reg) & |
| D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> |
| D40_CHAN_POS(d40c->phy_chan->num); |
| |
| cpu_relax(); |
| /* |
| * Reduce the number of bus accesses while |
| * waiting for the DMA to suspend. |
| */ |
| udelay(3); |
| |
| if (status == D40_DMA_STOP || |
| status == D40_DMA_SUSPENDED) |
| break; |
| } |
| |
| if (i == D40_SUSPEND_MAX_IT) { |
| chan_err(d40c, |
| "unable to suspend the chl %d (log: %d) status %x\n", |
| d40c->phy_chan->num, d40c->log_num, |
| status); |
| dump_stack(); |
| ret = -EBUSY; |
| } |
| |
| } |
| done: |
| spin_unlock_irqrestore(&d40c->base->execmd_lock, flags); |
| return ret; |
| } |
| |
| static void d40_term_all(struct d40_chan *d40c) |
| { |
| struct d40_desc *d40d; |
| |
| /* Release active descriptors */ |
| while ((d40d = d40_first_active_get(d40c))) { |
| d40_desc_remove(d40d); |
| d40_desc_free(d40c, d40d); |
| } |
| |
| /* Release queued descriptors waiting for transfer */ |
| while ((d40d = d40_first_queued(d40c))) { |
| d40_desc_remove(d40d); |
| d40_desc_free(d40c, d40d); |
| } |
| |
| /* Release pending descriptors */ |
| while ((d40d = d40_first_pending(d40c))) { |
| d40_desc_remove(d40d); |
| d40_desc_free(d40c, d40d); |
| } |
| |
| d40c->pending_tx = 0; |
| d40c->busy = false; |
| } |
| |
| static void __d40_config_set_event(struct d40_chan *d40c, bool enable, |
| u32 event, int reg) |
| { |
| void __iomem *addr = chan_base(d40c) + reg; |
| int tries; |
| |
| if (!enable) { |
| writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) |
| | ~D40_EVENTLINE_MASK(event), addr); |
| return; |
| } |
| |
| /* |
| * The hardware sometimes doesn't register the enable when src and dst |
| * event lines are active on the same logical channel. Retry to ensure |
| * it does. Usually only one retry is sufficient. |
| */ |
| tries = 100; |
| while (--tries) { |
| writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) |
| | ~D40_EVENTLINE_MASK(event), addr); |
| |
| if (readl(addr) & D40_EVENTLINE_MASK(event)) |
| break; |
| } |
| |
| if (tries != 99) |
| dev_dbg(chan2dev(d40c), |
| "[%s] workaround enable S%cLNK (%d tries)\n", |
| __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D', |
| 100 - tries); |
| |
| WARN_ON(!tries); |
| } |
| |
| static void d40_config_set_event(struct d40_chan *d40c, bool do_enable) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&d40c->phy_chan->lock, flags); |
| |
| /* Enable event line connected to device (or memcpy) */ |
| if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || |
| (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) { |
| u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); |
| |
| __d40_config_set_event(d40c, do_enable, event, |
| D40_CHAN_REG_SSLNK); |
| } |
| |
| if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) { |
| u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); |
| |
| __d40_config_set_event(d40c, do_enable, event, |
| D40_CHAN_REG_SDLNK); |
| } |
| |
| spin_unlock_irqrestore(&d40c->phy_chan->lock, flags); |
| } |
| |
| static u32 d40_chan_has_events(struct d40_chan *d40c) |
| { |
| void __iomem *chanbase = chan_base(d40c); |
| u32 val; |
| |
| val = readl(chanbase + D40_CHAN_REG_SSLNK); |
| val |= readl(chanbase + D40_CHAN_REG_SDLNK); |
| |
| return val; |
| } |
| |
| static u32 d40_get_prmo(struct d40_chan *d40c) |
| { |
| static const unsigned int phy_map[] = { |
| [STEDMA40_PCHAN_BASIC_MODE] |
| = D40_DREG_PRMO_PCHAN_BASIC, |
| [STEDMA40_PCHAN_MODULO_MODE] |
| = D40_DREG_PRMO_PCHAN_MODULO, |
| [STEDMA40_PCHAN_DOUBLE_DST_MODE] |
| = D40_DREG_PRMO_PCHAN_DOUBLE_DST, |
| }; |
| static const unsigned int log_map[] = { |
| [STEDMA40_LCHAN_SRC_PHY_DST_LOG] |
| = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG, |
| [STEDMA40_LCHAN_SRC_LOG_DST_PHY] |
| = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY, |
| [STEDMA40_LCHAN_SRC_LOG_DST_LOG] |
| = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG, |
| }; |
| |
| if (chan_is_physical(d40c)) |
| return phy_map[d40c->dma_cfg.mode_opt]; |
| else |
| return log_map[d40c->dma_cfg.mode_opt]; |
| } |
| |
| static void d40_config_write(struct d40_chan *d40c) |
| { |
| u32 addr_base; |
| u32 var; |
| |
| /* Odd addresses are even addresses + 4 */ |
| addr_base = (d40c->phy_chan->num % 2) * 4; |
| /* Setup channel mode to logical or physical */ |
| var = ((u32)(chan_is_logical(d40c)) + 1) << |
| D40_CHAN_POS(d40c->phy_chan->num); |
| writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base); |
| |
| /* Setup operational mode option register */ |
| var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num); |
| |
| writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base); |
| |
| if (chan_is_logical(d40c)) { |
| int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) |
| & D40_SREG_ELEM_LOG_LIDX_MASK; |
| void __iomem *chanbase = chan_base(d40c); |
| |
| /* Set default config for CFG reg */ |
| writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG); |
| writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG); |
| |
| /* Set LIDX for lcla */ |
| writel(lidx, chanbase + D40_CHAN_REG_SSELT); |
| writel(lidx, chanbase + D40_CHAN_REG_SDELT); |
| } |
| } |
| |
| static u32 d40_residue(struct d40_chan *d40c) |
| { |
| u32 num_elt; |
| |
| if (chan_is_logical(d40c)) |
| num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK) |
| >> D40_MEM_LCSP2_ECNT_POS; |
| else { |
| u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT); |
| num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK) |
| >> D40_SREG_ELEM_PHY_ECNT_POS; |
| } |
| |
| return num_elt * (1 << d40c->dma_cfg.dst_info.data_width); |
| } |
| |
| static bool d40_tx_is_linked(struct d40_chan *d40c) |
| { |
| bool is_link; |
| |
| if (chan_is_logical(d40c)) |
| is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK; |
| else |
| is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK) |
| & D40_SREG_LNK_PHYS_LNK_MASK; |
| |
| return is_link; |
| } |
| |
| static int d40_pause(struct d40_chan *d40c) |
| { |
| int res = 0; |
| unsigned long flags; |
| |
| if (!d40c->busy) |
| return 0; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); |
| if (res == 0) { |
| if (chan_is_logical(d40c)) { |
| d40_config_set_event(d40c, false); |
| /* Resume the other logical channels if any */ |
| if (d40_chan_has_events(d40c)) |
| res = d40_channel_execute_command(d40c, |
| D40_DMA_RUN); |
| } |
| } |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return res; |
| } |
| |
| static int d40_resume(struct d40_chan *d40c) |
| { |
| int res = 0; |
| unsigned long flags; |
| |
| if (!d40c->busy) |
| return 0; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| if (d40c->base->rev == 0) |
| if (chan_is_logical(d40c)) { |
| res = d40_channel_execute_command(d40c, |
| D40_DMA_SUSPEND_REQ); |
| goto no_suspend; |
| } |
| |
| /* If bytes left to transfer or linked tx resume job */ |
| if (d40_residue(d40c) || d40_tx_is_linked(d40c)) { |
| |
| if (chan_is_logical(d40c)) |
| d40_config_set_event(d40c, true); |
| |
| res = d40_channel_execute_command(d40c, D40_DMA_RUN); |
| } |
| |
| no_suspend: |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return res; |
| } |
| |
| static int d40_terminate_all(struct d40_chan *chan) |
| { |
| unsigned long flags; |
| int ret = 0; |
| |
| ret = d40_pause(chan); |
| if (!ret && chan_is_physical(chan)) |
| ret = d40_channel_execute_command(chan, D40_DMA_STOP); |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| d40_term_all(chan); |
| spin_unlock_irqrestore(&chan->lock, flags); |
| |
| return ret; |
| } |
| |
| static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) |
| { |
| struct d40_chan *d40c = container_of(tx->chan, |
| struct d40_chan, |
| chan); |
| struct d40_desc *d40d = container_of(tx, struct d40_desc, txd); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| d40c->chan.cookie++; |
| |
| if (d40c->chan.cookie < 0) |
| d40c->chan.cookie = 1; |
| |
| d40d->txd.cookie = d40c->chan.cookie; |
| |
| d40_desc_queue(d40c, d40d); |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| |
| return tx->cookie; |
| } |
| |
| static int d40_start(struct d40_chan *d40c) |
| { |
| if (d40c->base->rev == 0) { |
| int err; |
| |
| if (chan_is_logical(d40c)) { |
| err = d40_channel_execute_command(d40c, |
| D40_DMA_SUSPEND_REQ); |
| if (err) |
| return err; |
| } |
| } |
| |
| if (chan_is_logical(d40c)) |
| d40_config_set_event(d40c, true); |
| |
| return d40_channel_execute_command(d40c, D40_DMA_RUN); |
| } |
| |
| static struct d40_desc *d40_queue_start(struct d40_chan *d40c) |
| { |
| struct d40_desc *d40d; |
| int err; |
| |
| /* Start queued jobs, if any */ |
| d40d = d40_first_queued(d40c); |
| |
| if (d40d != NULL) { |
| d40c->busy = true; |
| |
| /* Remove from queue */ |
| d40_desc_remove(d40d); |
| |
| /* Add to active queue */ |
| d40_desc_submit(d40c, d40d); |
| |
| /* Initiate DMA job */ |
| d40_desc_load(d40c, d40d); |
| |
| /* Start dma job */ |
| err = d40_start(d40c); |
| |
| if (err) |
| return NULL; |
| } |
| |
| return d40d; |
| } |
| |
| /* called from interrupt context */ |
| static void dma_tc_handle(struct d40_chan *d40c) |
| { |
| struct d40_desc *d40d; |
| |
| /* Get first active entry from list */ |
| d40d = d40_first_active_get(d40c); |
| |
| if (d40d == NULL) |
| return; |
| |
| if (d40d->cyclic) { |
| /* |
| * If this was a paritially loaded list, we need to reloaded |
| * it, and only when the list is completed. We need to check |
| * for done because the interrupt will hit for every link, and |
| * not just the last one. |
| */ |
| if (d40d->lli_current < d40d->lli_len |
| && !d40_tx_is_linked(d40c) |
| && !d40_residue(d40c)) { |
| d40_lcla_free_all(d40c, d40d); |
| d40_desc_load(d40c, d40d); |
| (void) d40_start(d40c); |
| |
| if (d40d->lli_current == d40d->lli_len) |
| d40d->lli_current = 0; |
| } |
| } else { |
| d40_lcla_free_all(d40c, d40d); |
| |
| if (d40d->lli_current < d40d->lli_len) { |
| d40_desc_load(d40c, d40d); |
| /* Start dma job */ |
| (void) d40_start(d40c); |
| return; |
| } |
| |
| if (d40_queue_start(d40c) == NULL) |
| d40c->busy = false; |
| } |
| |
| d40c->pending_tx++; |
| tasklet_schedule(&d40c->tasklet); |
| |
| } |
| |
| static void dma_tasklet(unsigned long data) |
| { |
| struct d40_chan *d40c = (struct d40_chan *) data; |
| struct d40_desc *d40d; |
| unsigned long flags; |
| dma_async_tx_callback callback; |
| void *callback_param; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| /* Get first active entry from list */ |
| d40d = d40_first_active_get(d40c); |
| if (d40d == NULL) |
| goto err; |
| |
| if (!d40d->cyclic) |
| d40c->completed = d40d->txd.cookie; |
| |
| /* |
| * If terminating a channel pending_tx is set to zero. |
| * This prevents any finished active jobs to return to the client. |
| */ |
| if (d40c->pending_tx == 0) { |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return; |
| } |
| |
| /* Callback to client */ |
| callback = d40d->txd.callback; |
| callback_param = d40d->txd.callback_param; |
| |
| if (!d40d->cyclic) { |
| if (async_tx_test_ack(&d40d->txd)) { |
| d40_pool_lli_free(d40c, d40d); |
| d40_desc_remove(d40d); |
| d40_desc_free(d40c, d40d); |
| } else { |
| if (!d40d->is_in_client_list) { |
| d40_desc_remove(d40d); |
| d40_lcla_free_all(d40c, d40d); |
| list_add_tail(&d40d->node, &d40c->client); |
| d40d->is_in_client_list = true; |
| } |
| } |
| } |
| |
| d40c->pending_tx--; |
| |
| if (d40c->pending_tx) |
| tasklet_schedule(&d40c->tasklet); |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| |
| if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT)) |
| callback(callback_param); |
| |
| return; |
| |
| err: |
| /* Rescue manoeuvre if receiving double interrupts */ |
| if (d40c->pending_tx > 0) |
| d40c->pending_tx--; |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| } |
| |
| static irqreturn_t d40_handle_interrupt(int irq, void *data) |
| { |
| static const struct d40_interrupt_lookup il[] = { |
| {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0}, |
| {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32}, |
| {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64}, |
| {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96}, |
| {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0}, |
| {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32}, |
| {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64}, |
| {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96}, |
| {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN}, |
| {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN}, |
| }; |
| |
| int i; |
| u32 regs[ARRAY_SIZE(il)]; |
| u32 idx; |
| u32 row; |
| long chan = -1; |
| struct d40_chan *d40c; |
| unsigned long flags; |
| struct d40_base *base = data; |
| |
| spin_lock_irqsave(&base->interrupt_lock, flags); |
| |
| /* Read interrupt status of both logical and physical channels */ |
| for (i = 0; i < ARRAY_SIZE(il); i++) |
| regs[i] = readl(base->virtbase + il[i].src); |
| |
| for (;;) { |
| |
| chan = find_next_bit((unsigned long *)regs, |
| BITS_PER_LONG * ARRAY_SIZE(il), chan + 1); |
| |
| /* No more set bits found? */ |
| if (chan == BITS_PER_LONG * ARRAY_SIZE(il)) |
| break; |
| |
| row = chan / BITS_PER_LONG; |
| idx = chan & (BITS_PER_LONG - 1); |
| |
| /* ACK interrupt */ |
| writel(1 << idx, base->virtbase + il[row].clr); |
| |
| if (il[row].offset == D40_PHY_CHAN) |
| d40c = base->lookup_phy_chans[idx]; |
| else |
| d40c = base->lookup_log_chans[il[row].offset + idx]; |
| spin_lock(&d40c->lock); |
| |
| if (!il[row].is_error) |
| dma_tc_handle(d40c); |
| else |
| d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n", |
| chan, il[row].offset, idx); |
| |
| spin_unlock(&d40c->lock); |
| } |
| |
| spin_unlock_irqrestore(&base->interrupt_lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int d40_validate_conf(struct d40_chan *d40c, |
| struct stedma40_chan_cfg *conf) |
| { |
| int res = 0; |
| u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type); |
| u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type); |
| bool is_log = conf->mode == STEDMA40_MODE_LOGICAL; |
| |
| if (!conf->dir) { |
| chan_err(d40c, "Invalid direction.\n"); |
| res = -EINVAL; |
| } |
| |
| if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY && |
| d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 && |
| d40c->runtime_addr == 0) { |
| |
| chan_err(d40c, "Invalid TX channel address (%d)\n", |
| conf->dst_dev_type); |
| res = -EINVAL; |
| } |
| |
| if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY && |
| d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 && |
| d40c->runtime_addr == 0) { |
| chan_err(d40c, "Invalid RX channel address (%d)\n", |
| conf->src_dev_type); |
| res = -EINVAL; |
| } |
| |
| if (conf->dir == STEDMA40_MEM_TO_PERIPH && |
| dst_event_group == STEDMA40_DEV_DST_MEMORY) { |
| chan_err(d40c, "Invalid dst\n"); |
| res = -EINVAL; |
| } |
| |
| if (conf->dir == STEDMA40_PERIPH_TO_MEM && |
| src_event_group == STEDMA40_DEV_SRC_MEMORY) { |
| chan_err(d40c, "Invalid src\n"); |
| res = -EINVAL; |
| } |
| |
| if (src_event_group == STEDMA40_DEV_SRC_MEMORY && |
| dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) { |
| chan_err(d40c, "No event line\n"); |
| res = -EINVAL; |
| } |
| |
| if (conf->dir == STEDMA40_PERIPH_TO_PERIPH && |
| (src_event_group != dst_event_group)) { |
| chan_err(d40c, "Invalid event group\n"); |
| res = -EINVAL; |
| } |
| |
| if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) { |
| /* |
| * DMAC HW supports it. Will be added to this driver, |
| * in case any dma client requires it. |
| */ |
| chan_err(d40c, "periph to periph not supported\n"); |
| res = -EINVAL; |
| } |
| |
| if (d40_psize_2_burst_size(is_log, conf->src_info.psize) * |
| (1 << conf->src_info.data_width) != |
| d40_psize_2_burst_size(is_log, conf->dst_info.psize) * |
| (1 << conf->dst_info.data_width)) { |
| /* |
| * The DMAC hardware only supports |
| * src (burst x width) == dst (burst x width) |
| */ |
| |
| chan_err(d40c, "src (burst x width) != dst (burst x width)\n"); |
| res = -EINVAL; |
| } |
| |
| return res; |
| } |
| |
| static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src, |
| int log_event_line, bool is_log) |
| { |
| unsigned long flags; |
| spin_lock_irqsave(&phy->lock, flags); |
| if (!is_log) { |
| /* Physical interrupts are masked per physical full channel */ |
| if (phy->allocated_src == D40_ALLOC_FREE && |
| phy->allocated_dst == D40_ALLOC_FREE) { |
| phy->allocated_dst = D40_ALLOC_PHY; |
| phy->allocated_src = D40_ALLOC_PHY; |
| goto found; |
| } else |
| goto not_found; |
| } |
| |
| /* Logical channel */ |
| if (is_src) { |
| if (phy->allocated_src == D40_ALLOC_PHY) |
| goto not_found; |
| |
| if (phy->allocated_src == D40_ALLOC_FREE) |
| phy->allocated_src = D40_ALLOC_LOG_FREE; |
| |
| if (!(phy->allocated_src & (1 << log_event_line))) { |
| phy->allocated_src |= 1 << log_event_line; |
| goto found; |
| } else |
| goto not_found; |
| } else { |
| if (phy->allocated_dst == D40_ALLOC_PHY) |
| goto not_found; |
| |
| if (phy->allocated_dst == D40_ALLOC_FREE) |
| phy->allocated_dst = D40_ALLOC_LOG_FREE; |
| |
| if (!(phy->allocated_dst & (1 << log_event_line))) { |
| phy->allocated_dst |= 1 << log_event_line; |
| goto found; |
| } else |
| goto not_found; |
| } |
| |
| not_found: |
| spin_unlock_irqrestore(&phy->lock, flags); |
| return false; |
| found: |
| spin_unlock_irqrestore(&phy->lock, flags); |
| return true; |
| } |
| |
| static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src, |
| int log_event_line) |
| { |
| unsigned long flags; |
| bool is_free = false; |
| |
| spin_lock_irqsave(&phy->lock, flags); |
| if (!log_event_line) { |
| phy->allocated_dst = D40_ALLOC_FREE; |
| phy->allocated_src = D40_ALLOC_FREE; |
| is_free = true; |
| goto out; |
| } |
| |
| /* Logical channel */ |
| if (is_src) { |
| phy->allocated_src &= ~(1 << log_event_line); |
| if (phy->allocated_src == D40_ALLOC_LOG_FREE) |
| phy->allocated_src = D40_ALLOC_FREE; |
| } else { |
| phy->allocated_dst &= ~(1 << log_event_line); |
| if (phy->allocated_dst == D40_ALLOC_LOG_FREE) |
| phy->allocated_dst = D40_ALLOC_FREE; |
| } |
| |
| is_free = ((phy->allocated_src | phy->allocated_dst) == |
| D40_ALLOC_FREE); |
| |
| out: |
| spin_unlock_irqrestore(&phy->lock, flags); |
| |
| return is_free; |
| } |
| |
| static int d40_allocate_channel(struct d40_chan *d40c) |
| { |
| int dev_type; |
| int event_group; |
| int event_line; |
| struct d40_phy_res *phys; |
| int i; |
| int j; |
| int log_num; |
| bool is_src; |
| bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL; |
| |
| phys = d40c->base->phy_res; |
| |
| if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { |
| dev_type = d40c->dma_cfg.src_dev_type; |
| log_num = 2 * dev_type; |
| is_src = true; |
| } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || |
| d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { |
| /* dst event lines are used for logical memcpy */ |
| dev_type = d40c->dma_cfg.dst_dev_type; |
| log_num = 2 * dev_type + 1; |
| is_src = false; |
| } else |
| return -EINVAL; |
| |
| event_group = D40_TYPE_TO_GROUP(dev_type); |
| event_line = D40_TYPE_TO_EVENT(dev_type); |
| |
| if (!is_log) { |
| if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { |
| /* Find physical half channel */ |
| for (i = 0; i < d40c->base->num_phy_chans; i++) { |
| |
| if (d40_alloc_mask_set(&phys[i], is_src, |
| 0, is_log)) |
| goto found_phy; |
| } |
| } else |
| for (j = 0; j < d40c->base->num_phy_chans; j += 8) { |
| int phy_num = j + event_group * 2; |
| for (i = phy_num; i < phy_num + 2; i++) { |
| if (d40_alloc_mask_set(&phys[i], |
| is_src, |
| 0, |
| is_log)) |
| goto found_phy; |
| } |
| } |
| return -EINVAL; |
| found_phy: |
| d40c->phy_chan = &phys[i]; |
| d40c->log_num = D40_PHY_CHAN; |
| goto out; |
| } |
| if (dev_type == -1) |
| return -EINVAL; |
| |
| /* Find logical channel */ |
| for (j = 0; j < d40c->base->num_phy_chans; j += 8) { |
| int phy_num = j + event_group * 2; |
| /* |
| * Spread logical channels across all available physical rather |
| * than pack every logical channel at the first available phy |
| * channels. |
| */ |
| if (is_src) { |
| for (i = phy_num; i < phy_num + 2; i++) { |
| if (d40_alloc_mask_set(&phys[i], is_src, |
| event_line, is_log)) |
| goto found_log; |
| } |
| } else { |
| for (i = phy_num + 1; i >= phy_num; i--) { |
| if (d40_alloc_mask_set(&phys[i], is_src, |
| event_line, is_log)) |
| goto found_log; |
| } |
| } |
| } |
| return -EINVAL; |
| |
| found_log: |
| d40c->phy_chan = &phys[i]; |
| d40c->log_num = log_num; |
| out: |
| |
| if (is_log) |
| d40c->base->lookup_log_chans[d40c->log_num] = d40c; |
| else |
| d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c; |
| |
| return 0; |
| |
| } |
| |
| static int d40_config_memcpy(struct d40_chan *d40c) |
| { |
| dma_cap_mask_t cap = d40c->chan.device->cap_mask; |
| |
| if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) { |
| d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log; |
| d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY; |
| d40c->dma_cfg.dst_dev_type = d40c->base->plat_data-> |
| memcpy[d40c->chan.chan_id]; |
| |
| } else if (dma_has_cap(DMA_MEMCPY, cap) && |
| dma_has_cap(DMA_SLAVE, cap)) { |
| d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy; |
| } else { |
| chan_err(d40c, "No memcpy\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int d40_free_dma(struct d40_chan *d40c) |
| { |
| |
| int res = 0; |
| u32 event; |
| struct d40_phy_res *phy = d40c->phy_chan; |
| bool is_src; |
| struct d40_desc *d; |
| struct d40_desc *_d; |
| |
| |
| /* Terminate all queued and active transfers */ |
| d40_term_all(d40c); |
| |
| /* Release client owned descriptors */ |
| if (!list_empty(&d40c->client)) |
| list_for_each_entry_safe(d, _d, &d40c->client, node) { |
| d40_pool_lli_free(d40c, d); |
| d40_desc_remove(d); |
| d40_desc_free(d40c, d); |
| } |
| |
| if (phy == NULL) { |
| chan_err(d40c, "phy == null\n"); |
| return -EINVAL; |
| } |
| |
| if (phy->allocated_src == D40_ALLOC_FREE && |
| phy->allocated_dst == D40_ALLOC_FREE) { |
| chan_err(d40c, "channel already free\n"); |
| return -EINVAL; |
| } |
| |
| if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || |
| d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { |
| event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); |
| is_src = false; |
| } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { |
| event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); |
| is_src = true; |
| } else { |
| chan_err(d40c, "Unknown direction\n"); |
| return -EINVAL; |
| } |
| |
| res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); |
| if (res) { |
| chan_err(d40c, "suspend failed\n"); |
| return res; |
| } |
| |
| if (chan_is_logical(d40c)) { |
| /* Release logical channel, deactivate the event line */ |
| |
| d40_config_set_event(d40c, false); |
| d40c->base->lookup_log_chans[d40c->log_num] = NULL; |
| |
| /* |
| * Check if there are more logical allocation |
| * on this phy channel. |
| */ |
| if (!d40_alloc_mask_free(phy, is_src, event)) { |
| /* Resume the other logical channels if any */ |
| if (d40_chan_has_events(d40c)) { |
| res = d40_channel_execute_command(d40c, |
| D40_DMA_RUN); |
| if (res) { |
| chan_err(d40c, |
| "Executing RUN command\n"); |
| return res; |
| } |
| } |
| return 0; |
| } |
| } else { |
| (void) d40_alloc_mask_free(phy, is_src, 0); |
| } |
| |
| /* Release physical channel */ |
| res = d40_channel_execute_command(d40c, D40_DMA_STOP); |
| if (res) { |
| chan_err(d40c, "Failed to stop channel\n"); |
| return res; |
| } |
| d40c->phy_chan = NULL; |
| d40c->configured = false; |
| d40c->base->lookup_phy_chans[phy->num] = NULL; |
| |
| return 0; |
| } |
| |
| static bool d40_is_paused(struct d40_chan *d40c) |
| { |
| void __iomem *chanbase = chan_base(d40c); |
| bool is_paused = false; |
| unsigned long flags; |
| void __iomem *active_reg; |
| u32 status; |
| u32 event; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| if (chan_is_physical(d40c)) { |
| if (d40c->phy_chan->num % 2 == 0) |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; |
| else |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; |
| |
| status = (readl(active_reg) & |
| D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> |
| D40_CHAN_POS(d40c->phy_chan->num); |
| if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) |
| is_paused = true; |
| |
| goto _exit; |
| } |
| |
| if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || |
| d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { |
| event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); |
| status = readl(chanbase + D40_CHAN_REG_SDLNK); |
| } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { |
| event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); |
| status = readl(chanbase + D40_CHAN_REG_SSLNK); |
| } else { |
| chan_err(d40c, "Unknown direction\n"); |
| goto _exit; |
| } |
| |
| status = (status & D40_EVENTLINE_MASK(event)) >> |
| D40_EVENTLINE_POS(event); |
| |
| if (status != D40_DMA_RUN) |
| is_paused = true; |
| _exit: |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return is_paused; |
| |
| } |
| |
| |
| static u32 stedma40_residue(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| u32 bytes_left; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| bytes_left = d40_residue(d40c); |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| |
| return bytes_left; |
| } |
| |
| static int |
| d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc, |
| struct scatterlist *sg_src, struct scatterlist *sg_dst, |
| unsigned int sg_len, dma_addr_t src_dev_addr, |
| dma_addr_t dst_dev_addr) |
| { |
| struct stedma40_chan_cfg *cfg = &chan->dma_cfg; |
| struct stedma40_half_channel_info *src_info = &cfg->src_info; |
| struct stedma40_half_channel_info *dst_info = &cfg->dst_info; |
| int ret; |
| |
| ret = d40_log_sg_to_lli(sg_src, sg_len, |
| src_dev_addr, |
| desc->lli_log.src, |
| chan->log_def.lcsp1, |
| src_info->data_width, |
| dst_info->data_width); |
| |
| ret = d40_log_sg_to_lli(sg_dst, sg_len, |
| dst_dev_addr, |
| desc->lli_log.dst, |
| chan->log_def.lcsp3, |
| dst_info->data_width, |
| src_info->data_width); |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| static int |
| d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc, |
| struct scatterlist *sg_src, struct scatterlist *sg_dst, |
| unsigned int sg_len, dma_addr_t src_dev_addr, |
| dma_addr_t dst_dev_addr) |
| { |
| struct stedma40_chan_cfg *cfg = &chan->dma_cfg; |
| struct stedma40_half_channel_info *src_info = &cfg->src_info; |
| struct stedma40_half_channel_info *dst_info = &cfg->dst_info; |
| unsigned long flags = 0; |
| int ret; |
| |
| if (desc->cyclic) |
| flags |= LLI_CYCLIC | LLI_TERM_INT; |
| |
| ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr, |
| desc->lli_phy.src, |
| virt_to_phys(desc->lli_phy.src), |
| chan->src_def_cfg, |
| src_info, dst_info, flags); |
| |
| ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr, |
| desc->lli_phy.dst, |
| virt_to_phys(desc->lli_phy.dst), |
| chan->dst_def_cfg, |
| dst_info, src_info, flags); |
| |
| dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr, |
| desc->lli_pool.size, DMA_TO_DEVICE); |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| |
| static struct d40_desc * |
| d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg, |
| unsigned int sg_len, unsigned long dma_flags) |
| { |
| struct stedma40_chan_cfg *cfg = &chan->dma_cfg; |
| struct d40_desc *desc; |
| int ret; |
| |
| desc = d40_desc_get(chan); |
| if (!desc) |
| return NULL; |
| |
| desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width, |
| cfg->dst_info.data_width); |
| if (desc->lli_len < 0) { |
| chan_err(chan, "Unaligned size\n"); |
| goto err; |
| } |
| |
| ret = d40_pool_lli_alloc(chan, desc, desc->lli_len); |
| if (ret < 0) { |
| chan_err(chan, "Could not allocate lli\n"); |
| goto err; |
| } |
| |
| |
| desc->lli_current = 0; |
| desc->txd.flags = dma_flags; |
| desc->txd.tx_submit = d40_tx_submit; |
| |
| dma_async_tx_descriptor_init(&desc->txd, &chan->chan); |
| |
| return desc; |
| |
| err: |
| d40_desc_free(chan, desc); |
| return NULL; |
| } |
| |
| static dma_addr_t |
| d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction) |
| { |
| struct stedma40_platform_data *plat = chan->base->plat_data; |
| struct stedma40_chan_cfg *cfg = &chan->dma_cfg; |
| dma_addr_t addr = 0; |
| |
| if (chan->runtime_addr) |
| return chan->runtime_addr; |
| |
| if (direction == DMA_FROM_DEVICE) |
| addr = plat->dev_rx[cfg->src_dev_type]; |
| else if (direction == DMA_TO_DEVICE) |
| addr = plat->dev_tx[cfg->dst_dev_type]; |
| |
| return addr; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src, |
| struct scatterlist *sg_dst, unsigned int sg_len, |
| enum dma_data_direction direction, unsigned long dma_flags) |
| { |
| struct d40_chan *chan = container_of(dchan, struct d40_chan, chan); |
| dma_addr_t src_dev_addr = 0; |
| dma_addr_t dst_dev_addr = 0; |
| struct d40_desc *desc; |
| unsigned long flags; |
| int ret; |
| |
| if (!chan->phy_chan) { |
| chan_err(chan, "Cannot prepare unallocated channel\n"); |
| return NULL; |
| } |
| |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| |
| desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags); |
| if (desc == NULL) |
| goto err; |
| |
| if (sg_next(&sg_src[sg_len - 1]) == sg_src) |
| desc->cyclic = true; |
| |
| if (direction != DMA_NONE) { |
| dma_addr_t dev_addr = d40_get_dev_addr(chan, direction); |
| |
| if (direction == DMA_FROM_DEVICE) |
| src_dev_addr = dev_addr; |
| else if (direction == DMA_TO_DEVICE) |
| dst_dev_addr = dev_addr; |
| } |
| |
| if (chan_is_logical(chan)) |
| ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst, |
| sg_len, src_dev_addr, dst_dev_addr); |
| else |
| ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst, |
| sg_len, src_dev_addr, dst_dev_addr); |
| |
| if (ret) { |
| chan_err(chan, "Failed to prepare %s sg job: %d\n", |
| chan_is_logical(chan) ? "log" : "phy", ret); |
| goto err; |
| } |
| |
| spin_unlock_irqrestore(&chan->lock, flags); |
| |
| return &desc->txd; |
| |
| err: |
| if (desc) |
| d40_desc_free(chan, desc); |
| spin_unlock_irqrestore(&chan->lock, flags); |
| return NULL; |
| } |
| |
| bool stedma40_filter(struct dma_chan *chan, void *data) |
| { |
| struct stedma40_chan_cfg *info = data; |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| int err; |
| |
| if (data) { |
| err = d40_validate_conf(d40c, info); |
| if (!err) |
| d40c->dma_cfg = *info; |
| } else |
| err = d40_config_memcpy(d40c); |
| |
| if (!err) |
| d40c->configured = true; |
| |
| return err == 0; |
| } |
| EXPORT_SYMBOL(stedma40_filter); |
| |
| static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src) |
| { |
| bool realtime = d40c->dma_cfg.realtime; |
| bool highprio = d40c->dma_cfg.high_priority; |
| u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1; |
| u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1; |
| u32 event = D40_TYPE_TO_EVENT(dev_type); |
| u32 group = D40_TYPE_TO_GROUP(dev_type); |
| u32 bit = 1 << event; |
| |
| /* Destination event lines are stored in the upper halfword */ |
| if (!src) |
| bit <<= 16; |
| |
| writel(bit, d40c->base->virtbase + prioreg + group * 4); |
| writel(bit, d40c->base->virtbase + rtreg + group * 4); |
| } |
| |
| static void d40_set_prio_realtime(struct d40_chan *d40c) |
| { |
| if (d40c->base->rev < 3) |
| return; |
| |
| if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || |
| (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) |
| __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true); |
| |
| if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) || |
| (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) |
| __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false); |
| } |
| |
| /* DMA ENGINE functions */ |
| static int d40_alloc_chan_resources(struct dma_chan *chan) |
| { |
| int err; |
| unsigned long flags; |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| bool is_free_phy; |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| d40c->completed = chan->cookie = 1; |
| |
| /* If no dma configuration is set use default configuration (memcpy) */ |
| if (!d40c->configured) { |
| err = d40_config_memcpy(d40c); |
| if (err) { |
| chan_err(d40c, "Failed to configure memcpy channel\n"); |
| goto fail; |
| } |
| } |
| is_free_phy = (d40c->phy_chan == NULL); |
| |
| err = d40_allocate_channel(d40c); |
| if (err) { |
| chan_err(d40c, "Failed to allocate channel\n"); |
| goto fail; |
| } |
| |
| /* Fill in basic CFG register values */ |
| d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg, |
| &d40c->dst_def_cfg, chan_is_logical(d40c)); |
| |
| d40_set_prio_realtime(d40c); |
| |
| if (chan_is_logical(d40c)) { |
| d40_log_cfg(&d40c->dma_cfg, |
| &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); |
| |
| if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) |
| d40c->lcpa = d40c->base->lcpa_base + |
| d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE; |
| else |
| d40c->lcpa = d40c->base->lcpa_base + |
| d40c->dma_cfg.dst_dev_type * |
| D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA; |
| } |
| |
| /* |
| * Only write channel configuration to the DMA if the physical |
| * resource is free. In case of multiple logical channels |
| * on the same physical resource, only the first write is necessary. |
| */ |
| if (is_free_phy) |
| d40_config_write(d40c); |
| fail: |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return err; |
| } |
| |
| static void d40_free_chan_resources(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| int err; |
| unsigned long flags; |
| |
| if (d40c->phy_chan == NULL) { |
| chan_err(d40c, "Cannot free unallocated channel\n"); |
| return; |
| } |
| |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| err = d40_free_dma(d40c); |
| |
| if (err) |
| chan_err(d40c, "Failed to free channel\n"); |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, |
| dma_addr_t dst, |
| dma_addr_t src, |
| size_t size, |
| unsigned long dma_flags) |
| { |
| struct scatterlist dst_sg; |
| struct scatterlist src_sg; |
| |
| sg_init_table(&dst_sg, 1); |
| sg_init_table(&src_sg, 1); |
| |
| sg_dma_address(&dst_sg) = dst; |
| sg_dma_address(&src_sg) = src; |
| |
| sg_dma_len(&dst_sg) = size; |
| sg_dma_len(&src_sg) = size; |
| |
| return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| d40_prep_memcpy_sg(struct dma_chan *chan, |
| struct scatterlist *dst_sg, unsigned int dst_nents, |
| struct scatterlist *src_sg, unsigned int src_nents, |
| unsigned long dma_flags) |
| { |
| if (dst_nents != src_nents) |
| return NULL; |
| |
| return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags); |
| } |
| |
| static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan, |
| struct scatterlist *sgl, |
| unsigned int sg_len, |
| enum dma_data_direction direction, |
| unsigned long dma_flags) |
| { |
| if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE) |
| return NULL; |
| |
| return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr, |
| size_t buf_len, size_t period_len, |
| enum dma_data_direction direction) |
| { |
| unsigned int periods = buf_len / period_len; |
| struct dma_async_tx_descriptor *txd; |
| struct scatterlist *sg; |
| int i; |
| |
| sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT); |
| for (i = 0; i < periods; i++) { |
| sg_dma_address(&sg[i]) = dma_addr; |
| sg_dma_len(&sg[i]) = period_len; |
| dma_addr += period_len; |
| } |
| |
| sg[periods].offset = 0; |
| sg[periods].length = 0; |
| sg[periods].page_link = |
| ((unsigned long)sg | 0x01) & ~0x02; |
| |
| txd = d40_prep_sg(chan, sg, sg, periods, direction, |
| DMA_PREP_INTERRUPT); |
| |
| kfree(sg); |
| |
| return txd; |
| } |
| |
| static enum dma_status d40_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| dma_cookie_t last_used; |
| dma_cookie_t last_complete; |
| int ret; |
| |
| if (d40c->phy_chan == NULL) { |
| chan_err(d40c, "Cannot read status of unallocated channel\n"); |
| return -EINVAL; |
| } |
| |
| last_complete = d40c->completed; |
| last_used = chan->cookie; |
| |
| if (d40_is_paused(d40c)) |
| ret = DMA_PAUSED; |
| else |
| ret = dma_async_is_complete(cookie, last_complete, last_used); |
| |
| dma_set_tx_state(txstate, last_complete, last_used, |
| stedma40_residue(chan)); |
| |
| return ret; |
| } |
| |
| static void d40_issue_pending(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| unsigned long flags; |
| |
| if (d40c->phy_chan == NULL) { |
| chan_err(d40c, "Channel is not allocated!\n"); |
| return; |
| } |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| list_splice_tail_init(&d40c->pending_queue, &d40c->queue); |
| |
| /* Busy means that queued jobs are already being processed */ |
| if (!d40c->busy) |
| (void) d40_queue_start(d40c); |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| } |
| |
| static int |
| dma40_config_to_halfchannel(struct d40_chan *d40c, |
| struct stedma40_half_channel_info *info, |
| enum dma_slave_buswidth width, |
| u32 maxburst) |
| { |
| enum stedma40_periph_data_width addr_width; |
| int psize; |
| |
| switch (width) { |
| case DMA_SLAVE_BUSWIDTH_1_BYTE: |
| addr_width = STEDMA40_BYTE_WIDTH; |
| break; |
| case DMA_SLAVE_BUSWIDTH_2_BYTES: |
| addr_width = STEDMA40_HALFWORD_WIDTH; |
| break; |
| case DMA_SLAVE_BUSWIDTH_4_BYTES: |
| addr_width = STEDMA40_WORD_WIDTH; |
| break; |
| case DMA_SLAVE_BUSWIDTH_8_BYTES: |
| addr_width = STEDMA40_DOUBLEWORD_WIDTH; |
| break; |
| default: |
| dev_err(d40c->base->dev, |
| "illegal peripheral address width " |
| "requested (%d)\n", |
| width); |
| return -EINVAL; |
| } |
| |
| if (chan_is_logical(d40c)) { |
| if (maxburst >= 16) |
| psize = STEDMA40_PSIZE_LOG_16; |
| else if (maxburst >= 8) |
| psize = STEDMA40_PSIZE_LOG_8; |
| else if (maxburst >= 4) |
| psize = STEDMA40_PSIZE_LOG_4; |
| else |
| psize = STEDMA40_PSIZE_LOG_1; |
| } else { |
| if (maxburst >= 16) |
| psize = STEDMA40_PSIZE_PHY_16; |
| else if (maxburst >= 8) |
| psize = STEDMA40_PSIZE_PHY_8; |
| else if (maxburst >= 4) |
| psize = STEDMA40_PSIZE_PHY_4; |
| else |
| psize = STEDMA40_PSIZE_PHY_1; |
| } |
| |
| info->data_width = addr_width; |
| info->psize = psize; |
| info->flow_ctrl = STEDMA40_NO_FLOW_CTRL; |
| |
| return 0; |
| } |
| |
| /* Runtime reconfiguration extension */ |
| static int d40_set_runtime_config(struct dma_chan *chan, |
| struct dma_slave_config *config) |
| { |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| struct stedma40_chan_cfg *cfg = &d40c->dma_cfg; |
| enum dma_slave_buswidth src_addr_width, dst_addr_width; |
| dma_addr_t config_addr; |
| u32 src_maxburst, dst_maxburst; |
| int ret; |
| |
| src_addr_width = config->src_addr_width; |
| src_maxburst = config->src_maxburst; |
| dst_addr_width = config->dst_addr_width; |
| dst_maxburst = config->dst_maxburst; |
| |
| if (config->direction == DMA_FROM_DEVICE) { |
| dma_addr_t dev_addr_rx = |
| d40c->base->plat_data->dev_rx[cfg->src_dev_type]; |
| |
| config_addr = config->src_addr; |
| if (dev_addr_rx) |
| dev_dbg(d40c->base->dev, |
| "channel has a pre-wired RX address %08x " |
| "overriding with %08x\n", |
| dev_addr_rx, config_addr); |
| if (cfg->dir != STEDMA40_PERIPH_TO_MEM) |
| dev_dbg(d40c->base->dev, |
| "channel was not configured for peripheral " |
| "to memory transfer (%d) overriding\n", |
| cfg->dir); |
| cfg->dir = STEDMA40_PERIPH_TO_MEM; |
| |
| /* Configure the memory side */ |
| if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) |
| dst_addr_width = src_addr_width; |
| if (dst_maxburst == 0) |
| dst_maxburst = src_maxburst; |
| |
| } else if (config->direction == DMA_TO_DEVICE) { |
| dma_addr_t dev_addr_tx = |
| d40c->base->plat_data->dev_tx[cfg->dst_dev_type]; |
| |
| config_addr = config->dst_addr; |
| if (dev_addr_tx) |
| dev_dbg(d40c->base->dev, |
| "channel has a pre-wired TX address %08x " |
| "overriding with %08x\n", |
| dev_addr_tx, config_addr); |
| if (cfg->dir != STEDMA40_MEM_TO_PERIPH) |
| dev_dbg(d40c->base->dev, |
| "channel was not configured for memory " |
| "to peripheral transfer (%d) overriding\n", |
| cfg->dir); |
| cfg->dir = STEDMA40_MEM_TO_PERIPH; |
| |
| /* Configure the memory side */ |
| if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) |
| src_addr_width = dst_addr_width; |
| if (src_maxburst == 0) |
| src_maxburst = dst_maxburst; |
| } else { |
| dev_err(d40c->base->dev, |
| "unrecognized channel direction %d\n", |
| config->direction); |
| return -EINVAL; |
| } |
| |
| if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) { |
| dev_err(d40c->base->dev, |
| "src/dst width/maxburst mismatch: %d*%d != %d*%d\n", |
| src_maxburst, |
| src_addr_width, |
| dst_maxburst, |
| dst_addr_width); |
| return -EINVAL; |
| } |
| |
| ret = dma40_config_to_halfchannel(d40c, &cfg->src_info, |
| src_addr_width, |
| src_maxburst); |
| if (ret) |
| return ret; |
| |
| ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info, |
| dst_addr_width, |
| dst_maxburst); |
| if (ret) |
| return ret; |
| |
| /* Fill in register values */ |
| if (chan_is_logical(d40c)) |
| d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); |
| else |
| d40_phy_cfg(cfg, &d40c->src_def_cfg, |
| &d40c->dst_def_cfg, false); |
| |
| /* These settings will take precedence later */ |
| d40c->runtime_addr = config_addr; |
| d40c->runtime_direction = config->direction; |
| dev_dbg(d40c->base->dev, |
| "configured channel %s for %s, data width %d/%d, " |
| "maxburst %d/%d elements, LE, no flow control\n", |
| dma_chan_name(chan), |
| (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX", |
| src_addr_width, dst_addr_width, |
| src_maxburst, dst_maxburst); |
| |
| return 0; |
| } |
| |
| static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, |
| unsigned long arg) |
| { |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| |
| if (d40c->phy_chan == NULL) { |
| chan_err(d40c, "Channel is not allocated!\n"); |
| return -EINVAL; |
| } |
| |
| switch (cmd) { |
| case DMA_TERMINATE_ALL: |
| return d40_terminate_all(d40c); |
| case DMA_PAUSE: |
| return d40_pause(d40c); |
| case DMA_RESUME: |
| return d40_resume(d40c); |
| case DMA_SLAVE_CONFIG: |
| return d40_set_runtime_config(chan, |
| (struct dma_slave_config *) arg); |
| default: |
| break; |
| } |
| |
| /* Other commands are unimplemented */ |
| return -ENXIO; |
| } |
| |
| /* Initialization functions */ |
| |
| static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, |
| struct d40_chan *chans, int offset, |
| int num_chans) |
| { |
| int i = 0; |
| struct d40_chan *d40c; |
| |
| INIT_LIST_HEAD(&dma->channels); |
| |
| for (i = offset; i < offset + num_chans; i++) { |
| d40c = &chans[i]; |
| d40c->base = base; |
| d40c->chan.device = dma; |
| |
| spin_lock_init(&d40c->lock); |
| |
| d40c->log_num = D40_PHY_CHAN; |
| |
| INIT_LIST_HEAD(&d40c->active); |
| INIT_LIST_HEAD(&d40c->queue); |
| INIT_LIST_HEAD(&d40c->pending_queue); |
| INIT_LIST_HEAD(&d40c->client); |
| |
| tasklet_init(&d40c->tasklet, dma_tasklet, |
| (unsigned long) d40c); |
| |
| list_add_tail(&d40c->chan.device_node, |
| &dma->channels); |
| } |
| } |
| |
| static void d40_ops_init(struct d40_base *base, struct dma_device *dev) |
| { |
| if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) |
| dev->device_prep_slave_sg = d40_prep_slave_sg; |
| |
| if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) { |
| dev->device_prep_dma_memcpy = d40_prep_memcpy; |
| |
| /* |
| * This controller can only access address at even |
| * 32bit boundaries, i.e. 2^2 |
| */ |
| dev->copy_align = 2; |
| } |
| |
| if (dma_has_cap(DMA_SG, dev->cap_mask)) |
| dev->device_prep_dma_sg = d40_prep_memcpy_sg; |
| |
| if (dma_has_cap(DMA_CYCLIC, dev->cap_mask)) |
| dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic; |
| |
| dev->device_alloc_chan_resources = d40_alloc_chan_resources; |
| dev->device_free_chan_resources = d40_free_chan_resources; |
| dev->device_issue_pending = d40_issue_pending; |
| dev->device_tx_status = d40_tx_status; |
| dev->device_control = d40_control; |
| dev->dev = base->dev; |
| } |
| |
| static int __init d40_dmaengine_init(struct d40_base *base, |
| int num_reserved_chans) |
| { |
| int err ; |
| |
| d40_chan_init(base, &base->dma_slave, base->log_chans, |
| 0, base->num_log_chans); |
| |
| dma_cap_zero(base->dma_slave.cap_mask); |
| dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); |
| dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); |
| |
| d40_ops_init(base, &base->dma_slave); |
| |
| err = dma_async_device_register(&base->dma_slave); |
| |
| if (err) { |
| d40_err(base->dev, "Failed to register slave channels\n"); |
| goto failure1; |
| } |
| |
| d40_chan_init(base, &base->dma_memcpy, base->log_chans, |
| base->num_log_chans, base->plat_data->memcpy_len); |
| |
| dma_cap_zero(base->dma_memcpy.cap_mask); |
| dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); |
| dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask); |
| |
| d40_ops_init(base, &base->dma_memcpy); |
| |
| err = dma_async_device_register(&base->dma_memcpy); |
| |
| if (err) { |
| d40_err(base->dev, |
| "Failed to regsiter memcpy only channels\n"); |
| goto failure2; |
| } |
| |
| d40_chan_init(base, &base->dma_both, base->phy_chans, |
| 0, num_reserved_chans); |
| |
| dma_cap_zero(base->dma_both.cap_mask); |
| dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); |
| dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); |
| dma_cap_set(DMA_SG, base->dma_both.cap_mask); |
| dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); |
| |
| d40_ops_init(base, &base->dma_both); |
| err = dma_async_device_register(&base->dma_both); |
| |
| if (err) { |
| d40_err(base->dev, |
| "Failed to register logical and physical capable channels\n"); |
| goto failure3; |
| } |
| return 0; |
| failure3: |
| dma_async_device_unregister(&base->dma_memcpy); |
| failure2: |
| dma_async_device_unregister(&base->dma_slave); |
| failure1: |
| return err; |
| } |
| |
| /* Initialization functions. */ |
| |
| static int __init d40_phy_res_init(struct d40_base *base) |
| { |
| int i; |
| int num_phy_chans_avail = 0; |
| u32 val[2]; |
| int odd_even_bit = -2; |
| |
| val[0] = readl(base->virtbase + D40_DREG_PRSME); |
| val[1] = readl(base->virtbase + D40_DREG_PRSMO); |
| |
| for (i = 0; i < base->num_phy_chans; i++) { |
| base->phy_res[i].num = i; |
| odd_even_bit += 2 * ((i % 2) == 0); |
| if (((val[i % 2] >> odd_even_bit) & 3) == 1) { |
| /* Mark security only channels as occupied */ |
| base->phy_res[i].allocated_src = D40_ALLOC_PHY; |
| base->phy_res[i].allocated_dst = D40_ALLOC_PHY; |
| } else { |
| base->phy_res[i].allocated_src = D40_ALLOC_FREE; |
| base->phy_res[i].allocated_dst = D40_ALLOC_FREE; |
| num_phy_chans_avail++; |
| } |
| spin_lock_init(&base->phy_res[i].lock); |
| } |
| |
| /* Mark disabled channels as occupied */ |
| for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) { |
| int chan = base->plat_data->disabled_channels[i]; |
| |
| base->phy_res[chan].allocated_src = D40_ALLOC_PHY; |
| base->phy_res[chan].allocated_dst = D40_ALLOC_PHY; |
| num_phy_chans_avail--; |
| } |
| |
| dev_info(base->dev, "%d of %d physical DMA channels available\n", |
| num_phy_chans_avail, base->num_phy_chans); |
| |
| /* Verify settings extended vs standard */ |
| val[0] = readl(base->virtbase + D40_DREG_PRTYP); |
| |
| for (i = 0; i < base->num_phy_chans; i++) { |
| |
| if (base->phy_res[i].allocated_src == D40_ALLOC_FREE && |
| (val[0] & 0x3) != 1) |
| dev_info(base->dev, |
| "[%s] INFO: channel %d is misconfigured (%d)\n", |
| __func__, i, val[0] & 0x3); |
| |
| val[0] = val[0] >> 2; |
| } |
| |
| return num_phy_chans_avail; |
| } |
| |
| static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) |
| { |
| struct stedma40_platform_data *plat_data; |
| struct clk *clk = NULL; |
| void __iomem *virtbase = NULL; |
| struct resource *res = NULL; |
| struct d40_base *base = NULL; |
| int num_log_chans = 0; |
| int num_phy_chans; |
| int i; |
| u32 pid; |
| u32 cid; |
| u8 rev; |
| |
| clk = clk_get(&pdev->dev, NULL); |
| |
| if (IS_ERR(clk)) { |
| d40_err(&pdev->dev, "No matching clock found\n"); |
| goto failure; |
| } |
| |
| clk_enable(clk); |
| |
| /* Get IO for DMAC base address */ |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); |
| if (!res) |
| goto failure; |
| |
| if (request_mem_region(res->start, resource_size(res), |
| D40_NAME " I/O base") == NULL) |
| goto failure; |
| |
| virtbase = ioremap(res->start, resource_size(res)); |
| if (!virtbase) |
| goto failure; |
| |
| /* This is just a regular AMBA PrimeCell ID actually */ |
| for (pid = 0, i = 0; i < 4; i++) |
| pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i) |
| & 255) << (i * 8); |
| for (cid = 0, i = 0; i < 4; i++) |
| cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i) |
| & 255) << (i * 8); |
| |
| if (cid != AMBA_CID) { |
| d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n"); |
| goto failure; |
| } |
| if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) { |
| d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n", |
| AMBA_MANF_BITS(pid), |
| AMBA_VENDOR_ST); |
| goto failure; |
| } |
| /* |
| * HW revision: |
| * DB8500ed has revision 0 |
| * ? has revision 1 |
| * DB8500v1 has revision 2 |
| * DB8500v2 has revision 3 |
| */ |
| rev = AMBA_REV_BITS(pid); |
| |
| /* The number of physical channels on this HW */ |
| num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; |
| |
| dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n", |
| rev, res->start); |
| |
| plat_data = pdev->dev.platform_data; |
| |
| /* Count the number of logical channels in use */ |
| for (i = 0; i < plat_data->dev_len; i++) |
| if (plat_data->dev_rx[i] != 0) |
| num_log_chans++; |
| |
| for (i = 0; i < plat_data->dev_len; i++) |
| if (plat_data->dev_tx[i] != 0) |
| num_log_chans++; |
| |
| base = kzalloc(ALIGN(sizeof(struct d40_base), 4) + |
| (num_phy_chans + num_log_chans + plat_data->memcpy_len) * |
| sizeof(struct d40_chan), GFP_KERNEL); |
| |
| if (base == NULL) { |
| d40_err(&pdev->dev, "Out of memory\n"); |
| goto failure; |
| } |
| |
| base->rev = rev; |
| base->clk = clk; |
| base->num_phy_chans = num_phy_chans; |
| base->num_log_chans = num_log_chans; |
| base->phy_start = res->start; |
| base->phy_size = resource_size(res); |
| base->virtbase = virtbase; |
| base->plat_data = plat_data; |
| base->dev = &pdev->dev; |
| base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4); |
| base->log_chans = &base->phy_chans[num_phy_chans]; |
| |
| base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res), |
| GFP_KERNEL); |
| if (!base->phy_res) |
| goto failure; |
| |
| base->lookup_phy_chans = kzalloc(num_phy_chans * |
| sizeof(struct d40_chan *), |
| GFP_KERNEL); |
| if (!base->lookup_phy_chans) |
| goto failure; |
| |
| if (num_log_chans + plat_data->memcpy_len) { |
| /* |
| * The max number of logical channels are event lines for all |
| * src devices and dst devices |
| */ |
| base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 * |
| sizeof(struct d40_chan *), |
| GFP_KERNEL); |
| if (!base->lookup_log_chans) |
| goto failure; |
| } |
| |
| base->lcla_pool.alloc_map = kzalloc(num_phy_chans * |
| sizeof(struct d40_desc *) * |
| D40_LCLA_LINK_PER_EVENT_GRP, |
| GFP_KERNEL); |
| if (!base->lcla_pool.alloc_map) |
| goto failure; |
| |
| base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc), |
| 0, SLAB_HWCACHE_ALIGN, |
| NULL); |
| if (base->desc_slab == NULL) |
| goto failure; |
| |
| return base; |
| |
| failure: |
| if (!IS_ERR(clk)) { |
| clk_disable(clk); |
| clk_put(clk); |
| } |
| if (virtbase) |
| iounmap(virtbase); |
| if (res) |
| release_mem_region(res->start, |
| resource_size(res)); |
| if (virtbase) |
| iounmap(virtbase); |
| |
| if (base) { |
| kfree(base->lcla_pool.alloc_map); |
| kfree(base->lookup_log_chans); |
| kfree(base->lookup_phy_chans); |
| kfree(base->phy_res); |
| kfree(base); |
| } |
| |
| return NULL; |
| } |
| |
| static void __init d40_hw_init(struct d40_base *base) |
| { |
| |
| static const struct d40_reg_val dma_init_reg[] = { |
| /* Clock every part of the DMA block from start */ |
| { .reg = D40_DREG_GCC, .val = 0x0000ff01}, |
| |
| /* Interrupts on all logical channels */ |
| { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF} |
| }; |
| int i; |
| u32 prmseo[2] = {0, 0}; |
| u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF}; |
| u32 pcmis = 0; |
| u32 pcicr = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++) |
| writel(dma_init_reg[i].val, |
| base->virtbase + dma_init_reg[i].reg); |
| |
| /* Configure all our dma channels to default settings */ |
| for (i = 0; i < base->num_phy_chans; i++) { |
| |
| activeo[i % 2] = activeo[i % 2] << 2; |
| |
| if (base->phy_res[base->num_phy_chans - i - 1].allocated_src |
| == D40_ALLOC_PHY) { |
| activeo[i % 2] |= 3; |
| continue; |
| } |
| |
| /* Enable interrupt # */ |
| pcmis = (pcmis << 1) | 1; |
| |
| /* Clear interrupt # */ |
| pcicr = (pcicr << 1) | 1; |
| |
| /* Set channel to physical mode */ |
| prmseo[i % 2] = prmseo[i % 2] << 2; |
| prmseo[i % 2] |= 1; |
| |
| } |
| |
| writel(prmseo[1], base->virtbase + D40_DREG_PRMSE); |
| writel(prmseo[0], base->virtbase + D40_DREG_PRMSO); |
| writel(activeo[1], base->virtbase + D40_DREG_ACTIVE); |
| writel(activeo[0], base->virtbase + D40_DREG_ACTIVO); |
| |
| /* Write which interrupt to enable */ |
| writel(pcmis, base->virtbase + D40_DREG_PCMIS); |
| |
| /* Write which interrupt to clear */ |
| writel(pcicr, base->virtbase + D40_DREG_PCICR); |
| |
| } |
| |
| static int __init d40_lcla_allocate(struct d40_base *base) |
| { |
| struct d40_lcla_pool *pool = &base->lcla_pool; |
| unsigned long *page_list; |
| int i, j; |
| int ret = 0; |
| |
| /* |
| * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned, |
| * To full fill this hardware requirement without wasting 256 kb |
| * we allocate pages until we get an aligned one. |
| */ |
| page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS, |
| GFP_KERNEL); |
| |
| if (!page_list) { |
| ret = -ENOMEM; |
| goto failure; |
| } |
| |
| /* Calculating how many pages that are required */ |
| base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE; |
| |
| for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) { |
| page_list[i] = __get_free_pages(GFP_KERNEL, |
| base->lcla_pool.pages); |
| if (!page_list[i]) { |
| |
| d40_err(base->dev, "Failed to allocate %d pages.\n", |
| base->lcla_pool.pages); |
| |
| for (j = 0; j < i; j++) |
| free_pages(page_list[j], base->lcla_pool.pages); |
| goto failure; |
| } |
| |
| if ((virt_to_phys((void *)page_list[i]) & |
| (LCLA_ALIGNMENT - 1)) == 0) |
| break; |
| } |
| |
| for (j = 0; j < i; j++) |
| free_pages(page_list[j], base->lcla_pool.pages); |
| |
| if (i < MAX_LCLA_ALLOC_ATTEMPTS) { |
| base->lcla_pool.base = (void *)page_list[i]; |
| } else { |
| /* |
| * After many attempts and no succees with finding the correct |
| * alignment, try with allocating a big buffer. |
| */ |
| dev_warn(base->dev, |
| "[%s] Failed to get %d pages @ 18 bit align.\n", |
| __func__, base->lcla_pool.pages); |
| base->lcla_pool.base_unaligned = kmalloc(SZ_1K * |
| base->num_phy_chans + |
| LCLA_ALIGNMENT, |
| GFP_KERNEL); |
| if (!base->lcla_pool.base_unaligned) { |
| ret = -ENOMEM; |
| goto failure; |
| } |
| |
| base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned, |
| LCLA_ALIGNMENT); |
| } |
| |
| pool->dma_addr = dma_map_single(base->dev, pool->base, |
| SZ_1K * base->num_phy_chans, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(base->dev, pool->dma_addr)) { |
| pool->dma_addr = 0; |
| ret = -ENOMEM; |
| goto failure; |
| } |
| |
| writel(virt_to_phys(base->lcla_pool.base), |
| base->virtbase + D40_DREG_LCLA); |
| failure: |
| kfree(page_list); |
| return ret; |
| } |
| |
| static int __init d40_probe(struct platform_device *pdev) |
| { |
| int err; |
| int ret = -ENOENT; |
| struct d40_base *base; |
| struct resource *res = NULL; |
| int num_reserved_chans; |
| u32 val; |
| |
| base = d40_hw_detect_init(pdev); |
| |
| if (!base) |
| goto failure; |
| |
| num_reserved_chans = d40_phy_res_init(base); |
| |
| platform_set_drvdata(pdev, base); |
| |
| spin_lock_init(&base->interrupt_lock); |
| spin_lock_init(&base->execmd_lock); |
| |
| /* Get IO for logical channel parameter address */ |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa"); |
| if (!res) { |
| ret = -ENOENT; |
| d40_err(&pdev->dev, "No \"lcpa\" memory resource\n"); |
| goto failure; |
| } |
| base->lcpa_size = resource_size(res); |
| base->phy_lcpa = res->start; |
| |
| if (request_mem_region(res->start, resource_size(res), |
| D40_NAME " I/O lcpa") == NULL) { |
| ret = -EBUSY; |
| d40_err(&pdev->dev, |
| "Failed to request LCPA region 0x%x-0x%x\n", |
| res->start, res->end); |
| goto failure; |
| } |
| |
| /* We make use of ESRAM memory for this. */ |
| val = readl(base->virtbase + D40_DREG_LCPA); |
| if (res->start != val && val != 0) { |
| dev_warn(&pdev->dev, |
| "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n", |
| __func__, val, res->start); |
| } else |
| writel(res->start, base->virtbase + D40_DREG_LCPA); |
| |
| base->lcpa_base = ioremap(res->start, resource_size(res)); |
| if (!base->lcpa_base) { |
| ret = -ENOMEM; |
| d40_err(&pdev->dev, "Failed to ioremap LCPA region\n"); |
| goto failure; |
| } |
| |
| ret = d40_lcla_allocate(base); |
| if (ret) { |
| d40_err(&pdev->dev, "Failed to allocate LCLA area\n"); |
| goto failure; |
| } |
| |
| spin_lock_init(&base->lcla_pool.lock); |
| |
| base->irq = platform_get_irq(pdev, 0); |
| |
| ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base); |
| if (ret) { |
| d40_err(&pdev->dev, "No IRQ defined\n"); |
| goto failure; |
| } |
| |
| err = d40_dmaengine_init(base, num_reserved_chans); |
| if (err) |
| goto failure; |
| |
| d40_hw_init(base); |
| |
| dev_info(base->dev, "initialized\n"); |
| return 0; |
| |
| failure: |
| if (base) { |
| if (base->desc_slab) |
| kmem_cache_destroy(base->desc_slab); |
| if (base->virtbase) |
| iounmap(base->virtbase); |
| |
| if (base->lcla_pool.dma_addr) |
| dma_unmap_single(base->dev, base->lcla_pool.dma_addr, |
| SZ_1K * base->num_phy_chans, |
| DMA_TO_DEVICE); |
| |
| if (!base->lcla_pool.base_unaligned && base->lcla_pool.base) |
| free_pages((unsigned long)base->lcla_pool.base, |
| base->lcla_pool.pages); |
| |
| kfree(base->lcla_pool.base_unaligned); |
| |
| if (base->phy_lcpa) |
| release_mem_region(base->phy_lcpa, |
| base->lcpa_size); |
| if (base->phy_start) |
| release_mem_region(base->phy_start, |
| base->phy_size); |
| if (base->clk) { |
| clk_disable(base->clk); |
| clk_put(base->clk); |
| } |
| |
| kfree(base->lcla_pool.alloc_map); |
| kfree(base->lookup_log_chans); |
| kfree(base->lookup_phy_chans); |
| kfree(base->phy_res); |
| kfree(base); |
| } |
| |
| d40_err(&pdev->dev, "probe failed\n"); |
| return ret; |
| } |
| |
| static struct platform_driver d40_driver = { |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = D40_NAME, |
| }, |
| }; |
| |
| static int __init stedma40_init(void) |
| { |
| return platform_driver_probe(&d40_driver, d40_probe); |
| } |
| subsys_initcall(stedma40_init); |