| /* |
| * This file is part of the Chelsio T4 Ethernet driver for Linux. |
| * |
| * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/delay.h> |
| #include "cxgb4.h" |
| #include "t4_regs.h" |
| #include "t4_values.h" |
| #include "t4fw_api.h" |
| |
| /** |
| * t4_wait_op_done_val - wait until an operation is completed |
| * @adapter: the adapter performing the operation |
| * @reg: the register to check for completion |
| * @mask: a single-bit field within @reg that indicates completion |
| * @polarity: the value of the field when the operation is completed |
| * @attempts: number of check iterations |
| * @delay: delay in usecs between iterations |
| * @valp: where to store the value of the register at completion time |
| * |
| * Wait until an operation is completed by checking a bit in a register |
| * up to @attempts times. If @valp is not NULL the value of the register |
| * at the time it indicated completion is stored there. Returns 0 if the |
| * operation completes and -EAGAIN otherwise. |
| */ |
| static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, |
| int polarity, int attempts, int delay, u32 *valp) |
| { |
| while (1) { |
| u32 val = t4_read_reg(adapter, reg); |
| |
| if (!!(val & mask) == polarity) { |
| if (valp) |
| *valp = val; |
| return 0; |
| } |
| if (--attempts == 0) |
| return -EAGAIN; |
| if (delay) |
| udelay(delay); |
| } |
| } |
| |
| static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, |
| int polarity, int attempts, int delay) |
| { |
| return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, |
| delay, NULL); |
| } |
| |
| /** |
| * t4_set_reg_field - set a register field to a value |
| * @adapter: the adapter to program |
| * @addr: the register address |
| * @mask: specifies the portion of the register to modify |
| * @val: the new value for the register field |
| * |
| * Sets a register field specified by the supplied mask to the |
| * given value. |
| */ |
| void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, |
| u32 val) |
| { |
| u32 v = t4_read_reg(adapter, addr) & ~mask; |
| |
| t4_write_reg(adapter, addr, v | val); |
| (void) t4_read_reg(adapter, addr); /* flush */ |
| } |
| |
| /** |
| * t4_read_indirect - read indirectly addressed registers |
| * @adap: the adapter |
| * @addr_reg: register holding the indirect address |
| * @data_reg: register holding the value of the indirect register |
| * @vals: where the read register values are stored |
| * @nregs: how many indirect registers to read |
| * @start_idx: index of first indirect register to read |
| * |
| * Reads registers that are accessed indirectly through an address/data |
| * register pair. |
| */ |
| void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, |
| unsigned int data_reg, u32 *vals, |
| unsigned int nregs, unsigned int start_idx) |
| { |
| while (nregs--) { |
| t4_write_reg(adap, addr_reg, start_idx); |
| *vals++ = t4_read_reg(adap, data_reg); |
| start_idx++; |
| } |
| } |
| |
| /** |
| * t4_write_indirect - write indirectly addressed registers |
| * @adap: the adapter |
| * @addr_reg: register holding the indirect addresses |
| * @data_reg: register holding the value for the indirect registers |
| * @vals: values to write |
| * @nregs: how many indirect registers to write |
| * @start_idx: address of first indirect register to write |
| * |
| * Writes a sequential block of registers that are accessed indirectly |
| * through an address/data register pair. |
| */ |
| void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, |
| unsigned int data_reg, const u32 *vals, |
| unsigned int nregs, unsigned int start_idx) |
| { |
| while (nregs--) { |
| t4_write_reg(adap, addr_reg, start_idx++); |
| t4_write_reg(adap, data_reg, *vals++); |
| } |
| } |
| |
| /* |
| * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor |
| * mechanism. This guarantees that we get the real value even if we're |
| * operating within a Virtual Machine and the Hypervisor is trapping our |
| * Configuration Space accesses. |
| */ |
| void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) |
| { |
| u32 req = ENABLE_F | FUNCTION_V(adap->fn) | REGISTER_V(reg); |
| |
| if (is_t4(adap->params.chip)) |
| req |= LOCALCFG_F; |
| |
| t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); |
| *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); |
| |
| /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a |
| * Configuration Space read. (None of the other fields matter when |
| * ENABLE is 0 so a simple register write is easier than a |
| * read-modify-write via t4_set_reg_field().) |
| */ |
| t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); |
| } |
| |
| /* |
| * t4_report_fw_error - report firmware error |
| * @adap: the adapter |
| * |
| * The adapter firmware can indicate error conditions to the host. |
| * If the firmware has indicated an error, print out the reason for |
| * the firmware error. |
| */ |
| static void t4_report_fw_error(struct adapter *adap) |
| { |
| static const char *const reason[] = { |
| "Crash", /* PCIE_FW_EVAL_CRASH */ |
| "During Device Preparation", /* PCIE_FW_EVAL_PREP */ |
| "During Device Configuration", /* PCIE_FW_EVAL_CONF */ |
| "During Device Initialization", /* PCIE_FW_EVAL_INIT */ |
| "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ |
| "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ |
| "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ |
| "Reserved", /* reserved */ |
| }; |
| u32 pcie_fw; |
| |
| pcie_fw = t4_read_reg(adap, PCIE_FW_A); |
| if (pcie_fw & PCIE_FW_ERR_F) |
| dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", |
| reason[PCIE_FW_EVAL_G(pcie_fw)]); |
| } |
| |
| /* |
| * Get the reply to a mailbox command and store it in @rpl in big-endian order. |
| */ |
| static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, |
| u32 mbox_addr) |
| { |
| for ( ; nflit; nflit--, mbox_addr += 8) |
| *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); |
| } |
| |
| /* |
| * Handle a FW assertion reported in a mailbox. |
| */ |
| static void fw_asrt(struct adapter *adap, u32 mbox_addr) |
| { |
| struct fw_debug_cmd asrt; |
| |
| get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); |
| dev_alert(adap->pdev_dev, |
| "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", |
| asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line), |
| ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y)); |
| } |
| |
| static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg) |
| { |
| dev_err(adap->pdev_dev, |
| "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox, |
| (unsigned long long)t4_read_reg64(adap, data_reg), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 8), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 16), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 24), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 32), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 40), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 48), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 56)); |
| } |
| |
| /** |
| * t4_wr_mbox_meat - send a command to FW through the given mailbox |
| * @adap: the adapter |
| * @mbox: index of the mailbox to use |
| * @cmd: the command to write |
| * @size: command length in bytes |
| * @rpl: where to optionally store the reply |
| * @sleep_ok: if true we may sleep while awaiting command completion |
| * |
| * Sends the given command to FW through the selected mailbox and waits |
| * for the FW to execute the command. If @rpl is not %NULL it is used to |
| * store the FW's reply to the command. The command and its optional |
| * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms |
| * to respond. @sleep_ok determines whether we may sleep while awaiting |
| * the response. If sleeping is allowed we use progressive backoff |
| * otherwise we spin. |
| * |
| * The return value is 0 on success or a negative errno on failure. A |
| * failure can happen either because we are not able to execute the |
| * command or FW executes it but signals an error. In the latter case |
| * the return value is the error code indicated by FW (negated). |
| */ |
| int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, |
| void *rpl, bool sleep_ok) |
| { |
| static const int delay[] = { |
| 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 |
| }; |
| |
| u32 v; |
| u64 res; |
| int i, ms, delay_idx; |
| const __be64 *p = cmd; |
| u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); |
| u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); |
| |
| if ((size & 15) || size > MBOX_LEN) |
| return -EINVAL; |
| |
| /* |
| * If the device is off-line, as in EEH, commands will time out. |
| * Fail them early so we don't waste time waiting. |
| */ |
| if (adap->pdev->error_state != pci_channel_io_normal) |
| return -EIO; |
| |
| v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); |
| for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) |
| v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); |
| |
| if (v != MBOX_OWNER_DRV) |
| return v ? -EBUSY : -ETIMEDOUT; |
| |
| for (i = 0; i < size; i += 8) |
| t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); |
| |
| t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); |
| t4_read_reg(adap, ctl_reg); /* flush write */ |
| |
| delay_idx = 0; |
| ms = delay[0]; |
| |
| for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { |
| if (sleep_ok) { |
| ms = delay[delay_idx]; /* last element may repeat */ |
| if (delay_idx < ARRAY_SIZE(delay) - 1) |
| delay_idx++; |
| msleep(ms); |
| } else |
| mdelay(ms); |
| |
| v = t4_read_reg(adap, ctl_reg); |
| if (MBOWNER_G(v) == MBOX_OWNER_DRV) { |
| if (!(v & MBMSGVALID_F)) { |
| t4_write_reg(adap, ctl_reg, 0); |
| continue; |
| } |
| |
| res = t4_read_reg64(adap, data_reg); |
| if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { |
| fw_asrt(adap, data_reg); |
| res = FW_CMD_RETVAL_V(EIO); |
| } else if (rpl) { |
| get_mbox_rpl(adap, rpl, size / 8, data_reg); |
| } |
| |
| if (FW_CMD_RETVAL_G((int)res)) |
| dump_mbox(adap, mbox, data_reg); |
| t4_write_reg(adap, ctl_reg, 0); |
| return -FW_CMD_RETVAL_G((int)res); |
| } |
| } |
| |
| dump_mbox(adap, mbox, data_reg); |
| dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", |
| *(const u8 *)cmd, mbox); |
| t4_report_fw_error(adap); |
| return -ETIMEDOUT; |
| } |
| |
| /** |
| * t4_mc_read - read from MC through backdoor accesses |
| * @adap: the adapter |
| * @addr: address of first byte requested |
| * @idx: which MC to access |
| * @data: 64 bytes of data containing the requested address |
| * @ecc: where to store the corresponding 64-bit ECC word |
| * |
| * Read 64 bytes of data from MC starting at a 64-byte-aligned address |
| * that covers the requested address @addr. If @parity is not %NULL it |
| * is assigned the 64-bit ECC word for the read data. |
| */ |
| int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) |
| { |
| int i; |
| u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len; |
| u32 mc_bist_status_rdata, mc_bist_data_pattern; |
| |
| if (is_t4(adap->params.chip)) { |
| mc_bist_cmd = MC_BIST_CMD_A; |
| mc_bist_cmd_addr = MC_BIST_CMD_ADDR_A; |
| mc_bist_cmd_len = MC_BIST_CMD_LEN_A; |
| mc_bist_status_rdata = MC_BIST_STATUS_RDATA_A; |
| mc_bist_data_pattern = MC_BIST_DATA_PATTERN_A; |
| } else { |
| mc_bist_cmd = MC_REG(MC_P_BIST_CMD_A, idx); |
| mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR_A, idx); |
| mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN_A, idx); |
| mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx); |
| mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx); |
| } |
| |
| if (t4_read_reg(adap, mc_bist_cmd) & START_BIST_F) |
| return -EBUSY; |
| t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU); |
| t4_write_reg(adap, mc_bist_cmd_len, 64); |
| t4_write_reg(adap, mc_bist_data_pattern, 0xc); |
| t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE_V(1) | START_BIST_F | |
| BIST_CMD_GAP_V(1)); |
| i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST_F, 0, 10, 1); |
| if (i) |
| return i; |
| |
| #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i) |
| |
| for (i = 15; i >= 0; i--) |
| *data++ = htonl(t4_read_reg(adap, MC_DATA(i))); |
| if (ecc) |
| *ecc = t4_read_reg64(adap, MC_DATA(16)); |
| #undef MC_DATA |
| return 0; |
| } |
| |
| /** |
| * t4_edc_read - read from EDC through backdoor accesses |
| * @adap: the adapter |
| * @idx: which EDC to access |
| * @addr: address of first byte requested |
| * @data: 64 bytes of data containing the requested address |
| * @ecc: where to store the corresponding 64-bit ECC word |
| * |
| * Read 64 bytes of data from EDC starting at a 64-byte-aligned address |
| * that covers the requested address @addr. If @parity is not %NULL it |
| * is assigned the 64-bit ECC word for the read data. |
| */ |
| int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) |
| { |
| int i; |
| u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len; |
| u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata; |
| |
| if (is_t4(adap->params.chip)) { |
| edc_bist_cmd = EDC_REG(EDC_BIST_CMD_A, idx); |
| edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR_A, idx); |
| edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN_A, idx); |
| edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN_A, |
| idx); |
| edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA_A, |
| idx); |
| } else { |
| edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD_A, idx); |
| edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx); |
| edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx); |
| edc_bist_cmd_data_pattern = |
| EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx); |
| edc_bist_status_rdata = |
| EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx); |
| } |
| |
| if (t4_read_reg(adap, edc_bist_cmd) & START_BIST_F) |
| return -EBUSY; |
| t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU); |
| t4_write_reg(adap, edc_bist_cmd_len, 64); |
| t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc); |
| t4_write_reg(adap, edc_bist_cmd, |
| BIST_OPCODE_V(1) | BIST_CMD_GAP_V(1) | START_BIST_F); |
| i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST_F, 0, 10, 1); |
| if (i) |
| return i; |
| |
| #define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i)) |
| |
| for (i = 15; i >= 0; i--) |
| *data++ = htonl(t4_read_reg(adap, EDC_DATA(i))); |
| if (ecc) |
| *ecc = t4_read_reg64(adap, EDC_DATA(16)); |
| #undef EDC_DATA |
| return 0; |
| } |
| |
| /** |
| * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window |
| * @adap: the adapter |
| * @win: PCI-E Memory Window to use |
| * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC |
| * @addr: address within indicated memory type |
| * @len: amount of memory to transfer |
| * @hbuf: host memory buffer |
| * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) |
| * |
| * Reads/writes an [almost] arbitrary memory region in the firmware: the |
| * firmware memory address and host buffer must be aligned on 32-bit |
| * boudaries; the length may be arbitrary. The memory is transferred as |
| * a raw byte sequence from/to the firmware's memory. If this memory |
| * contains data structures which contain multi-byte integers, it's the |
| * caller's responsibility to perform appropriate byte order conversions. |
| */ |
| int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, |
| u32 len, void *hbuf, int dir) |
| { |
| u32 pos, offset, resid, memoffset; |
| u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; |
| u32 *buf; |
| |
| /* Argument sanity checks ... |
| */ |
| if (addr & 0x3 || (uintptr_t)hbuf & 0x3) |
| return -EINVAL; |
| buf = (u32 *)hbuf; |
| |
| /* It's convenient to be able to handle lengths which aren't a |
| * multiple of 32-bits because we often end up transferring files to |
| * the firmware. So we'll handle that by normalizing the length here |
| * and then handling any residual transfer at the end. |
| */ |
| resid = len & 0x3; |
| len -= resid; |
| |
| /* Offset into the region of memory which is being accessed |
| * MEM_EDC0 = 0 |
| * MEM_EDC1 = 1 |
| * MEM_MC = 2 -- T4 |
| * MEM_MC0 = 2 -- For T5 |
| * MEM_MC1 = 3 -- For T5 |
| */ |
| edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); |
| if (mtype != MEM_MC1) |
| memoffset = (mtype * (edc_size * 1024 * 1024)); |
| else { |
| mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, |
| MA_EXT_MEMORY1_BAR_A)); |
| memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; |
| } |
| |
| /* Determine the PCIE_MEM_ACCESS_OFFSET */ |
| addr = addr + memoffset; |
| |
| /* Each PCI-E Memory Window is programmed with a window size -- or |
| * "aperture" -- which controls the granularity of its mapping onto |
| * adapter memory. We need to grab that aperture in order to know |
| * how to use the specified window. The window is also programmed |
| * with the base address of the Memory Window in BAR0's address |
| * space. For T4 this is an absolute PCI-E Bus Address. For T5 |
| * the address is relative to BAR0. |
| */ |
| mem_reg = t4_read_reg(adap, |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, |
| win)); |
| mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); |
| mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; |
| if (is_t4(adap->params.chip)) |
| mem_base -= adap->t4_bar0; |
| win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->fn); |
| |
| /* Calculate our initial PCI-E Memory Window Position and Offset into |
| * that Window. |
| */ |
| pos = addr & ~(mem_aperture-1); |
| offset = addr - pos; |
| |
| /* Set up initial PCI-E Memory Window to cover the start of our |
| * transfer. (Read it back to ensure that changes propagate before we |
| * attempt to use the new value.) |
| */ |
| t4_write_reg(adap, |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), |
| pos | win_pf); |
| t4_read_reg(adap, |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); |
| |
| /* Transfer data to/from the adapter as long as there's an integral |
| * number of 32-bit transfers to complete. |
| * |
| * A note on Endianness issues: |
| * |
| * The "register" reads and writes below from/to the PCI-E Memory |
| * Window invoke the standard adapter Big-Endian to PCI-E Link |
| * Little-Endian "swizzel." As a result, if we have the following |
| * data in adapter memory: |
| * |
| * Memory: ... | b0 | b1 | b2 | b3 | ... |
| * Address: i+0 i+1 i+2 i+3 |
| * |
| * Then a read of the adapter memory via the PCI-E Memory Window |
| * will yield: |
| * |
| * x = readl(i) |
| * 31 0 |
| * [ b3 | b2 | b1 | b0 ] |
| * |
| * If this value is stored into local memory on a Little-Endian system |
| * it will show up correctly in local memory as: |
| * |
| * ( ..., b0, b1, b2, b3, ... ) |
| * |
| * But on a Big-Endian system, the store will show up in memory |
| * incorrectly swizzled as: |
| * |
| * ( ..., b3, b2, b1, b0, ... ) |
| * |
| * So we need to account for this in the reads and writes to the |
| * PCI-E Memory Window below by undoing the register read/write |
| * swizzels. |
| */ |
| while (len > 0) { |
| if (dir == T4_MEMORY_READ) |
| *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, |
| mem_base + offset)); |
| else |
| t4_write_reg(adap, mem_base + offset, |
| (__force u32)cpu_to_le32(*buf++)); |
| offset += sizeof(__be32); |
| len -= sizeof(__be32); |
| |
| /* If we've reached the end of our current window aperture, |
| * move the PCI-E Memory Window on to the next. Note that |
| * doing this here after "len" may be 0 allows us to set up |
| * the PCI-E Memory Window for a possible final residual |
| * transfer below ... |
| */ |
| if (offset == mem_aperture) { |
| pos += mem_aperture; |
| offset = 0; |
| t4_write_reg(adap, |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, |
| win), pos | win_pf); |
| t4_read_reg(adap, |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, |
| win)); |
| } |
| } |
| |
| /* If the original transfer had a length which wasn't a multiple of |
| * 32-bits, now's where we need to finish off the transfer of the |
| * residual amount. The PCI-E Memory Window has already been moved |
| * above (if necessary) to cover this final transfer. |
| */ |
| if (resid) { |
| union { |
| u32 word; |
| char byte[4]; |
| } last; |
| unsigned char *bp; |
| int i; |
| |
| if (dir == T4_MEMORY_READ) { |
| last.word = le32_to_cpu( |
| (__force __le32)t4_read_reg(adap, |
| mem_base + offset)); |
| for (bp = (unsigned char *)buf, i = resid; i < 4; i++) |
| bp[i] = last.byte[i]; |
| } else { |
| last.word = *buf; |
| for (i = resid; i < 4; i++) |
| last.byte[i] = 0; |
| t4_write_reg(adap, mem_base + offset, |
| (__force u32)cpu_to_le32(last.word)); |
| } |
| } |
| |
| return 0; |
| } |
| |
| #define EEPROM_STAT_ADDR 0x7bfc |
| #define VPD_BASE 0x400 |
| #define VPD_BASE_OLD 0 |
| #define VPD_LEN 1024 |
| #define CHELSIO_VPD_UNIQUE_ID 0x82 |
| |
| /** |
| * t4_seeprom_wp - enable/disable EEPROM write protection |
| * @adapter: the adapter |
| * @enable: whether to enable or disable write protection |
| * |
| * Enables or disables write protection on the serial EEPROM. |
| */ |
| int t4_seeprom_wp(struct adapter *adapter, bool enable) |
| { |
| unsigned int v = enable ? 0xc : 0; |
| int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); |
| return ret < 0 ? ret : 0; |
| } |
| |
| /** |
| * get_vpd_params - read VPD parameters from VPD EEPROM |
| * @adapter: adapter to read |
| * @p: where to store the parameters |
| * |
| * Reads card parameters stored in VPD EEPROM. |
| */ |
| int get_vpd_params(struct adapter *adapter, struct vpd_params *p) |
| { |
| u32 cclk_param, cclk_val; |
| int i, ret, addr; |
| int ec, sn, pn; |
| u8 *vpd, csum; |
| unsigned int vpdr_len, kw_offset, id_len; |
| |
| vpd = vmalloc(VPD_LEN); |
| if (!vpd) |
| return -ENOMEM; |
| |
| ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); |
| if (ret < 0) |
| goto out; |
| |
| /* The VPD shall have a unique identifier specified by the PCI SIG. |
| * For chelsio adapters, the identifier is 0x82. The first byte of a VPD |
| * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software |
| * is expected to automatically put this entry at the |
| * beginning of the VPD. |
| */ |
| addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; |
| |
| ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); |
| if (ret < 0) |
| goto out; |
| |
| if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { |
| dev_err(adapter->pdev_dev, "missing VPD ID string\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| id_len = pci_vpd_lrdt_size(vpd); |
| if (id_len > ID_LEN) |
| id_len = ID_LEN; |
| |
| i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); |
| if (i < 0) { |
| dev_err(adapter->pdev_dev, "missing VPD-R section\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| vpdr_len = pci_vpd_lrdt_size(&vpd[i]); |
| kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; |
| if (vpdr_len + kw_offset > VPD_LEN) { |
| dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| #define FIND_VPD_KW(var, name) do { \ |
| var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ |
| if (var < 0) { \ |
| dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ |
| ret = -EINVAL; \ |
| goto out; \ |
| } \ |
| var += PCI_VPD_INFO_FLD_HDR_SIZE; \ |
| } while (0) |
| |
| FIND_VPD_KW(i, "RV"); |
| for (csum = 0; i >= 0; i--) |
| csum += vpd[i]; |
| |
| if (csum) { |
| dev_err(adapter->pdev_dev, |
| "corrupted VPD EEPROM, actual csum %u\n", csum); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| FIND_VPD_KW(ec, "EC"); |
| FIND_VPD_KW(sn, "SN"); |
| FIND_VPD_KW(pn, "PN"); |
| #undef FIND_VPD_KW |
| |
| memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); |
| strim(p->id); |
| memcpy(p->ec, vpd + ec, EC_LEN); |
| strim(p->ec); |
| i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); |
| memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); |
| strim(p->sn); |
| i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); |
| memcpy(p->pn, vpd + pn, min(i, PN_LEN)); |
| strim(p->pn); |
| |
| /* |
| * Ask firmware for the Core Clock since it knows how to translate the |
| * Reference Clock ('V2') VPD field into a Core Clock value ... |
| */ |
| cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); |
| ret = t4_query_params(adapter, adapter->mbox, 0, 0, |
| 1, &cclk_param, &cclk_val); |
| |
| out: |
| vfree(vpd); |
| if (ret) |
| return ret; |
| p->cclk = cclk_val; |
| |
| return 0; |
| } |
| |
| /* serial flash and firmware constants */ |
| enum { |
| SF_ATTEMPTS = 10, /* max retries for SF operations */ |
| |
| /* flash command opcodes */ |
| SF_PROG_PAGE = 2, /* program page */ |
| SF_WR_DISABLE = 4, /* disable writes */ |
| SF_RD_STATUS = 5, /* read status register */ |
| SF_WR_ENABLE = 6, /* enable writes */ |
| SF_RD_DATA_FAST = 0xb, /* read flash */ |
| SF_RD_ID = 0x9f, /* read ID */ |
| SF_ERASE_SECTOR = 0xd8, /* erase sector */ |
| |
| FW_MAX_SIZE = 16 * SF_SEC_SIZE, |
| }; |
| |
| /** |
| * sf1_read - read data from the serial flash |
| * @adapter: the adapter |
| * @byte_cnt: number of bytes to read |
| * @cont: whether another operation will be chained |
| * @lock: whether to lock SF for PL access only |
| * @valp: where to store the read data |
| * |
| * Reads up to 4 bytes of data from the serial flash. The location of |
| * the read needs to be specified prior to calling this by issuing the |
| * appropriate commands to the serial flash. |
| */ |
| static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, |
| int lock, u32 *valp) |
| { |
| int ret; |
| |
| if (!byte_cnt || byte_cnt > 4) |
| return -EINVAL; |
| if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) |
| return -EBUSY; |
| t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | |
| SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); |
| ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); |
| if (!ret) |
| *valp = t4_read_reg(adapter, SF_DATA_A); |
| return ret; |
| } |
| |
| /** |
| * sf1_write - write data to the serial flash |
| * @adapter: the adapter |
| * @byte_cnt: number of bytes to write |
| * @cont: whether another operation will be chained |
| * @lock: whether to lock SF for PL access only |
| * @val: value to write |
| * |
| * Writes up to 4 bytes of data to the serial flash. The location of |
| * the write needs to be specified prior to calling this by issuing the |
| * appropriate commands to the serial flash. |
| */ |
| static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, |
| int lock, u32 val) |
| { |
| if (!byte_cnt || byte_cnt > 4) |
| return -EINVAL; |
| if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) |
| return -EBUSY; |
| t4_write_reg(adapter, SF_DATA_A, val); |
| t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | |
| SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); |
| return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); |
| } |
| |
| /** |
| * flash_wait_op - wait for a flash operation to complete |
| * @adapter: the adapter |
| * @attempts: max number of polls of the status register |
| * @delay: delay between polls in ms |
| * |
| * Wait for a flash operation to complete by polling the status register. |
| */ |
| static int flash_wait_op(struct adapter *adapter, int attempts, int delay) |
| { |
| int ret; |
| u32 status; |
| |
| while (1) { |
| if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || |
| (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) |
| return ret; |
| if (!(status & 1)) |
| return 0; |
| if (--attempts == 0) |
| return -EAGAIN; |
| if (delay) |
| msleep(delay); |
| } |
| } |
| |
| /** |
| * t4_read_flash - read words from serial flash |
| * @adapter: the adapter |
| * @addr: the start address for the read |
| * @nwords: how many 32-bit words to read |
| * @data: where to store the read data |
| * @byte_oriented: whether to store data as bytes or as words |
| * |
| * Read the specified number of 32-bit words from the serial flash. |
| * If @byte_oriented is set the read data is stored as a byte array |
| * (i.e., big-endian), otherwise as 32-bit words in the platform's |
| * natural endianess. |
| */ |
| int t4_read_flash(struct adapter *adapter, unsigned int addr, |
| unsigned int nwords, u32 *data, int byte_oriented) |
| { |
| int ret; |
| |
| if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) |
| return -EINVAL; |
| |
| addr = swab32(addr) | SF_RD_DATA_FAST; |
| |
| if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || |
| (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) |
| return ret; |
| |
| for ( ; nwords; nwords--, data++) { |
| ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); |
| if (nwords == 1) |
| t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ |
| if (ret) |
| return ret; |
| if (byte_oriented) |
| *data = (__force __u32) (htonl(*data)); |
| } |
| return 0; |
| } |
| |
| /** |
| * t4_write_flash - write up to a page of data to the serial flash |
| * @adapter: the adapter |
| * @addr: the start address to write |
| * @n: length of data to write in bytes |
| * @data: the data to write |
| * |
| * Writes up to a page of data (256 bytes) to the serial flash starting |
| * at the given address. All the data must be written to the same page. |
| */ |
| static int t4_write_flash(struct adapter *adapter, unsigned int addr, |
| unsigned int n, const u8 *data) |
| { |
| int ret; |
| u32 buf[64]; |
| unsigned int i, c, left, val, offset = addr & 0xff; |
| |
| if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) |
| return -EINVAL; |
| |
| val = swab32(addr) | SF_PROG_PAGE; |
| |
| if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || |
| (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) |
| goto unlock; |
| |
| for (left = n; left; left -= c) { |
| c = min(left, 4U); |
| for (val = 0, i = 0; i < c; ++i) |
| val = (val << 8) + *data++; |
| |
| ret = sf1_write(adapter, c, c != left, 1, val); |
| if (ret) |
| goto unlock; |
| } |
| ret = flash_wait_op(adapter, 8, 1); |
| if (ret) |
| goto unlock; |
| |
| t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ |
| |
| /* Read the page to verify the write succeeded */ |
| ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); |
| if (ret) |
| return ret; |
| |
| if (memcmp(data - n, (u8 *)buf + offset, n)) { |
| dev_err(adapter->pdev_dev, |
| "failed to correctly write the flash page at %#x\n", |
| addr); |
| return -EIO; |
| } |
| return 0; |
| |
| unlock: |
| t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ |
| return ret; |
| } |
| |
| /** |
| * t4_get_fw_version - read the firmware version |
| * @adapter: the adapter |
| * @vers: where to place the version |
| * |
| * Reads the FW version from flash. |
| */ |
| int t4_get_fw_version(struct adapter *adapter, u32 *vers) |
| { |
| return t4_read_flash(adapter, FLASH_FW_START + |
| offsetof(struct fw_hdr, fw_ver), 1, |
| vers, 0); |
| } |
| |
| /** |
| * t4_get_tp_version - read the TP microcode version |
| * @adapter: the adapter |
| * @vers: where to place the version |
| * |
| * Reads the TP microcode version from flash. |
| */ |
| int t4_get_tp_version(struct adapter *adapter, u32 *vers) |
| { |
| return t4_read_flash(adapter, FLASH_FW_START + |
| offsetof(struct fw_hdr, tp_microcode_ver), |
| 1, vers, 0); |
| } |
| |
| /** |
| * t4_get_exprom_version - return the Expansion ROM version (if any) |
| * @adapter: the adapter |
| * @vers: where to place the version |
| * |
| * Reads the Expansion ROM header from FLASH and returns the version |
| * number (if present) through the @vers return value pointer. We return |
| * this in the Firmware Version Format since it's convenient. Return |
| * 0 on success, -ENOENT if no Expansion ROM is present. |
| */ |
| int t4_get_exprom_version(struct adapter *adap, u32 *vers) |
| { |
| struct exprom_header { |
| unsigned char hdr_arr[16]; /* must start with 0x55aa */ |
| unsigned char hdr_ver[4]; /* Expansion ROM version */ |
| } *hdr; |
| u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), |
| sizeof(u32))]; |
| int ret; |
| |
| ret = t4_read_flash(adap, FLASH_EXP_ROM_START, |
| ARRAY_SIZE(exprom_header_buf), exprom_header_buf, |
| 0); |
| if (ret) |
| return ret; |
| |
| hdr = (struct exprom_header *)exprom_header_buf; |
| if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) |
| return -ENOENT; |
| |
| *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | |
| FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | |
| FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | |
| FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); |
| return 0; |
| } |
| |
| /* Is the given firmware API compatible with the one the driver was compiled |
| * with? |
| */ |
| static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) |
| { |
| |
| /* short circuit if it's the exact same firmware version */ |
| if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) |
| return 1; |
| |
| #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) |
| if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && |
| SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) |
| return 1; |
| #undef SAME_INTF |
| |
| return 0; |
| } |
| |
| /* The firmware in the filesystem is usable, but should it be installed? |
| * This routine explains itself in detail if it indicates the filesystem |
| * firmware should be installed. |
| */ |
| static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, |
| int k, int c) |
| { |
| const char *reason; |
| |
| if (!card_fw_usable) { |
| reason = "incompatible or unusable"; |
| goto install; |
| } |
| |
| if (k > c) { |
| reason = "older than the version supported with this driver"; |
| goto install; |
| } |
| |
| return 0; |
| |
| install: |
| dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " |
| "installing firmware %u.%u.%u.%u on card.\n", |
| FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), |
| FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, |
| FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), |
| FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); |
| |
| return 1; |
| } |
| |
| int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, |
| const u8 *fw_data, unsigned int fw_size, |
| struct fw_hdr *card_fw, enum dev_state state, |
| int *reset) |
| { |
| int ret, card_fw_usable, fs_fw_usable; |
| const struct fw_hdr *fs_fw; |
| const struct fw_hdr *drv_fw; |
| |
| drv_fw = &fw_info->fw_hdr; |
| |
| /* Read the header of the firmware on the card */ |
| ret = -t4_read_flash(adap, FLASH_FW_START, |
| sizeof(*card_fw) / sizeof(uint32_t), |
| (uint32_t *)card_fw, 1); |
| if (ret == 0) { |
| card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); |
| } else { |
| dev_err(adap->pdev_dev, |
| "Unable to read card's firmware header: %d\n", ret); |
| card_fw_usable = 0; |
| } |
| |
| if (fw_data != NULL) { |
| fs_fw = (const void *)fw_data; |
| fs_fw_usable = fw_compatible(drv_fw, fs_fw); |
| } else { |
| fs_fw = NULL; |
| fs_fw_usable = 0; |
| } |
| |
| if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && |
| (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { |
| /* Common case: the firmware on the card is an exact match and |
| * the filesystem one is an exact match too, or the filesystem |
| * one is absent/incompatible. |
| */ |
| } else if (fs_fw_usable && state == DEV_STATE_UNINIT && |
| should_install_fs_fw(adap, card_fw_usable, |
| be32_to_cpu(fs_fw->fw_ver), |
| be32_to_cpu(card_fw->fw_ver))) { |
| ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, |
| fw_size, 0); |
| if (ret != 0) { |
| dev_err(adap->pdev_dev, |
| "failed to install firmware: %d\n", ret); |
| goto bye; |
| } |
| |
| /* Installed successfully, update the cached header too. */ |
| memcpy(card_fw, fs_fw, sizeof(*card_fw)); |
| card_fw_usable = 1; |
| *reset = 0; /* already reset as part of load_fw */ |
| } |
| |
| if (!card_fw_usable) { |
| uint32_t d, c, k; |
| |
| d = be32_to_cpu(drv_fw->fw_ver); |
| c = be32_to_cpu(card_fw->fw_ver); |
| k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; |
| |
| dev_err(adap->pdev_dev, "Cannot find a usable firmware: " |
| "chip state %d, " |
| "driver compiled with %d.%d.%d.%d, " |
| "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", |
| state, |
| FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), |
| FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), |
| FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), |
| FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), |
| FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), |
| FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); |
| ret = EINVAL; |
| goto bye; |
| } |
| |
| /* We're using whatever's on the card and it's known to be good. */ |
| adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); |
| adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); |
| |
| bye: |
| return ret; |
| } |
| |
| /** |
| * t4_flash_erase_sectors - erase a range of flash sectors |
| * @adapter: the adapter |
| * @start: the first sector to erase |
| * @end: the last sector to erase |
| * |
| * Erases the sectors in the given inclusive range. |
| */ |
| static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) |
| { |
| int ret = 0; |
| |
| if (end >= adapter->params.sf_nsec) |
| return -EINVAL; |
| |
| while (start <= end) { |
| if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || |
| (ret = sf1_write(adapter, 4, 0, 1, |
| SF_ERASE_SECTOR | (start << 8))) != 0 || |
| (ret = flash_wait_op(adapter, 14, 500)) != 0) { |
| dev_err(adapter->pdev_dev, |
| "erase of flash sector %d failed, error %d\n", |
| start, ret); |
| break; |
| } |
| start++; |
| } |
| t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ |
| return ret; |
| } |
| |
| /** |
| * t4_flash_cfg_addr - return the address of the flash configuration file |
| * @adapter: the adapter |
| * |
| * Return the address within the flash where the Firmware Configuration |
| * File is stored. |
| */ |
| unsigned int t4_flash_cfg_addr(struct adapter *adapter) |
| { |
| if (adapter->params.sf_size == 0x100000) |
| return FLASH_FPGA_CFG_START; |
| else |
| return FLASH_CFG_START; |
| } |
| |
| /* Return TRUE if the specified firmware matches the adapter. I.e. T4 |
| * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead |
| * and emit an error message for mismatched firmware to save our caller the |
| * effort ... |
| */ |
| static bool t4_fw_matches_chip(const struct adapter *adap, |
| const struct fw_hdr *hdr) |
| { |
| /* The expression below will return FALSE for any unsupported adapter |
| * which will keep us "honest" in the future ... |
| */ |
| if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || |
| (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5)) |
| return true; |
| |
| dev_err(adap->pdev_dev, |
| "FW image (%d) is not suitable for this adapter (%d)\n", |
| hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); |
| return false; |
| } |
| |
| /** |
| * t4_load_fw - download firmware |
| * @adap: the adapter |
| * @fw_data: the firmware image to write |
| * @size: image size |
| * |
| * Write the supplied firmware image to the card's serial flash. |
| */ |
| int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) |
| { |
| u32 csum; |
| int ret, addr; |
| unsigned int i; |
| u8 first_page[SF_PAGE_SIZE]; |
| const __be32 *p = (const __be32 *)fw_data; |
| const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; |
| unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; |
| unsigned int fw_img_start = adap->params.sf_fw_start; |
| unsigned int fw_start_sec = fw_img_start / sf_sec_size; |
| |
| if (!size) { |
| dev_err(adap->pdev_dev, "FW image has no data\n"); |
| return -EINVAL; |
| } |
| if (size & 511) { |
| dev_err(adap->pdev_dev, |
| "FW image size not multiple of 512 bytes\n"); |
| return -EINVAL; |
| } |
| if (ntohs(hdr->len512) * 512 != size) { |
| dev_err(adap->pdev_dev, |
| "FW image size differs from size in FW header\n"); |
| return -EINVAL; |
| } |
| if (size > FW_MAX_SIZE) { |
| dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", |
| FW_MAX_SIZE); |
| return -EFBIG; |
| } |
| if (!t4_fw_matches_chip(adap, hdr)) |
| return -EINVAL; |
| |
| for (csum = 0, i = 0; i < size / sizeof(csum); i++) |
| csum += ntohl(p[i]); |
| |
| if (csum != 0xffffffff) { |
| dev_err(adap->pdev_dev, |
| "corrupted firmware image, checksum %#x\n", csum); |
| return -EINVAL; |
| } |
| |
| i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ |
| ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); |
| if (ret) |
| goto out; |
| |
| /* |
| * We write the correct version at the end so the driver can see a bad |
| * version if the FW write fails. Start by writing a copy of the |
| * first page with a bad version. |
| */ |
| memcpy(first_page, fw_data, SF_PAGE_SIZE); |
| ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff); |
| ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); |
| if (ret) |
| goto out; |
| |
| addr = fw_img_start; |
| for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { |
| addr += SF_PAGE_SIZE; |
| fw_data += SF_PAGE_SIZE; |
| ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); |
| if (ret) |
| goto out; |
| } |
| |
| ret = t4_write_flash(adap, |
| fw_img_start + offsetof(struct fw_hdr, fw_ver), |
| sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); |
| out: |
| if (ret) |
| dev_err(adap->pdev_dev, "firmware download failed, error %d\n", |
| ret); |
| else |
| ret = t4_get_fw_version(adap, &adap->params.fw_vers); |
| return ret; |
| } |
| |
| /** |
| * t4_fwcache - firmware cache operation |
| * @adap: the adapter |
| * @op : the operation (flush or flush and invalidate) |
| */ |
| int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) |
| { |
| struct fw_params_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = |
| cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | |
| FW_CMD_REQUEST_F | FW_CMD_WRITE_F | |
| FW_PARAMS_CMD_PFN_V(adap->fn) | |
| FW_PARAMS_CMD_VFN_V(0)); |
| c.retval_len16 = cpu_to_be32(FW_LEN16(c)); |
| c.param[0].mnem = |
| cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); |
| c.param[0].val = (__force __be32)op; |
| |
| return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); |
| } |
| |
| void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) |
| { |
| unsigned int i, j; |
| |
| for (i = 0; i < 8; i++) { |
| u32 *p = la_buf + i; |
| |
| t4_write_reg(adap, ULP_RX_LA_CTL_A, i); |
| j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); |
| t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); |
| for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) |
| *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); |
| } |
| } |
| |
| #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ |
| FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \ |
| FW_PORT_CAP_ANEG) |
| |
| /** |
| * t4_link_start - apply link configuration to MAC/PHY |
| * @phy: the PHY to setup |
| * @mac: the MAC to setup |
| * @lc: the requested link configuration |
| * |
| * Set up a port's MAC and PHY according to a desired link configuration. |
| * - If the PHY can auto-negotiate first decide what to advertise, then |
| * enable/disable auto-negotiation as desired, and reset. |
| * - If the PHY does not auto-negotiate just reset it. |
| * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, |
| * otherwise do it later based on the outcome of auto-negotiation. |
| */ |
| int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port, |
| struct link_config *lc) |
| { |
| struct fw_port_cmd c; |
| unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO); |
| |
| lc->link_ok = 0; |
| if (lc->requested_fc & PAUSE_RX) |
| fc |= FW_PORT_CAP_FC_RX; |
| if (lc->requested_fc & PAUSE_TX) |
| fc |= FW_PORT_CAP_FC_TX; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port)); |
| c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | |
| FW_LEN16(c)); |
| |
| if (!(lc->supported & FW_PORT_CAP_ANEG)) { |
| c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc); |
| lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); |
| } else if (lc->autoneg == AUTONEG_DISABLE) { |
| c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi); |
| lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); |
| } else |
| c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi); |
| |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_restart_aneg - restart autonegotiation |
| * @adap: the adapter |
| * @mbox: mbox to use for the FW command |
| * @port: the port id |
| * |
| * Restarts autonegotiation for the selected port. |
| */ |
| int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) |
| { |
| struct fw_port_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port)); |
| c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | |
| FW_LEN16(c)); |
| c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| typedef void (*int_handler_t)(struct adapter *adap); |
| |
| struct intr_info { |
| unsigned int mask; /* bits to check in interrupt status */ |
| const char *msg; /* message to print or NULL */ |
| short stat_idx; /* stat counter to increment or -1 */ |
| unsigned short fatal; /* whether the condition reported is fatal */ |
| int_handler_t int_handler; /* platform-specific int handler */ |
| }; |
| |
| /** |
| * t4_handle_intr_status - table driven interrupt handler |
| * @adapter: the adapter that generated the interrupt |
| * @reg: the interrupt status register to process |
| * @acts: table of interrupt actions |
| * |
| * A table driven interrupt handler that applies a set of masks to an |
| * interrupt status word and performs the corresponding actions if the |
| * interrupts described by the mask have occurred. The actions include |
| * optionally emitting a warning or alert message. The table is terminated |
| * by an entry specifying mask 0. Returns the number of fatal interrupt |
| * conditions. |
| */ |
| static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, |
| const struct intr_info *acts) |
| { |
| int fatal = 0; |
| unsigned int mask = 0; |
| unsigned int status = t4_read_reg(adapter, reg); |
| |
| for ( ; acts->mask; ++acts) { |
| if (!(status & acts->mask)) |
| continue; |
| if (acts->fatal) { |
| fatal++; |
| dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, |
| status & acts->mask); |
| } else if (acts->msg && printk_ratelimit()) |
| dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, |
| status & acts->mask); |
| if (acts->int_handler) |
| acts->int_handler(adapter); |
| mask |= acts->mask; |
| } |
| status &= mask; |
| if (status) /* clear processed interrupts */ |
| t4_write_reg(adapter, reg, status); |
| return fatal; |
| } |
| |
| /* |
| * Interrupt handler for the PCIE module. |
| */ |
| static void pcie_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info sysbus_intr_info[] = { |
| { RNPP_F, "RXNP array parity error", -1, 1 }, |
| { RPCP_F, "RXPC array parity error", -1, 1 }, |
| { RCIP_F, "RXCIF array parity error", -1, 1 }, |
| { RCCP_F, "Rx completions control array parity error", -1, 1 }, |
| { RFTP_F, "RXFT array parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info pcie_port_intr_info[] = { |
| { TPCP_F, "TXPC array parity error", -1, 1 }, |
| { TNPP_F, "TXNP array parity error", -1, 1 }, |
| { TFTP_F, "TXFT array parity error", -1, 1 }, |
| { TCAP_F, "TXCA array parity error", -1, 1 }, |
| { TCIP_F, "TXCIF array parity error", -1, 1 }, |
| { RCAP_F, "RXCA array parity error", -1, 1 }, |
| { OTDD_F, "outbound request TLP discarded", -1, 1 }, |
| { RDPE_F, "Rx data parity error", -1, 1 }, |
| { TDUE_F, "Tx uncorrectable data error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info pcie_intr_info[] = { |
| { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, |
| { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, |
| { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, |
| { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, |
| { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, |
| { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, |
| { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, |
| { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, |
| { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, |
| { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, |
| { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, |
| { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, |
| { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, |
| { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, |
| { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, |
| { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, |
| { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, |
| { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, |
| { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, |
| { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, |
| { FIDPERR_F, "PCI FID parity error", -1, 1 }, |
| { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, |
| { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, |
| { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, |
| { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, |
| { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, |
| { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, |
| { PCIESINT_F, "PCI core secondary fault", -1, 1 }, |
| { PCIEPINT_F, "PCI core primary fault", -1, 1 }, |
| { UNXSPLCPLERR_F, "PCI unexpected split completion error", |
| -1, 0 }, |
| { 0 } |
| }; |
| |
| static struct intr_info t5_pcie_intr_info[] = { |
| { MSTGRPPERR_F, "Master Response Read Queue parity error", |
| -1, 1 }, |
| { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, |
| { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, |
| { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, |
| { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, |
| { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, |
| { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, |
| { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", |
| -1, 1 }, |
| { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", |
| -1, 1 }, |
| { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, |
| { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, |
| { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, |
| { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, |
| { DREQWRPERR_F, "PCI DMA channel write request parity error", |
| -1, 1 }, |
| { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, |
| { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, |
| { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, |
| { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, |
| { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, |
| { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, |
| { FIDPERR_F, "PCI FID parity error", -1, 1 }, |
| { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, |
| { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, |
| { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, |
| { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", |
| -1, 1 }, |
| { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", |
| -1, 1 }, |
| { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, |
| { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, |
| { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, |
| { READRSPERR_F, "Outbound read error", -1, 0 }, |
| { 0 } |
| }; |
| |
| int fat; |
| |
| if (is_t4(adapter->params.chip)) |
| fat = t4_handle_intr_status(adapter, |
| PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, |
| sysbus_intr_info) + |
| t4_handle_intr_status(adapter, |
| PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, |
| pcie_port_intr_info) + |
| t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, |
| pcie_intr_info); |
| else |
| fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, |
| t5_pcie_intr_info); |
| |
| if (fat) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * TP interrupt handler. |
| */ |
| static void tp_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info tp_intr_info[] = { |
| { 0x3fffffff, "TP parity error", -1, 1 }, |
| { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * SGE interrupt handler. |
| */ |
| static void sge_intr_handler(struct adapter *adapter) |
| { |
| u64 v; |
| |
| static const struct intr_info sge_intr_info[] = { |
| { ERR_CPL_EXCEED_IQE_SIZE_F, |
| "SGE received CPL exceeding IQE size", -1, 1 }, |
| { ERR_INVALID_CIDX_INC_F, |
| "SGE GTS CIDX increment too large", -1, 0 }, |
| { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, |
| { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, |
| { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, |
| { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, |
| { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, |
| "SGE IQID > 1023 received CPL for FL", -1, 0 }, |
| { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, |
| 0 }, |
| { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, |
| 0 }, |
| { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, |
| 0 }, |
| { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, |
| 0 }, |
| { ERR_ING_CTXT_PRIO_F, |
| "SGE too many priority ingress contexts", -1, 0 }, |
| { ERR_EGR_CTXT_PRIO_F, |
| "SGE too many priority egress contexts", -1, 0 }, |
| { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, |
| { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, |
| { 0 } |
| }; |
| |
| v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | |
| ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); |
| if (v) { |
| dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", |
| (unsigned long long)v); |
| t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); |
| t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); |
| } |
| |
| if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info) || |
| v != 0) |
| t4_fatal_err(adapter); |
| } |
| |
| #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ |
| OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) |
| #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ |
| IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) |
| |
| /* |
| * CIM interrupt handler. |
| */ |
| static void cim_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info cim_intr_info[] = { |
| { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, |
| { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, |
| { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, |
| { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, |
| { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, |
| { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, |
| { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info cim_upintr_info[] = { |
| { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, |
| { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, |
| { ILLWRINT_F, "CIM illegal write", -1, 1 }, |
| { ILLRDINT_F, "CIM illegal read", -1, 1 }, |
| { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, |
| { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, |
| { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, |
| { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, |
| { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, |
| { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, |
| { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, |
| { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, |
| { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, |
| { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, |
| { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, |
| { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, |
| { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, |
| { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, |
| { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, |
| { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, |
| { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, |
| { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, |
| { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, |
| { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, |
| { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, |
| { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, |
| { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, |
| { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, |
| { 0 } |
| }; |
| |
| int fat; |
| |
| if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F) |
| t4_report_fw_error(adapter); |
| |
| fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, |
| cim_intr_info) + |
| t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, |
| cim_upintr_info); |
| if (fat) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * ULP RX interrupt handler. |
| */ |
| static void ulprx_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info ulprx_intr_info[] = { |
| { 0x1800000, "ULPRX context error", -1, 1 }, |
| { 0x7fffff, "ULPRX parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * ULP TX interrupt handler. |
| */ |
| static void ulptx_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info ulptx_intr_info[] = { |
| { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, |
| 0 }, |
| { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, |
| 0 }, |
| { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, |
| 0 }, |
| { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, |
| 0 }, |
| { 0xfffffff, "ULPTX parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * PM TX interrupt handler. |
| */ |
| static void pmtx_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info pmtx_intr_info[] = { |
| { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, |
| { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, |
| { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, |
| { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, |
| { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, |
| { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, |
| { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", |
| -1, 1 }, |
| { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, |
| { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * PM RX interrupt handler. |
| */ |
| static void pmrx_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info pmrx_intr_info[] = { |
| { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, |
| { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, |
| { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, |
| { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", |
| -1, 1 }, |
| { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, |
| { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * CPL switch interrupt handler. |
| */ |
| static void cplsw_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info cplsw_intr_info[] = { |
| { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, |
| { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, |
| { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, |
| { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, |
| { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, |
| { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * LE interrupt handler. |
| */ |
| static void le_intr_handler(struct adapter *adap) |
| { |
| static const struct intr_info le_intr_info[] = { |
| { LIPMISS_F, "LE LIP miss", -1, 0 }, |
| { LIP0_F, "LE 0 LIP error", -1, 0 }, |
| { PARITYERR_F, "LE parity error", -1, 1 }, |
| { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, |
| { REQQPARERR_F, "LE request queue parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, le_intr_info)) |
| t4_fatal_err(adap); |
| } |
| |
| /* |
| * MPS interrupt handler. |
| */ |
| static void mps_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info mps_rx_intr_info[] = { |
| { 0xffffff, "MPS Rx parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info mps_tx_intr_info[] = { |
| { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, |
| { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, |
| { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", |
| -1, 1 }, |
| { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", |
| -1, 1 }, |
| { BUBBLE_F, "MPS Tx underflow", -1, 1 }, |
| { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, |
| { FRMERR_F, "MPS Tx framing error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info mps_trc_intr_info[] = { |
| { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, |
| { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", |
| -1, 1 }, |
| { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info mps_stat_sram_intr_info[] = { |
| { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info mps_stat_tx_intr_info[] = { |
| { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info mps_stat_rx_intr_info[] = { |
| { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info mps_cls_intr_info[] = { |
| { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, |
| { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, |
| { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| int fat; |
| |
| fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, |
| mps_rx_intr_info) + |
| t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, |
| mps_tx_intr_info) + |
| t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, |
| mps_trc_intr_info) + |
| t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, |
| mps_stat_sram_intr_info) + |
| t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, |
| mps_stat_tx_intr_info) + |
| t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, |
| mps_stat_rx_intr_info) + |
| t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, |
| mps_cls_intr_info); |
| |
| t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); |
| t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ |
| if (fat) |
| t4_fatal_err(adapter); |
| } |
| |
| #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ |
| ECC_UE_INT_CAUSE_F) |
| |
| /* |
| * EDC/MC interrupt handler. |
| */ |
| static void mem_intr_handler(struct adapter *adapter, int idx) |
| { |
| static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; |
| |
| unsigned int addr, cnt_addr, v; |
| |
| if (idx <= MEM_EDC1) { |
| addr = EDC_REG(EDC_INT_CAUSE_A, idx); |
| cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); |
| } else if (idx == MEM_MC) { |
| if (is_t4(adapter->params.chip)) { |
| addr = MC_INT_CAUSE_A; |
| cnt_addr = MC_ECC_STATUS_A; |
| } else { |
| addr = MC_P_INT_CAUSE_A; |
| cnt_addr = MC_P_ECC_STATUS_A; |
| } |
| } else { |
| addr = MC_REG(MC_P_INT_CAUSE_A, 1); |
| cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); |
| } |
| |
| v = t4_read_reg(adapter, addr) & MEM_INT_MASK; |
| if (v & PERR_INT_CAUSE_F) |
| dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", |
| name[idx]); |
| if (v & ECC_CE_INT_CAUSE_F) { |
| u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); |
| |
| t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); |
| if (printk_ratelimit()) |
| dev_warn(adapter->pdev_dev, |
| "%u %s correctable ECC data error%s\n", |
| cnt, name[idx], cnt > 1 ? "s" : ""); |
| } |
| if (v & ECC_UE_INT_CAUSE_F) |
| dev_alert(adapter->pdev_dev, |
| "%s uncorrectable ECC data error\n", name[idx]); |
| |
| t4_write_reg(adapter, addr, v); |
| if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * MA interrupt handler. |
| */ |
| static void ma_intr_handler(struct adapter *adap) |
| { |
| u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); |
| |
| if (status & MEM_PERR_INT_CAUSE_F) { |
| dev_alert(adap->pdev_dev, |
| "MA parity error, parity status %#x\n", |
| t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); |
| if (is_t5(adap->params.chip)) |
| dev_alert(adap->pdev_dev, |
| "MA parity error, parity status %#x\n", |
| t4_read_reg(adap, |
| MA_PARITY_ERROR_STATUS2_A)); |
| } |
| if (status & MEM_WRAP_INT_CAUSE_F) { |
| v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); |
| dev_alert(adap->pdev_dev, "MA address wrap-around error by " |
| "client %u to address %#x\n", |
| MEM_WRAP_CLIENT_NUM_G(v), |
| MEM_WRAP_ADDRESS_G(v) << 4); |
| } |
| t4_write_reg(adap, MA_INT_CAUSE_A, status); |
| t4_fatal_err(adap); |
| } |
| |
| /* |
| * SMB interrupt handler. |
| */ |
| static void smb_intr_handler(struct adapter *adap) |
| { |
| static const struct intr_info smb_intr_info[] = { |
| { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, |
| { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, |
| { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) |
| t4_fatal_err(adap); |
| } |
| |
| /* |
| * NC-SI interrupt handler. |
| */ |
| static void ncsi_intr_handler(struct adapter *adap) |
| { |
| static const struct intr_info ncsi_intr_info[] = { |
| { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, |
| { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, |
| { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, |
| { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) |
| t4_fatal_err(adap); |
| } |
| |
| /* |
| * XGMAC interrupt handler. |
| */ |
| static void xgmac_intr_handler(struct adapter *adap, int port) |
| { |
| u32 v, int_cause_reg; |
| |
| if (is_t4(adap->params.chip)) |
| int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); |
| else |
| int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); |
| |
| v = t4_read_reg(adap, int_cause_reg); |
| |
| v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; |
| if (!v) |
| return; |
| |
| if (v & TXFIFO_PRTY_ERR_F) |
| dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", |
| port); |
| if (v & RXFIFO_PRTY_ERR_F) |
| dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", |
| port); |
| t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); |
| t4_fatal_err(adap); |
| } |
| |
| /* |
| * PL interrupt handler. |
| */ |
| static void pl_intr_handler(struct adapter *adap) |
| { |
| static const struct intr_info pl_intr_info[] = { |
| { FATALPERR_F, "T4 fatal parity error", -1, 1 }, |
| { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) |
| t4_fatal_err(adap); |
| } |
| |
| #define PF_INTR_MASK (PFSW_F) |
| #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ |
| EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ |
| CPL_SWITCH_F | SGE_F | ULP_TX_F) |
| |
| /** |
| * t4_slow_intr_handler - control path interrupt handler |
| * @adapter: the adapter |
| * |
| * T4 interrupt handler for non-data global interrupt events, e.g., errors. |
| * The designation 'slow' is because it involves register reads, while |
| * data interrupts typically don't involve any MMIOs. |
| */ |
| int t4_slow_intr_handler(struct adapter *adapter) |
| { |
| u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); |
| |
| if (!(cause & GLBL_INTR_MASK)) |
| return 0; |
| if (cause & CIM_F) |
| cim_intr_handler(adapter); |
| if (cause & MPS_F) |
| mps_intr_handler(adapter); |
| if (cause & NCSI_F) |
| ncsi_intr_handler(adapter); |
| if (cause & PL_F) |
| pl_intr_handler(adapter); |
| if (cause & SMB_F) |
| smb_intr_handler(adapter); |
| if (cause & XGMAC0_F) |
| xgmac_intr_handler(adapter, 0); |
| if (cause & XGMAC1_F) |
| xgmac_intr_handler(adapter, 1); |
| if (cause & XGMAC_KR0_F) |
| xgmac_intr_handler(adapter, 2); |
| if (cause & XGMAC_KR1_F) |
| xgmac_intr_handler(adapter, 3); |
| if (cause & PCIE_F) |
| pcie_intr_handler(adapter); |
| if (cause & MC_F) |
| mem_intr_handler(adapter, MEM_MC); |
| if (!is_t4(adapter->params.chip) && (cause & MC1_S)) |
| mem_intr_handler(adapter, MEM_MC1); |
| if (cause & EDC0_F) |
| mem_intr_handler(adapter, MEM_EDC0); |
| if (cause & EDC1_F) |
| mem_intr_handler(adapter, MEM_EDC1); |
| if (cause & LE_F) |
| le_intr_handler(adapter); |
| if (cause & TP_F) |
| tp_intr_handler(adapter); |
| if (cause & MA_F) |
| ma_intr_handler(adapter); |
| if (cause & PM_TX_F) |
| pmtx_intr_handler(adapter); |
| if (cause & PM_RX_F) |
| pmrx_intr_handler(adapter); |
| if (cause & ULP_RX_F) |
| ulprx_intr_handler(adapter); |
| if (cause & CPL_SWITCH_F) |
| cplsw_intr_handler(adapter); |
| if (cause & SGE_F) |
| sge_intr_handler(adapter); |
| if (cause & ULP_TX_F) |
| ulptx_intr_handler(adapter); |
| |
| /* Clear the interrupts just processed for which we are the master. */ |
| t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); |
| (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ |
| return 1; |
| } |
| |
| /** |
| * t4_intr_enable - enable interrupts |
| * @adapter: the adapter whose interrupts should be enabled |
| * |
| * Enable PF-specific interrupts for the calling function and the top-level |
| * interrupt concentrator for global interrupts. Interrupts are already |
| * enabled at each module, here we just enable the roots of the interrupt |
| * hierarchies. |
| * |
| * Note: this function should be called only when the driver manages |
| * non PF-specific interrupts from the various HW modules. Only one PCI |
| * function at a time should be doing this. |
| */ |
| void t4_intr_enable(struct adapter *adapter) |
| { |
| u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A)); |
| |
| t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | |
| ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | |
| ERR_DROPPED_DB_F | ERR_DATA_CPL_ON_HIGH_QID1_F | |
| ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | |
| ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | |
| ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | |
| ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F | |
| DBFIFO_HP_INT_F | DBFIFO_LP_INT_F | |
| EGRESS_SIZE_ERR_F); |
| t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); |
| t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); |
| } |
| |
| /** |
| * t4_intr_disable - disable interrupts |
| * @adapter: the adapter whose interrupts should be disabled |
| * |
| * Disable interrupts. We only disable the top-level interrupt |
| * concentrators. The caller must be a PCI function managing global |
| * interrupts. |
| */ |
| void t4_intr_disable(struct adapter *adapter) |
| { |
| u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A)); |
| |
| t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); |
| t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); |
| } |
| |
| /** |
| * hash_mac_addr - return the hash value of a MAC address |
| * @addr: the 48-bit Ethernet MAC address |
| * |
| * Hashes a MAC address according to the hash function used by HW inexact |
| * (hash) address matching. |
| */ |
| static int hash_mac_addr(const u8 *addr) |
| { |
| u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; |
| u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; |
| a ^= b; |
| a ^= (a >> 12); |
| a ^= (a >> 6); |
| return a & 0x3f; |
| } |
| |
| /** |
| * t4_config_rss_range - configure a portion of the RSS mapping table |
| * @adapter: the adapter |
| * @mbox: mbox to use for the FW command |
| * @viid: virtual interface whose RSS subtable is to be written |
| * @start: start entry in the table to write |
| * @n: how many table entries to write |
| * @rspq: values for the response queue lookup table |
| * @nrspq: number of values in @rspq |
| * |
| * Programs the selected part of the VI's RSS mapping table with the |
| * provided values. If @nrspq < @n the supplied values are used repeatedly |
| * until the full table range is populated. |
| * |
| * The caller must ensure the values in @rspq are in the range allowed for |
| * @viid. |
| */ |
| int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, |
| int start, int n, const u16 *rspq, unsigned int nrspq) |
| { |
| int ret; |
| const u16 *rsp = rspq; |
| const u16 *rsp_end = rspq + nrspq; |
| struct fw_rss_ind_tbl_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | |
| FW_CMD_REQUEST_F | FW_CMD_WRITE_F | |
| FW_RSS_IND_TBL_CMD_VIID_V(viid)); |
| cmd.retval_len16 = htonl(FW_LEN16(cmd)); |
| |
| /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ |
| while (n > 0) { |
| int nq = min(n, 32); |
| __be32 *qp = &cmd.iq0_to_iq2; |
| |
| cmd.niqid = htons(nq); |
| cmd.startidx = htons(start); |
| |
| start += nq; |
| n -= nq; |
| |
| while (nq > 0) { |
| unsigned int v; |
| |
| v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); |
| if (++rsp >= rsp_end) |
| rsp = rspq; |
| v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); |
| if (++rsp >= rsp_end) |
| rsp = rspq; |
| v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); |
| if (++rsp >= rsp_end) |
| rsp = rspq; |
| |
| *qp++ = htonl(v); |
| nq -= 3; |
| } |
| |
| ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| /** |
| * t4_config_glbl_rss - configure the global RSS mode |
| * @adapter: the adapter |
| * @mbox: mbox to use for the FW command |
| * @mode: global RSS mode |
| * @flags: mode-specific flags |
| * |
| * Sets the global RSS mode. |
| */ |
| int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, |
| unsigned int flags) |
| { |
| struct fw_rss_glb_config_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_write = htonl(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | FW_CMD_WRITE_F); |
| c.retval_len16 = htonl(FW_LEN16(c)); |
| if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { |
| c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); |
| } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { |
| c.u.basicvirtual.mode_pkd = |
| htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); |
| c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags); |
| } else |
| return -EINVAL; |
| return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /* Read an RSS table row */ |
| static int rd_rss_row(struct adapter *adap, int row, u32 *val) |
| { |
| t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); |
| return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, |
| 5, 0, val); |
| } |
| |
| /** |
| * t4_read_rss - read the contents of the RSS mapping table |
| * @adapter: the adapter |
| * @map: holds the contents of the RSS mapping table |
| * |
| * Reads the contents of the RSS hash->queue mapping table. |
| */ |
| int t4_read_rss(struct adapter *adapter, u16 *map) |
| { |
| u32 val; |
| int i, ret; |
| |
| for (i = 0; i < RSS_NENTRIES / 2; ++i) { |
| ret = rd_rss_row(adapter, i, &val); |
| if (ret) |
| return ret; |
| *map++ = LKPTBLQUEUE0_G(val); |
| *map++ = LKPTBLQUEUE1_G(val); |
| } |
| return 0; |
| } |
| |
| /** |
| * t4_read_rss_key - read the global RSS key |
| * @adap: the adapter |
| * @key: 10-entry array holding the 320-bit RSS key |
| * |
| * Reads the global 320-bit RSS key. |
| */ |
| void t4_read_rss_key(struct adapter *adap, u32 *key) |
| { |
| t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, |
| TP_RSS_SECRET_KEY0_A); |
| } |
| |
| /** |
| * t4_write_rss_key - program one of the RSS keys |
| * @adap: the adapter |
| * @key: 10-entry array holding the 320-bit RSS key |
| * @idx: which RSS key to write |
| * |
| * Writes one of the RSS keys with the given 320-bit value. If @idx is |
| * 0..15 the corresponding entry in the RSS key table is written, |
| * otherwise the global RSS key is written. |
| */ |
| void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx) |
| { |
| t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, |
| TP_RSS_SECRET_KEY0_A); |
| if (idx >= 0 && idx < 16) |
| t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, |
| KEYWRADDR_V(idx) | KEYWREN_F); |
| } |
| |
| /** |
| * t4_read_rss_pf_config - read PF RSS Configuration Table |
| * @adapter: the adapter |
| * @index: the entry in the PF RSS table to read |
| * @valp: where to store the returned value |
| * |
| * Reads the PF RSS Configuration Table at the specified index and returns |
| * the value found there. |
| */ |
| void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, |
| u32 *valp) |
| { |
| t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, |
| valp, 1, TP_RSS_PF0_CONFIG_A + index); |
| } |
| |
| /** |
| * t4_read_rss_vf_config - read VF RSS Configuration Table |
| * @adapter: the adapter |
| * @index: the entry in the VF RSS table to read |
| * @vfl: where to store the returned VFL |
| * @vfh: where to store the returned VFH |
| * |
| * Reads the VF RSS Configuration Table at the specified index and returns |
| * the (VFL, VFH) values found there. |
| */ |
| void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, |
| u32 *vfl, u32 *vfh) |
| { |
| u32 vrt, mask, data; |
| |
| mask = VFWRADDR_V(VFWRADDR_M); |
| data = VFWRADDR_V(index); |
| |
| /* Request that the index'th VF Table values be read into VFL/VFH. |
| */ |
| vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); |
| vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); |
| vrt |= data | VFRDEN_F; |
| t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); |
| |
| /* Grab the VFL/VFH values ... |
| */ |
| t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, |
| vfl, 1, TP_RSS_VFL_CONFIG_A); |
| t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, |
| vfh, 1, TP_RSS_VFH_CONFIG_A); |
| } |
| |
| /** |
| * t4_read_rss_pf_map - read PF RSS Map |
| * @adapter: the adapter |
| * |
| * Reads the PF RSS Map register and returns its value. |
| */ |
| u32 t4_read_rss_pf_map(struct adapter *adapter) |
| { |
| u32 pfmap; |
| |
| t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, |
| &pfmap, 1, TP_RSS_PF_MAP_A); |
| return pfmap; |
| } |
| |
| /** |
| * t4_read_rss_pf_mask - read PF RSS Mask |
| * @adapter: the adapter |
| * |
| * Reads the PF RSS Mask register and returns its value. |
| */ |
| u32 t4_read_rss_pf_mask(struct adapter *adapter) |
| { |
| u32 pfmask; |
| |
| t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, |
| &pfmask, 1, TP_RSS_PF_MSK_A); |
| return pfmask; |
| } |
| |
| /** |
| * t4_tp_get_tcp_stats - read TP's TCP MIB counters |
| * @adap: the adapter |
| * @v4: holds the TCP/IP counter values |
| * @v6: holds the TCP/IPv6 counter values |
| * |
| * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. |
| * Either @v4 or @v6 may be %NULL to skip the corresponding stats. |
| */ |
| void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, |
| struct tp_tcp_stats *v6) |
| { |
| u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; |
| |
| #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) |
| #define STAT(x) val[STAT_IDX(x)] |
| #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) |
| |
| if (v4) { |
| t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, |
| ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A); |
| v4->tcpOutRsts = STAT(OUT_RST); |
| v4->tcpInSegs = STAT64(IN_SEG); |
| v4->tcpOutSegs = STAT64(OUT_SEG); |
| v4->tcpRetransSegs = STAT64(RXT_SEG); |
| } |
| if (v6) { |
| t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, |
| ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A); |
| v6->tcpOutRsts = STAT(OUT_RST); |
| v6->tcpInSegs = STAT64(IN_SEG); |
| v6->tcpOutSegs = STAT64(OUT_SEG); |
| v6->tcpRetransSegs = STAT64(RXT_SEG); |
| } |
| #undef STAT64 |
| #undef STAT |
| #undef STAT_IDX |
| } |
| |
| /** |
| * t4_read_mtu_tbl - returns the values in the HW path MTU table |
| * @adap: the adapter |
| * @mtus: where to store the MTU values |
| * @mtu_log: where to store the MTU base-2 log (may be %NULL) |
| * |
| * Reads the HW path MTU table. |
| */ |
| void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) |
| { |
| u32 v; |
| int i; |
| |
| for (i = 0; i < NMTUS; ++i) { |
| t4_write_reg(adap, TP_MTU_TABLE_A, |
| MTUINDEX_V(0xff) | MTUVALUE_V(i)); |
| v = t4_read_reg(adap, TP_MTU_TABLE_A); |
| mtus[i] = MTUVALUE_G(v); |
| if (mtu_log) |
| mtu_log[i] = MTUWIDTH_G(v); |
| } |
| } |
| |
| /** |
| * t4_read_cong_tbl - reads the congestion control table |
| * @adap: the adapter |
| * @incr: where to store the alpha values |
| * |
| * Reads the additive increments programmed into the HW congestion |
| * control table. |
| */ |
| void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) |
| { |
| unsigned int mtu, w; |
| |
| for (mtu = 0; mtu < NMTUS; ++mtu) |
| for (w = 0; w < NCCTRL_WIN; ++w) { |
| t4_write_reg(adap, TP_CCTRL_TABLE_A, |
| ROWINDEX_V(0xffff) | (mtu << 5) | w); |
| incr[mtu][w] = (u16)t4_read_reg(adap, |
| TP_CCTRL_TABLE_A) & 0x1fff; |
| } |
| } |
| |
| /** |
| * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register |
| * @adap: the adapter |
| * @addr: the indirect TP register address |
| * @mask: specifies the field within the register to modify |
| * @val: new value for the field |
| * |
| * Sets a field of an indirect TP register to the given value. |
| */ |
| void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, |
| unsigned int mask, unsigned int val) |
| { |
| t4_write_reg(adap, TP_PIO_ADDR_A, addr); |
| val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; |
| t4_write_reg(adap, TP_PIO_DATA_A, val); |
| } |
| |
| /** |
| * init_cong_ctrl - initialize congestion control parameters |
| * @a: the alpha values for congestion control |
| * @b: the beta values for congestion control |
| * |
| * Initialize the congestion control parameters. |
| */ |
| static void init_cong_ctrl(unsigned short *a, unsigned short *b) |
| { |
| a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; |
| a[9] = 2; |
| a[10] = 3; |
| a[11] = 4; |
| a[12] = 5; |
| a[13] = 6; |
| a[14] = 7; |
| a[15] = 8; |
| a[16] = 9; |
| a[17] = 10; |
| a[18] = 14; |
| a[19] = 17; |
| a[20] = 21; |
| a[21] = 25; |
| a[22] = 30; |
| a[23] = 35; |
| a[24] = 45; |
| a[25] = 60; |
| a[26] = 80; |
| a[27] = 100; |
| a[28] = 200; |
| a[29] = 300; |
| a[30] = 400; |
| a[31] = 500; |
| |
| b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; |
| b[9] = b[10] = 1; |
| b[11] = b[12] = 2; |
| b[13] = b[14] = b[15] = b[16] = 3; |
| b[17] = b[18] = b[19] = b[20] = b[21] = 4; |
| b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; |
| b[28] = b[29] = 6; |
| b[30] = b[31] = 7; |
| } |
| |
| /* The minimum additive increment value for the congestion control table */ |
| #define CC_MIN_INCR 2U |
| |
| /** |
| * t4_load_mtus - write the MTU and congestion control HW tables |
| * @adap: the adapter |
| * @mtus: the values for the MTU table |
| * @alpha: the values for the congestion control alpha parameter |
| * @beta: the values for the congestion control beta parameter |
| * |
| * Write the HW MTU table with the supplied MTUs and the high-speed |
| * congestion control table with the supplied alpha, beta, and MTUs. |
| * We write the two tables together because the additive increments |
| * depend on the MTUs. |
| */ |
| void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, |
| const unsigned short *alpha, const unsigned short *beta) |
| { |
| static const unsigned int avg_pkts[NCCTRL_WIN] = { |
| 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, |
| 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, |
| 28672, 40960, 57344, 81920, 114688, 163840, 229376 |
| }; |
| |
| unsigned int i, w; |
| |
| for (i = 0; i < NMTUS; ++i) { |
| unsigned int mtu = mtus[i]; |
| unsigned int log2 = fls(mtu); |
| |
| if (!(mtu & ((1 << log2) >> 2))) /* round */ |
| log2--; |
| t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | |
| MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); |
| |
| for (w = 0; w < NCCTRL_WIN; ++w) { |
| unsigned int inc; |
| |
| inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], |
| CC_MIN_INCR); |
| |
| t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | |
| (w << 16) | (beta[w] << 13) | inc); |
| } |
| } |
| } |
| |
| /** |
| * t4_pmtx_get_stats - returns the HW stats from PMTX |
| * @adap: the adapter |
| * @cnt: where to store the count statistics |
| * @cycles: where to store the cycle statistics |
| * |
| * Returns performance statistics from PMTX. |
| */ |
| void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) |
| { |
| int i; |
| u32 data[2]; |
| |
| for (i = 0; i < PM_NSTATS; i++) { |
| t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); |
| cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); |
| if (is_t4(adap->params.chip)) { |
| cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); |
| } else { |
| t4_read_indirect(adap, PM_TX_DBG_CTRL_A, |
| PM_TX_DBG_DATA_A, data, 2, |
| PM_TX_DBG_STAT_MSB_A); |
| cycles[i] = (((u64)data[0] << 32) | data[1]); |
| } |
| } |
| } |
| |
| /** |
| * t4_pmrx_get_stats - returns the HW stats from PMRX |
| * @adap: the adapter |
| * @cnt: where to store the count statistics |
| * @cycles: where to store the cycle statistics |
| * |
| * Returns performance statistics from PMRX. |
| */ |
| void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) |
| { |
| int i; |
| u32 data[2]; |
| |
| for (i = 0; i < PM_NSTATS; i++) { |
| t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); |
| cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); |
| if (is_t4(adap->params.chip)) { |
| cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); |
| } else { |
| t4_read_indirect(adap, PM_RX_DBG_CTRL_A, |
| PM_RX_DBG_DATA_A, data, 2, |
| PM_RX_DBG_STAT_MSB_A); |
| cycles[i] = (((u64)data[0] << 32) | data[1]); |
| } |
| } |
| } |
| |
| /** |
| * get_mps_bg_map - return the buffer groups associated with a port |
| * @adap: the adapter |
| * @idx: the port index |
| * |
| * Returns a bitmap indicating which MPS buffer groups are associated |
| * with the given port. Bit i is set if buffer group i is used by the |
| * port. |
| */ |
| static unsigned int get_mps_bg_map(struct adapter *adap, int idx) |
| { |
| u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); |
| |
| if (n == 0) |
| return idx == 0 ? 0xf : 0; |
| if (n == 1) |
| return idx < 2 ? (3 << (2 * idx)) : 0; |
| return 1 << idx; |
| } |
| |
| /** |
| * t4_get_port_type_description - return Port Type string description |
| * @port_type: firmware Port Type enumeration |
| */ |
| const char *t4_get_port_type_description(enum fw_port_type port_type) |
| { |
| static const char *const port_type_description[] = { |
| "R XFI", |
| "R XAUI", |
| "T SGMII", |
| "T XFI", |
| "T XAUI", |
| "KX4", |
| "CX4", |
| "KX", |
| "KR", |
| "R SFP+", |
| "KR/KX", |
| "KR/KX/KX4", |
| "R QSFP_10G", |
| "R QSA", |
| "R QSFP", |
| "R BP40_BA", |
| }; |
| |
| if (port_type < ARRAY_SIZE(port_type_description)) |
| return port_type_description[port_type]; |
| return "UNKNOWN"; |
| } |
| |
| /** |
| * t4_get_port_stats - collect port statistics |
| * @adap: the adapter |
| * @idx: the port index |
| * @p: the stats structure to fill |
| * |
| * Collect statistics related to the given port from HW. |
| */ |
| void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) |
| { |
| u32 bgmap = get_mps_bg_map(adap, idx); |
| |
| #define GET_STAT(name) \ |
| t4_read_reg64(adap, \ |
| (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ |
| T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) |
| #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) |
| |
| p->tx_octets = GET_STAT(TX_PORT_BYTES); |
| p->tx_frames = GET_STAT(TX_PORT_FRAMES); |
| p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); |
| p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); |
| p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); |
| p->tx_error_frames = GET_STAT(TX_PORT_ERROR); |
| p->tx_frames_64 = GET_STAT(TX_PORT_64B); |
| p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); |
| p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); |
| p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); |
| p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); |
| p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); |
| p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); |
| p->tx_drop = GET_STAT(TX_PORT_DROP); |
| p->tx_pause = GET_STAT(TX_PORT_PAUSE); |
| p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); |
| p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); |
| p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); |
| p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); |
| p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); |
| p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); |
| p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); |
| p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); |
| |
| p->rx_octets = GET_STAT(RX_PORT_BYTES); |
| p->rx_frames = GET_STAT(RX_PORT_FRAMES); |
| p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); |
| p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); |
| p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); |
| p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); |
| p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); |
| p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); |
| p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); |
| p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); |
| p->rx_runt = GET_STAT(RX_PORT_LESS_64B); |
| p->rx_frames_64 = GET_STAT(RX_PORT_64B); |
| p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); |
| p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); |
| p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); |
| p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); |
| p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); |
| p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); |
| p->rx_pause = GET_STAT(RX_PORT_PAUSE); |
| p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); |
| p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); |
| p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); |
| p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); |
| p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); |
| p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); |
| p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); |
| p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); |
| |
| p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; |
| p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; |
| p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; |
| p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; |
| p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; |
| p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; |
| p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; |
| p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; |
| |
| #undef GET_STAT |
| #undef GET_STAT_COM |
| } |
| |
| /** |
| * t4_wol_magic_enable - enable/disable magic packet WoL |
| * @adap: the adapter |
| * @port: the physical port index |
| * @addr: MAC address expected in magic packets, %NULL to disable |
| * |
| * Enables/disables magic packet wake-on-LAN for the selected port. |
| */ |
| void t4_wol_magic_enable(struct adapter *adap, unsigned int port, |
| const u8 *addr) |
| { |
| u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg; |
| |
| if (is_t4(adap->params.chip)) { |
| mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO); |
| mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI); |
| port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2_A); |
| } else { |
| mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO); |
| mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI); |
| port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2_A); |
| } |
| |
| if (addr) { |
| t4_write_reg(adap, mag_id_reg_l, |
| (addr[2] << 24) | (addr[3] << 16) | |
| (addr[4] << 8) | addr[5]); |
| t4_write_reg(adap, mag_id_reg_h, |
| (addr[0] << 8) | addr[1]); |
| } |
| t4_set_reg_field(adap, port_cfg_reg, MAGICEN_F, |
| addr ? MAGICEN_F : 0); |
| } |
| |
| /** |
| * t4_wol_pat_enable - enable/disable pattern-based WoL |
| * @adap: the adapter |
| * @port: the physical port index |
| * @map: bitmap of which HW pattern filters to set |
| * @mask0: byte mask for bytes 0-63 of a packet |
| * @mask1: byte mask for bytes 64-127 of a packet |
| * @crc: Ethernet CRC for selected bytes |
| * @enable: enable/disable switch |
| * |
| * Sets the pattern filters indicated in @map to mask out the bytes |
| * specified in @mask0/@mask1 in received packets and compare the CRC of |
| * the resulting packet against @crc. If @enable is %true pattern-based |
| * WoL is enabled, otherwise disabled. |
| */ |
| int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, |
| u64 mask0, u64 mask1, unsigned int crc, bool enable) |
| { |
| int i; |
| u32 port_cfg_reg; |
| |
| if (is_t4(adap->params.chip)) |
| port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2_A); |
| else |
| port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2_A); |
| |
| if (!enable) { |
| t4_set_reg_field(adap, port_cfg_reg, PATEN_F, 0); |
| return 0; |
| } |
| if (map > 0xff) |
| return -EINVAL; |
| |
| #define EPIO_REG(name) \ |
| (is_t4(adap->params.chip) ? \ |
| PORT_REG(port, XGMAC_PORT_EPIO_##name##_A) : \ |
| T5_PORT_REG(port, MAC_PORT_EPIO_##name##_A)) |
| |
| t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); |
| t4_write_reg(adap, EPIO_REG(DATA2), mask1); |
| t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); |
| |
| for (i = 0; i < NWOL_PAT; i++, map >>= 1) { |
| if (!(map & 1)) |
| continue; |
| |
| /* write byte masks */ |
| t4_write_reg(adap, EPIO_REG(DATA0), mask0); |
| t4_write_reg(adap, EPIO_REG(OP), ADDRESS_V(i) | EPIOWR_F); |
| t4_read_reg(adap, EPIO_REG(OP)); /* flush */ |
| if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY_F) |
| return -ETIMEDOUT; |
| |
| /* write CRC */ |
| t4_write_reg(adap, EPIO_REG(DATA0), crc); |
| t4_write_reg(adap, EPIO_REG(OP), ADDRESS_V(i + 32) | EPIOWR_F); |
| t4_read_reg(adap, EPIO_REG(OP)); /* flush */ |
| if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY_F) |
| return -ETIMEDOUT; |
| } |
| #undef EPIO_REG |
| |
| t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2_A), 0, PATEN_F); |
| return 0; |
| } |
| |
| /* t4_mk_filtdelwr - create a delete filter WR |
| * @ftid: the filter ID |
| * @wr: the filter work request to populate |
| * @qid: ingress queue to receive the delete notification |
| * |
| * Creates a filter work request to delete the supplied filter. If @qid is |
| * negative the delete notification is suppressed. |
| */ |
| void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) |
| { |
| memset(wr, 0, sizeof(*wr)); |
| wr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR)); |
| wr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*wr) / 16)); |
| wr->tid_to_iq = htonl(FW_FILTER_WR_TID_V(ftid) | |
| FW_FILTER_WR_NOREPLY_V(qid < 0)); |
| wr->del_filter_to_l2tix = htonl(FW_FILTER_WR_DEL_FILTER_F); |
| if (qid >= 0) |
| wr->rx_chan_rx_rpl_iq = htons(FW_FILTER_WR_RX_RPL_IQ_V(qid)); |
| } |
| |
| #define INIT_CMD(var, cmd, rd_wr) do { \ |
| (var).op_to_write = htonl(FW_CMD_OP_V(FW_##cmd##_CMD) | \ |
| FW_CMD_REQUEST_F | FW_CMD_##rd_wr##_F); \ |
| (var).retval_len16 = htonl(FW_LEN16(var)); \ |
| } while (0) |
| |
| int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, |
| u32 addr, u32 val) |
| { |
| struct fw_ldst_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE)); |
| c.cycles_to_len16 = htonl(FW_LEN16(c)); |
| c.u.addrval.addr = htonl(addr); |
| c.u.addrval.val = htonl(val); |
| |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_mdio_rd - read a PHY register through MDIO |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @phy_addr: the PHY address |
| * @mmd: the PHY MMD to access (0 for clause 22 PHYs) |
| * @reg: the register to read |
| * @valp: where to store the value |
| * |
| * Issues a FW command through the given mailbox to read a PHY register. |
| */ |
| int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, |
| unsigned int mmd, unsigned int reg, u16 *valp) |
| { |
| int ret; |
| struct fw_ldst_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO)); |
| c.cycles_to_len16 = htonl(FW_LEN16(c)); |
| c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) | |
| FW_LDST_CMD_MMD_V(mmd)); |
| c.u.mdio.raddr = htons(reg); |
| |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); |
| if (ret == 0) |
| *valp = ntohs(c.u.mdio.rval); |
| return ret; |
| } |
| |
| /** |
| * t4_mdio_wr - write a PHY register through MDIO |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @phy_addr: the PHY address |
| * @mmd: the PHY MMD to access (0 for clause 22 PHYs) |
| * @reg: the register to write |
| * @valp: value to write |
| * |
| * Issues a FW command through the given mailbox to write a PHY register. |
| */ |
| int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, |
| unsigned int mmd, unsigned int reg, u16 val) |
| { |
| struct fw_ldst_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO)); |
| c.cycles_to_len16 = htonl(FW_LEN16(c)); |
| c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) | |
| FW_LDST_CMD_MMD_V(mmd)); |
| c.u.mdio.raddr = htons(reg); |
| c.u.mdio.rval = htons(val); |
| |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_sge_decode_idma_state - decode the idma state |
| * @adap: the adapter |
| * @state: the state idma is stuck in |
| */ |
| void t4_sge_decode_idma_state(struct adapter *adapter, int state) |
| { |
| static const char * const t4_decode[] = { |
| "IDMA_IDLE", |
| "IDMA_PUSH_MORE_CPL_FIFO", |
| "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", |
| "Not used", |
| "IDMA_PHYSADDR_SEND_PCIEHDR", |
| "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", |
| "IDMA_PHYSADDR_SEND_PAYLOAD", |
| "IDMA_SEND_FIFO_TO_IMSG", |
| "IDMA_FL_REQ_DATA_FL_PREP", |
| "IDMA_FL_REQ_DATA_FL", |
| "IDMA_FL_DROP", |
| "IDMA_FL_H_REQ_HEADER_FL", |
| "IDMA_FL_H_SEND_PCIEHDR", |
| "IDMA_FL_H_PUSH_CPL_FIFO", |
| "IDMA_FL_H_SEND_CPL", |
| "IDMA_FL_H_SEND_IP_HDR_FIRST", |
| "IDMA_FL_H_SEND_IP_HDR", |
| "IDMA_FL_H_REQ_NEXT_HEADER_FL", |
| "IDMA_FL_H_SEND_NEXT_PCIEHDR", |
| "IDMA_FL_H_SEND_IP_HDR_PADDING", |
| "IDMA_FL_D_SEND_PCIEHDR", |
| "IDMA_FL_D_SEND_CPL_AND_IP_HDR", |
| "IDMA_FL_D_REQ_NEXT_DATA_FL", |
| "IDMA_FL_SEND_PCIEHDR", |
| "IDMA_FL_PUSH_CPL_FIFO", |
| "IDMA_FL_SEND_CPL", |
| "IDMA_FL_SEND_PAYLOAD_FIRST", |
| "IDMA_FL_SEND_PAYLOAD", |
| "IDMA_FL_REQ_NEXT_DATA_FL", |
| "IDMA_FL_SEND_NEXT_PCIEHDR", |
| "IDMA_FL_SEND_PADDING", |
| "IDMA_FL_SEND_COMPLETION_TO_IMSG", |
| "IDMA_FL_SEND_FIFO_TO_IMSG", |
| "IDMA_FL_REQ_DATAFL_DONE", |
| "IDMA_FL_REQ_HEADERFL_DONE", |
| }; |
| static const char * const t5_decode[] = { |
| "IDMA_IDLE", |
| "IDMA_ALMOST_IDLE", |
| "IDMA_PUSH_MORE_CPL_FIFO", |
| "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", |
| "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", |
| "IDMA_PHYSADDR_SEND_PCIEHDR", |
| "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", |
| "IDMA_PHYSADDR_SEND_PAYLOAD", |
| "IDMA_SEND_FIFO_TO_IMSG", |
| "IDMA_FL_REQ_DATA_FL", |
| "IDMA_FL_DROP", |
| "IDMA_FL_DROP_SEND_INC", |
| "IDMA_FL_H_REQ_HEADER_FL", |
| "IDMA_FL_H_SEND_PCIEHDR", |
| "IDMA_FL_H_PUSH_CPL_FIFO", |
| "IDMA_FL_H_SEND_CPL", |
| "IDMA_FL_H_SEND_IP_HDR_FIRST", |
| "IDMA_FL_H_SEND_IP_HDR", |
| "IDMA_FL_H_REQ_NEXT_HEADER_FL", |
| "IDMA_FL_H_SEND_NEXT_PCIEHDR", |
| "IDMA_FL_H_SEND_IP_HDR_PADDING", |
| "IDMA_FL_D_SEND_PCIEHDR", |
| "IDMA_FL_D_SEND_CPL_AND_IP_HDR", |
| "IDMA_FL_D_REQ_NEXT_DATA_FL", |
| "IDMA_FL_SEND_PCIEHDR", |
| "IDMA_FL_PUSH_CPL_FIFO", |
| "IDMA_FL_SEND_CPL", |
| "IDMA_FL_SEND_PAYLOAD_FIRST", |
| "IDMA_FL_SEND_PAYLOAD", |
| "IDMA_FL_REQ_NEXT_DATA_FL", |
| "IDMA_FL_SEND_NEXT_PCIEHDR", |
| "IDMA_FL_SEND_PADDING", |
| "IDMA_FL_SEND_COMPLETION_TO_IMSG", |
| }; |
| static const u32 sge_regs[] = { |
| SGE_DEBUG_DATA_LOW_INDEX_2_A, |
| SGE_DEBUG_DATA_LOW_INDEX_3_A, |
| SGE_DEBUG_DATA_HIGH_INDEX_10_A, |
| }; |
| const char **sge_idma_decode; |
| int sge_idma_decode_nstates; |
| int i; |
| |
| if (is_t4(adapter->params.chip)) { |
| sge_idma_decode = (const char **)t4_decode; |
| sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); |
| } else { |
| sge_idma_decode = (const char **)t5_decode; |
| sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); |
| } |
| |
| if (state < sge_idma_decode_nstates) |
| CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); |
| else |
| CH_WARN(adapter, "idma state %d unknown\n", state); |
| |
| for (i = 0; i < ARRAY_SIZE(sge_regs); i++) |
| CH_WARN(adapter, "SGE register %#x value %#x\n", |
| sge_regs[i], t4_read_reg(adapter, sge_regs[i])); |
| } |
| |
| /** |
| * t4_fw_hello - establish communication with FW |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @evt_mbox: mailbox to receive async FW events |
| * @master: specifies the caller's willingness to be the device master |
| * @state: returns the current device state (if non-NULL) |
| * |
| * Issues a command to establish communication with FW. Returns either |
| * an error (negative integer) or the mailbox of the Master PF. |
| */ |
| int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, |
| enum dev_master master, enum dev_state *state) |
| { |
| int ret; |
| struct fw_hello_cmd c; |
| u32 v; |
| unsigned int master_mbox; |
| int retries = FW_CMD_HELLO_RETRIES; |
| |
| retry: |
| memset(&c, 0, sizeof(c)); |
| INIT_CMD(c, HELLO, WRITE); |
| c.err_to_clearinit = htonl( |
| FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | |
| FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | |
| FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? mbox : |
| FW_HELLO_CMD_MBMASTER_M) | |
| FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | |
| FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | |
| FW_HELLO_CMD_CLEARINIT_F); |
| |
| /* |
| * Issue the HELLO command to the firmware. If it's not successful |
| * but indicates that we got a "busy" or "timeout" condition, retry |
| * the HELLO until we exhaust our retry limit. If we do exceed our |
| * retry limit, check to see if the firmware left us any error |
| * information and report that if so. |
| */ |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); |
| if (ret < 0) { |
| if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) |
| goto retry; |
| if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) |
| t4_report_fw_error(adap); |
| return ret; |
| } |
| |
| v = ntohl(c.err_to_clearinit); |
| master_mbox = FW_HELLO_CMD_MBMASTER_G(v); |
| if (state) { |
| if (v & FW_HELLO_CMD_ERR_F) |
| *state = DEV_STATE_ERR; |
| else if (v & FW_HELLO_CMD_INIT_F) |
| *state = DEV_STATE_INIT; |
| else |
| *state = DEV_STATE_UNINIT; |
| } |
| |
| /* |
| * If we're not the Master PF then we need to wait around for the |
| * Master PF Driver to finish setting up the adapter. |
| * |
| * Note that we also do this wait if we're a non-Master-capable PF and |
| * there is no current Master PF; a Master PF may show up momentarily |
| * and we wouldn't want to fail pointlessly. (This can happen when an |
| * OS loads lots of different drivers rapidly at the same time). In |
| * this case, the Master PF returned by the firmware will be |
| * PCIE_FW_MASTER_M so the test below will work ... |
| */ |
| if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && |
| master_mbox != mbox) { |
| int waiting = FW_CMD_HELLO_TIMEOUT; |
| |
| /* |
| * Wait for the firmware to either indicate an error or |
| * initialized state. If we see either of these we bail out |
| * and report the issue to the caller. If we exhaust the |
| * "hello timeout" and we haven't exhausted our retries, try |
| * again. Otherwise bail with a timeout error. |
| */ |
| for (;;) { |
| u32 pcie_fw; |
| |
| msleep(50); |
| waiting -= 50; |
| |
| /* |
| * If neither Error nor Initialialized are indicated |
| * by the firmware keep waiting till we exaust our |
| * timeout ... and then retry if we haven't exhausted |
| * our retries ... |
| */ |
| pcie_fw = t4_read_reg(adap, PCIE_FW_A); |
| if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { |
| if (waiting <= 0) { |
| if (retries-- > 0) |
| goto retry; |
| |
| return -ETIMEDOUT; |
| } |
| continue; |
| } |
| |
| /* |
| * We either have an Error or Initialized condition |
| * report errors preferentially. |
| */ |
| if (state) { |
| if (pcie_fw & PCIE_FW_ERR_F) |
| *state = DEV_STATE_ERR; |
| else if (pcie_fw & PCIE_FW_INIT_F) |
| *state = DEV_STATE_INIT; |
| } |
| |
| /* |
| * If we arrived before a Master PF was selected and |
| * there's not a valid Master PF, grab its identity |
| * for our caller. |
| */ |
| if (master_mbox == PCIE_FW_MASTER_M && |
| (pcie_fw & PCIE_FW_MASTER_VLD_F)) |
| master_mbox = PCIE_FW_MASTER_G(pcie_fw); |
| break; |
| } |
| } |
| |
| return master_mbox; |
| } |
| |
| /** |
| * t4_fw_bye - end communication with FW |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * |
| * Issues a command to terminate communication with FW. |
| */ |
| int t4_fw_bye(struct adapter *adap, unsigned int mbox) |
| { |
| struct fw_bye_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| INIT_CMD(c, BYE, WRITE); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_init_cmd - ask FW to initialize the device |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * |
| * Issues a command to FW to partially initialize the device. This |
| * performs initialization that generally doesn't depend on user input. |
| */ |
| int t4_early_init(struct adapter *adap, unsigned int mbox) |
| { |
| struct fw_initialize_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| INIT_CMD(c, INITIALIZE, WRITE); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_fw_reset - issue a reset to FW |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @reset: specifies the type of reset to perform |
| * |
| * Issues a reset command of the specified type to FW. |
| */ |
| int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) |
| { |
| struct fw_reset_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| INIT_CMD(c, RESET, WRITE); |
| c.val = htonl(reset); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_fw_halt - issue a reset/halt to FW and put uP into RESET |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW RESET command (if desired) |
| * @force: force uP into RESET even if FW RESET command fails |
| * |
| * Issues a RESET command to firmware (if desired) with a HALT indication |
| * and then puts the microprocessor into RESET state. The RESET command |
| * will only be issued if a legitimate mailbox is provided (mbox <= |
| * PCIE_FW_MASTER_M). |
| * |
| * This is generally used in order for the host to safely manipulate the |
| * adapter without fear of conflicting with whatever the firmware might |
| * be doing. The only way out of this state is to RESTART the firmware |
| * ... |
| */ |
| static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) |
| { |
| int ret = 0; |
| |
| /* |
| * If a legitimate mailbox is provided, issue a RESET command |
| * with a HALT indication. |
| */ |
| if (mbox <= PCIE_FW_MASTER_M) { |
| struct fw_reset_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| INIT_CMD(c, RESET, WRITE); |
| c.val = htonl(PIORST_F | PIORSTMODE_F); |
| c.halt_pkd = htonl(FW_RESET_CMD_HALT_F); |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /* |
| * Normally we won't complete the operation if the firmware RESET |
| * command fails but if our caller insists we'll go ahead and put the |
| * uP into RESET. This can be useful if the firmware is hung or even |
| * missing ... We'll have to take the risk of putting the uP into |
| * RESET without the cooperation of firmware in that case. |
| * |
| * We also force the firmware's HALT flag to be on in case we bypassed |
| * the firmware RESET command above or we're dealing with old firmware |
| * which doesn't have the HALT capability. This will serve as a flag |
| * for the incoming firmware to know that it's coming out of a HALT |
| * rather than a RESET ... if it's new enough to understand that ... |
| */ |
| if (ret == 0 || force) { |
| t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); |
| t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, |
| PCIE_FW_HALT_F); |
| } |
| |
| /* |
| * And we always return the result of the firmware RESET command |
| * even when we force the uP into RESET ... |
| */ |
| return ret; |
| } |
| |
| /** |
| * t4_fw_restart - restart the firmware by taking the uP out of RESET |
| * @adap: the adapter |
| * @reset: if we want to do a RESET to restart things |
| * |
| * Restart firmware previously halted by t4_fw_halt(). On successful |
| * return the previous PF Master remains as the new PF Master and there |
| * is no need to issue a new HELLO command, etc. |
| * |
| * We do this in two ways: |
| * |
| * 1. If we're dealing with newer firmware we'll simply want to take |
| * the chip's microprocessor out of RESET. This will cause the |
| * firmware to start up from its start vector. And then we'll loop |
| * until the firmware indicates it's started again (PCIE_FW.HALT |
| * reset to 0) or we timeout. |
| * |
| * 2. If we're dealing with older firmware then we'll need to RESET |
| * the chip since older firmware won't recognize the PCIE_FW.HALT |
| * flag and automatically RESET itself on startup. |
| */ |
| static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) |
| { |
| if (reset) { |
| /* |
| * Since we're directing the RESET instead of the firmware |
| * doing it automatically, we need to clear the PCIE_FW.HALT |
| * bit. |
| */ |
| t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); |
| |
| /* |
| * If we've been given a valid mailbox, first try to get the |
| * firmware to do the RESET. If that works, great and we can |
| * return success. Otherwise, if we haven't been given a |
| * valid mailbox or the RESET command failed, fall back to |
| * hitting the chip with a hammer. |
| */ |
| if (mbox <= PCIE_FW_MASTER_M) { |
| t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); |
| msleep(100); |
| if (t4_fw_reset(adap, mbox, |
| PIORST_F | PIORSTMODE_F) == 0) |
| return 0; |
| } |
| |
| t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); |
| msleep(2000); |
| } else { |
| int ms; |
| |
| t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); |
| for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { |
| if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) |
| return 0; |
| msleep(100); |
| ms += 100; |
| } |
| return -ETIMEDOUT; |
| } |
| return 0; |
| } |
| |
| /** |
| * t4_fw_upgrade - perform all of the steps necessary to upgrade FW |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW RESET command (if desired) |
| * @fw_data: the firmware image to write |
| * @size: image size |
| * @force: force upgrade even if firmware doesn't cooperate |
| * |
| * Perform all of the steps necessary for upgrading an adapter's |
| * firmware image. Normally this requires the cooperation of the |
| * existing firmware in order to halt all existing activities |
| * but if an invalid mailbox token is passed in we skip that step |
| * (though we'll still put the adapter microprocessor into RESET in |
| * that case). |
| * |
| * On successful return the new firmware will have been loaded and |
| * the adapter will have been fully RESET losing all previous setup |
| * state. On unsuccessful return the adapter may be completely hosed ... |
| * positive errno indicates that the adapter is ~probably~ intact, a |
| * negative errno indicates that things are looking bad ... |
| */ |
| int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, |
| const u8 *fw_data, unsigned int size, int force) |
| { |
| const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; |
| int reset, ret; |
| |
| if (!t4_fw_matches_chip(adap, fw_hdr)) |
| return -EINVAL; |
| |
| ret = t4_fw_halt(adap, mbox, force); |
| if (ret < 0 && !force) |
| return ret; |
| |
| ret = t4_load_fw(adap, fw_data, size); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Older versions of the firmware don't understand the new |
| * PCIE_FW.HALT flag and so won't know to perform a RESET when they |
| * restart. So for newly loaded older firmware we'll have to do the |
| * RESET for it so it starts up on a clean slate. We can tell if |
| * the newly loaded firmware will handle this right by checking |
| * its header flags to see if it advertises the capability. |
| */ |
| reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); |
| return t4_fw_restart(adap, mbox, reset); |
| } |
| |
| /** |
| * t4_fixup_host_params - fix up host-dependent parameters |
| * @adap: the adapter |
| * @page_size: the host's Base Page Size |
| * @cache_line_size: the host's Cache Line Size |
| * |
| * Various registers in T4 contain values which are dependent on the |
| * host's Base Page and Cache Line Sizes. This function will fix all of |
| * those registers with the appropriate values as passed in ... |
| */ |
| int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, |
| unsigned int cache_line_size) |
| { |
| unsigned int page_shift = fls(page_size) - 1; |
| unsigned int sge_hps = page_shift - 10; |
| unsigned int stat_len = cache_line_size > 64 ? 128 : 64; |
| unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; |
| unsigned int fl_align_log = fls(fl_align) - 1; |
| |
| t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, |
| HOSTPAGESIZEPF0_V(sge_hps) | |
| HOSTPAGESIZEPF1_V(sge_hps) | |
| HOSTPAGESIZEPF2_V(sge_hps) | |
| HOSTPAGESIZEPF3_V(sge_hps) | |
| HOSTPAGESIZEPF4_V(sge_hps) | |
| HOSTPAGESIZEPF5_V(sge_hps) | |
| HOSTPAGESIZEPF6_V(sge_hps) | |
| HOSTPAGESIZEPF7_V(sge_hps)); |
| |
| if (is_t4(adap->params.chip)) { |
| t4_set_reg_field(adap, SGE_CONTROL_A, |
| INGPADBOUNDARY_V(INGPADBOUNDARY_M) | |
| EGRSTATUSPAGESIZE_F, |
| INGPADBOUNDARY_V(fl_align_log - |
| INGPADBOUNDARY_SHIFT_X) | |
| EGRSTATUSPAGESIZE_V(stat_len != 64)); |
| } else { |
| /* T5 introduced the separation of the Free List Padding and |
| * Packing Boundaries. Thus, we can select a smaller Padding |
| * Boundary to avoid uselessly chewing up PCIe Link and Memory |
| * Bandwidth, and use a Packing Boundary which is large enough |
| * to avoid false sharing between CPUs, etc. |
| * |
| * For the PCI Link, the smaller the Padding Boundary the |
| * better. For the Memory Controller, a smaller Padding |
| * Boundary is better until we cross under the Memory Line |
| * Size (the minimum unit of transfer to/from Memory). If we |
| * have a Padding Boundary which is smaller than the Memory |
| * Line Size, that'll involve a Read-Modify-Write cycle on the |
| * Memory Controller which is never good. For T5 the smallest |
| * Padding Boundary which we can select is 32 bytes which is |
| * larger than any known Memory Controller Line Size so we'll |
| * use that. |
| * |
| * T5 has a different interpretation of the "0" value for the |
| * Packing Boundary. This corresponds to 16 bytes instead of |
| * the expected 32 bytes. We never have a Packing Boundary |
| * less than 32 bytes so we can't use that special value but |
| * on the other hand, if we wanted 32 bytes, the best we can |
| * really do is 64 bytes. |
| */ |
| if (fl_align <= 32) { |
| fl_align = 64; |
| fl_align_log = 6; |
| } |
| t4_set_reg_field(adap, SGE_CONTROL_A, |
| INGPADBOUNDARY_V(INGPADBOUNDARY_M) | |
| EGRSTATUSPAGESIZE_F, |
| INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) | |
| EGRSTATUSPAGESIZE_V(stat_len != 64)); |
| t4_set_reg_field(adap, SGE_CONTROL2_A, |
| INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), |
| INGPACKBOUNDARY_V(fl_align_log - |
| INGPACKBOUNDARY_SHIFT_X)); |
| } |
| /* |
| * Adjust various SGE Free List Host Buffer Sizes. |
| * |
| * This is something of a crock since we're using fixed indices into |
| * the array which are also known by the sge.c code and the T4 |
| * Firmware Configuration File. We need to come up with a much better |
| * approach to managing this array. For now, the first four entries |
| * are: |
| * |
| * 0: Host Page Size |
| * 1: 64KB |
| * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) |
| * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) |
| * |
| * For the single-MTU buffers in unpacked mode we need to include |
| * space for the SGE Control Packet Shift, 14 byte Ethernet header, |
| * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet |
| * Padding boundry. All of these are accommodated in the Factory |
| * Default Firmware Configuration File but we need to adjust it for |
| * this host's cache line size. |
| */ |
| t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); |
| t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, |
| (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) |
| & ~(fl_align-1)); |
| t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, |
| (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) |
| & ~(fl_align-1)); |
| |
| t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); |
| |
| return 0; |
| } |
| |
| /** |
| * t4_fw_initialize - ask FW to initialize the device |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * |
| * Issues a command to FW to partially initialize the device. This |
| * performs initialization that generally doesn't depend on user input. |
| */ |
| int t4_fw_initialize(struct adapter *adap, unsigned int mbox) |
| { |
| struct fw_initialize_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| INIT_CMD(c, INITIALIZE, WRITE); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_query_params - query FW or device parameters |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF |
| * @vf: the VF |
| * @nparams: the number of parameters |
| * @params: the parameter names |
| * @val: the parameter values |
| * |
| * Reads the value of FW or device parameters. Up to 7 parameters can be |
| * queried at once. |
| */ |
| int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int nparams, const u32 *params, |
| u32 *val) |
| { |
| int i, ret; |
| struct fw_params_cmd c; |
| __be32 *p = &c.param[0].mnem; |
| |
| if (nparams > 7) |
| return -EINVAL; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_READ_F | FW_PARAMS_CMD_PFN_V(pf) | |
| FW_PARAMS_CMD_VFN_V(vf)); |
| c.retval_len16 = htonl(FW_LEN16(c)); |
| for (i = 0; i < nparams; i++, p += 2) |
| *p = htonl(*params++); |
| |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); |
| if (ret == 0) |
| for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) |
| *val++ = ntohl(*p); |
| return ret; |
| } |
| |
| /** |
| * t4_set_params_nosleep - sets FW or device parameters |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF |
| * @vf: the VF |
| * @nparams: the number of parameters |
| * @params: the parameter names |
| * @val: the parameter values |
| * |
| * Does not ever sleep |
| * Sets the value of FW or device parameters. Up to 7 parameters can be |
| * specified at once. |
| */ |
| int t4_set_params_nosleep(struct adapter *adap, unsigned int mbox, |
| unsigned int pf, unsigned int vf, |
| unsigned int nparams, const u32 *params, |
| const u32 *val) |
| { |
| struct fw_params_cmd c; |
| __be32 *p = &c.param[0].mnem; |
| |
| if (nparams > 7) |
| return -EINVAL; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | |
| FW_CMD_REQUEST_F | FW_CMD_WRITE_F | |
| FW_PARAMS_CMD_PFN_V(pf) | |
| FW_PARAMS_CMD_VFN_V(vf)); |
| c.retval_len16 = cpu_to_be32(FW_LEN16(c)); |
| |
| while (nparams--) { |
| *p++ = cpu_to_be32(*params++); |
| *p++ = cpu_to_be32(*val++); |
| } |
| |
| return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_set_params - sets FW or device parameters |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF |
| * @vf: the VF |
| * @nparams: the number of parameters |
| * @params: the parameter names |
| * @val: the parameter values |
| * |
| * Sets the value of FW or device parameters. Up to 7 parameters can be |
| * specified at once. |
| */ |
| int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int nparams, const u32 *params, |
| const u32 *val) |
| { |
| struct fw_params_cmd c; |
| __be32 *p = &c.param[0].mnem; |
| |
| if (nparams > 7) |
| return -EINVAL; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(pf) | |
| FW_PARAMS_CMD_VFN_V(vf)); |
| c.retval_len16 = htonl(FW_LEN16(c)); |
| while (nparams--) { |
| *p++ = htonl(*params++); |
| *p++ = htonl(*val++); |
| } |
| |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_cfg_pfvf - configure PF/VF resource limits |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF being configured |
| * @vf: the VF being configured |
| * @txq: the max number of egress queues |
| * @txq_eth_ctrl: the max number of egress Ethernet or control queues |
| * @rxqi: the max number of interrupt-capable ingress queues |
| * @rxq: the max number of interruptless ingress queues |
| * @tc: the PCI traffic class |
| * @vi: the max number of virtual interfaces |
| * @cmask: the channel access rights mask for the PF/VF |
| * @pmask: the port access rights mask for the PF/VF |
| * @nexact: the maximum number of exact MPS filters |
| * @rcaps: read capabilities |
| * @wxcaps: write/execute capabilities |
| * |
| * Configures resource limits and capabilities for a physical or virtual |
| * function. |
| */ |
| int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, |
| unsigned int rxqi, unsigned int rxq, unsigned int tc, |
| unsigned int vi, unsigned int cmask, unsigned int pmask, |
| unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) |
| { |
| struct fw_pfvf_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | |
| FW_PFVF_CMD_VFN_V(vf)); |
| c.retval_len16 = htonl(FW_LEN16(c)); |
| c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT_V(rxqi) | |
| FW_PFVF_CMD_NIQ_V(rxq)); |
| c.type_to_neq = htonl(FW_PFVF_CMD_CMASK_V(cmask) | |
| FW_PFVF_CMD_PMASK_V(pmask) | |
| FW_PFVF_CMD_NEQ_V(txq)); |
| c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC_V(tc) | FW_PFVF_CMD_NVI_V(vi) | |
| FW_PFVF_CMD_NEXACTF_V(nexact)); |
| c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS_V(rcaps) | |
| FW_PFVF_CMD_WX_CAPS_V(wxcaps) | |
| FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_alloc_vi - allocate a virtual interface |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @port: physical port associated with the VI |
| * @pf: the PF owning the VI |
| * @vf: the VF owning the VI |
| * @nmac: number of MAC addresses needed (1 to 5) |
| * @mac: the MAC addresses of the VI |
| * @rss_size: size of RSS table slice associated with this VI |
| * |
| * Allocates a virtual interface for the given physical port. If @mac is |
| * not %NULL it contains the MAC addresses of the VI as assigned by FW. |
| * @mac should be large enough to hold @nmac Ethernet addresses, they are |
| * stored consecutively so the space needed is @nmac * 6 bytes. |
| * Returns a negative error number or the non-negative VI id. |
| */ |
| int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, |
| unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, |
| unsigned int *rss_size) |
| { |
| int ret; |
| struct fw_vi_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | FW_CMD_EXEC_F | |
| FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); |
| c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); |
| c.portid_pkd = FW_VI_CMD_PORTID_V(port); |
| c.nmac = nmac - 1; |
| |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); |
| if (ret) |
| return ret; |
| |
| if (mac) { |
| memcpy(mac, c.mac, sizeof(c.mac)); |
| switch (nmac) { |
| case 5: |
| memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); |
| case 4: |
| memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); |
| case 3: |
| memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); |
| case 2: |
| memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); |
| } |
| } |
| if (rss_size) |
| *rss_size = FW_VI_CMD_RSSSIZE_G(ntohs(c.rsssize_pkd)); |
| return FW_VI_CMD_VIID_G(ntohs(c.type_viid)); |
| } |
| |
| /** |
| * t4_set_rxmode - set Rx properties of a virtual interface |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @mtu: the new MTU or -1 |
| * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change |
| * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change |
| * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change |
| * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change |
| * @sleep_ok: if true we may sleep while awaiting command completion |
| * |
| * Sets Rx properties of a virtual interface. |
| */ |
| int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, |
| int mtu, int promisc, int all_multi, int bcast, int vlanex, |
| bool sleep_ok) |
| { |
| struct fw_vi_rxmode_cmd c; |
| |
| /* convert to FW values */ |
| if (mtu < 0) |
| mtu = FW_RXMODE_MTU_NO_CHG; |
| if (promisc < 0) |
| promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; |
| if (all_multi < 0) |
| all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; |
| if (bcast < 0) |
| bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; |
| if (vlanex < 0) |
| vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid)); |
| c.retval_len16 = htonl(FW_LEN16(c)); |
| c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU_V(mtu) | |
| FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | |
| FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | |
| FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | |
| FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); |
| return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); |
| } |
| |
| /** |
| * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @free: if true any existing filters for this VI id are first removed |
| * @naddr: the number of MAC addresses to allocate filters for (up to 7) |
| * @addr: the MAC address(es) |
| * @idx: where to store the index of each allocated filter |
| * @hash: pointer to hash address filter bitmap |
| * @sleep_ok: call is allowed to sleep |
| * |
| * Allocates an exact-match filter for each of the supplied addresses and |
| * sets it to the corresponding address. If @idx is not %NULL it should |
| * have at least @naddr entries, each of which will be set to the index of |
| * the filter allocated for the corresponding MAC address. If a filter |
| * could not be allocated for an address its index is set to 0xffff. |
| * If @hash is not %NULL addresses that fail to allocate an exact filter |
| * are hashed and update the hash filter bitmap pointed at by @hash. |
| * |
| * Returns a negative error number or the number of filters allocated. |
| */ |
| int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, |
| unsigned int viid, bool free, unsigned int naddr, |
| const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) |
| { |
| int i, ret; |
| struct fw_vi_mac_cmd c; |
| struct fw_vi_mac_exact *p; |
| unsigned int max_naddr = is_t4(adap->params.chip) ? |
| NUM_MPS_CLS_SRAM_L_INSTANCES : |
| NUM_MPS_T5_CLS_SRAM_L_INSTANCES; |
| |
| if (naddr > 7) |
| return -EINVAL; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | (free ? FW_CMD_EXEC_F : 0) | |
| FW_VI_MAC_CMD_VIID_V(viid)); |
| c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS_V(free) | |
| FW_CMD_LEN16_V((naddr + 2) / 2)); |
| |
| for (i = 0, p = c.u.exact; i < naddr; i++, p++) { |
| p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F | |
| FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); |
| memcpy(p->macaddr, addr[i], sizeof(p->macaddr)); |
| } |
| |
| ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); |
| if (ret) |
| return ret; |
| |
| for (i = 0, p = c.u.exact; i < naddr; i++, p++) { |
| u16 index = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx)); |
| |
| if (idx) |
| idx[i] = index >= max_naddr ? 0xffff : index; |
| if (index < max_naddr) |
| ret++; |
| else if (hash) |
| *hash |= (1ULL << hash_mac_addr(addr[i])); |
| } |
| return ret; |
| } |
| |
| /** |
| * t4_change_mac - modifies the exact-match filter for a MAC address |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @idx: index of existing filter for old value of MAC address, or -1 |
| * @addr: the new MAC address value |
| * @persist: whether a new MAC allocation should be persistent |
| * @add_smt: if true also add the address to the HW SMT |
| * |
| * Modifies an exact-match filter and sets it to the new MAC address. |
| * Note that in general it is not possible to modify the value of a given |
| * filter so the generic way to modify an address filter is to free the one |
| * being used by the old address value and allocate a new filter for the |
| * new address value. @idx can be -1 if the address is a new addition. |
| * |
| * Returns a negative error number or the index of the filter with the new |
| * MAC value. |
| */ |
| int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, |
| int idx, const u8 *addr, bool persist, bool add_smt) |
| { |
| int ret, mode; |
| struct fw_vi_mac_cmd c; |
| struct fw_vi_mac_exact *p = c.u.exact; |
| unsigned int max_mac_addr = is_t4(adap->params.chip) ? |
| NUM_MPS_CLS_SRAM_L_INSTANCES : |
| NUM_MPS_T5_CLS_SRAM_L_INSTANCES; |
| |
| if (idx < 0) /* new allocation */ |
| idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; |
| mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid)); |
| c.freemacs_to_len16 = htonl(FW_CMD_LEN16_V(1)); |
| p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F | |
| FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | |
| FW_VI_MAC_CMD_IDX_V(idx)); |
| memcpy(p->macaddr, addr, sizeof(p->macaddr)); |
| |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); |
| if (ret == 0) { |
| ret = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx)); |
| if (ret >= max_mac_addr) |
| ret = -ENOMEM; |
| } |
| return ret; |
| } |
| |
| /** |
| * t4_set_addr_hash - program the MAC inexact-match hash filter |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @ucast: whether the hash filter should also match unicast addresses |
| * @vec: the value to be written to the hash filter |
| * @sleep_ok: call is allowed to sleep |
| * |
| * Sets the 64-bit inexact-match hash filter for a virtual interface. |
| */ |
| int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, |
| bool ucast, u64 vec, bool sleep_ok) |
| { |
| struct fw_vi_mac_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | FW_VI_ENABLE_CMD_VIID_V(viid)); |
| c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN_F | |
| FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | |
| FW_CMD_LEN16_V(1)); |
| c.u.hash.hashvec = cpu_to_be64(vec); |
| return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); |
| } |
| |
| /** |
| * t4_enable_vi_params - enable/disable a virtual interface |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @rx_en: 1=enable Rx, 0=disable Rx |
| * @tx_en: 1=enable Tx, 0=disable Tx |
| * @dcb_en: 1=enable delivery of Data Center Bridging messages. |
| * |
| * Enables/disables a virtual interface. Note that setting DCB Enable |
| * only makes sense when enabling a Virtual Interface ... |
| */ |
| int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, |
| unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) |
| { |
| struct fw_vi_enable_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid)); |
| |
| c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN_V(rx_en) | |
| FW_VI_ENABLE_CMD_EEN_V(tx_en) | FW_LEN16(c) | |
| FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en)); |
| return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_enable_vi - enable/disable a virtual interface |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @rx_en: 1=enable Rx, 0=disable Rx |
| * @tx_en: 1=enable Tx, 0=disable Tx |
| * |
| * Enables/disables a virtual interface. |
| */ |
| int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, |
| bool rx_en, bool tx_en) |
| { |
| return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); |
| } |
| |
| /** |
| * t4_identify_port - identify a VI's port by blinking its LED |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @nblinks: how many times to blink LED at 2.5 Hz |
| * |
| * Identifies a VI's port by blinking its LED. |
| */ |
| int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, |
| unsigned int nblinks) |
| { |
| struct fw_vi_enable_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid)); |
| c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); |
| c.blinkdur = htons(nblinks); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_iq_free - free an ingress queue and its FLs |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF owning the queues |
| * @vf: the VF owning the queues |
| * @iqtype: the ingress queue type |
| * @iqid: ingress queue id |
| * @fl0id: FL0 queue id or 0xffff if no attached FL0 |
| * @fl1id: FL1 queue id or 0xffff if no attached FL1 |
| * |
| * Frees an ingress queue and its associated FLs, if any. |
| */ |
| int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int iqtype, unsigned int iqid, |
| unsigned int fl0id, unsigned int fl1id) |
| { |
| struct fw_iq_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | |
| FW_IQ_CMD_VFN_V(vf)); |
| c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE_F | FW_LEN16(c)); |
| c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(iqtype)); |
| c.iqid = htons(iqid); |
| c.fl0id = htons(fl0id); |
| c.fl1id = htons(fl1id); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_eth_eq_free - free an Ethernet egress queue |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF owning the queue |
| * @vf: the VF owning the queue |
| * @eqid: egress queue id |
| * |
| * Frees an Ethernet egress queue. |
| */ |
| int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int eqid) |
| { |
| struct fw_eq_eth_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(pf) | |
| FW_EQ_ETH_CMD_VFN_V(vf)); |
| c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); |
| c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID_V(eqid)); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_ctrl_eq_free - free a control egress queue |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF owning the queue |
| * @vf: the VF owning the queue |
| * @eqid: egress queue id |
| * |
| * Frees a control egress queue. |
| */ |
| int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int eqid) |
| { |
| struct fw_eq_ctrl_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(pf) | |
| FW_EQ_CTRL_CMD_VFN_V(vf)); |
| c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); |
| c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID_V(eqid)); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_ofld_eq_free - free an offload egress queue |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF owning the queue |
| * @vf: the VF owning the queue |
| * @eqid: egress queue id |
| * |
| * Frees a control egress queue. |
| */ |
| int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int eqid) |
| { |
| struct fw_eq_ofld_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(pf) | |
| FW_EQ_OFLD_CMD_VFN_V(vf)); |
| c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); |
| c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID_V(eqid)); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_handle_fw_rpl - process a FW reply message |
| * @adap: the adapter |
| * @rpl: start of the FW message |
| * |
| * Processes a FW message, such as link state change messages. |
| */ |
| int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) |
| { |
| u8 opcode = *(const u8 *)rpl; |
| |
| if (opcode == FW_PORT_CMD) { /* link/module state change message */ |
| int speed = 0, fc = 0; |
| const struct fw_port_cmd *p = (void *)rpl; |
| int chan = FW_PORT_CMD_PORTID_G(ntohl(p->op_to_portid)); |
| int port = adap->chan_map[chan]; |
| struct port_info *pi = adap2pinfo(adap, port); |
| struct link_config *lc = &pi->link_cfg; |
| u32 stat = ntohl(p->u.info.lstatus_to_modtype); |
| int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0; |
| u32 mod = FW_PORT_CMD_MODTYPE_G(stat); |
| |
| if (stat & FW_PORT_CMD_RXPAUSE_F) |
| fc |= PAUSE_RX; |
| if (stat & FW_PORT_CMD_TXPAUSE_F) |
| fc |= PAUSE_TX; |
| if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) |
| speed = 100; |
| else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) |
| speed = 1000; |
| else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) |
| speed = 10000; |
| else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) |
| speed = 40000; |
| |
| if (link_ok != lc->link_ok || speed != lc->speed || |
| fc != lc->fc) { /* something changed */ |
| lc->link_ok = link_ok; |
| lc->speed = speed; |
| lc->fc = fc; |
| lc->supported = be16_to_cpu(p->u.info.pcap); |
| t4_os_link_changed(adap, port, link_ok); |
| } |
| if (mod != pi->mod_type) { |
| pi->mod_type = mod; |
| t4_os_portmod_changed(adap, port); |
| } |
| } |
| return 0; |
| } |
| |
| static void get_pci_mode(struct adapter *adapter, struct pci_params *p) |
| { |
| u16 val; |
| |
| if (pci_is_pcie(adapter->pdev)) { |
| pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); |
| p->speed = val & PCI_EXP_LNKSTA_CLS; |
| p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; |
| } |
| } |
| |
| /** |
| * init_link_config - initialize a link's SW state |
| * @lc: structure holding the link state |
| * @caps: link capabilities |
| * |
| * Initializes the SW state maintained for each link, including the link's |
| * capabilities and default speed/flow-control/autonegotiation settings. |
| */ |
| static void init_link_config(struct link_config *lc, unsigned int caps) |
| { |
| lc->supported = caps; |
| lc->requested_speed = 0; |
| lc->speed = 0; |
| lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; |
| if (lc->supported & FW_PORT_CAP_ANEG) { |
| lc->advertising = lc->supported & ADVERT_MASK; |
| lc->autoneg = AUTONEG_ENABLE; |
| lc->requested_fc |= PAUSE_AUTONEG; |
| } else { |
| lc->advertising = 0; |
| lc->autoneg = AUTONEG_DISABLE; |
| } |
| } |
| |
| #define CIM_PF_NOACCESS 0xeeeeeeee |
| |
| int t4_wait_dev_ready(void __iomem *regs) |
| { |
| u32 whoami; |
| |
| whoami = readl(regs + PL_WHOAMI_A); |
| if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) |
| return 0; |
| |
| msleep(500); |
| whoami = readl(regs + PL_WHOAMI_A); |
| return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); |
| } |
| |
| struct flash_desc { |
| u32 vendor_and_model_id; |
| u32 size_mb; |
| }; |
| |
| static int get_flash_params(struct adapter *adap) |
| { |
| /* Table for non-Numonix supported flash parts. Numonix parts are left |
| * to the preexisting code. All flash parts have 64KB sectors. |
| */ |
| static struct flash_desc supported_flash[] = { |
| { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ |
| }; |
| |
| int ret; |
| u32 info; |
| |
| ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); |
| if (!ret) |
| ret = sf1_read(adap, 3, 0, 1, &info); |
| t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ |
| if (ret) |
| return ret; |
| |
| for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret) |
| if (supported_flash[ret].vendor_and_model_id == info) { |
| adap->params.sf_size = supported_flash[ret].size_mb; |
| adap->params.sf_nsec = |
| adap->params.sf_size / SF_SEC_SIZE; |
| return 0; |
| } |
| |
| if ((info & 0xff) != 0x20) /* not a Numonix flash */ |
| return -EINVAL; |
| info >>= 16; /* log2 of size */ |
| if (info >= 0x14 && info < 0x18) |
| adap->params.sf_nsec = 1 << (info - 16); |
| else if (info == 0x18) |
| adap->params.sf_nsec = 64; |
| else |
| return -EINVAL; |
| adap->params.sf_size = 1 << info; |
| adap->params.sf_fw_start = |
| t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M; |
| |
| if (adap->params.sf_size < FLASH_MIN_SIZE) |
| dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n", |
| adap->params.sf_size, FLASH_MIN_SIZE); |
| return 0; |
| } |
| |
| /** |
| * t4_prep_adapter - prepare SW and HW for operation |
| * @adapter: the adapter |
| * @reset: if true perform a HW reset |
| * |
| * Initialize adapter SW state for the various HW modules, set initial |
| * values for some adapter tunables, take PHYs out of reset, and |
| * initialize the MDIO interface. |
| */ |
| int t4_prep_adapter(struct adapter *adapter) |
| { |
| int ret, ver; |
| uint16_t device_id; |
| u32 pl_rev; |
| |
| get_pci_mode(adapter, &adapter->params.pci); |
| pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); |
| |
| ret = get_flash_params(adapter); |
| if (ret < 0) { |
| dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); |
| return ret; |
| } |
| |
| /* Retrieve adapter's device ID |
| */ |
| pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); |
| ver = device_id >> 12; |
| adapter->params.chip = 0; |
| switch (ver) { |
| case CHELSIO_T4: |
| adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); |
| break; |
| case CHELSIO_T5: |
| adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); |
| break; |
| default: |
| dev_err(adapter->pdev_dev, "Device %d is not supported\n", |
| device_id); |
| return -EINVAL; |
| } |
| |
| adapter->params.cim_la_size = CIMLA_SIZE; |
| init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); |
| |
| /* |
| * Default port for debugging in case we can't reach FW. |
| */ |
| adapter->params.nports = 1; |
| adapter->params.portvec = 1; |
| adapter->params.vpd.cclk = 50000; |
| return 0; |
| } |
| |
| /** |
| * cxgb4_t4_bar2_sge_qregs - return BAR2 SGE Queue register information |
| * @adapter: the adapter |
| * @qid: the Queue ID |
| * @qtype: the Ingress or Egress type for @qid |
| * @pbar2_qoffset: BAR2 Queue Offset |
| * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues |
| * |
| * Returns the BAR2 SGE Queue Registers information associated with the |
| * indicated Absolute Queue ID. These are passed back in return value |
| * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue |
| * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. |
| * |
| * This may return an error which indicates that BAR2 SGE Queue |
| * registers aren't available. If an error is not returned, then the |
| * following values are returned: |
| * |
| * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers |
| * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid |
| * |
| * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which |
| * require the "Inferred Queue ID" ability may be used. E.g. the |
| * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, |
| * then these "Inferred Queue ID" register may not be used. |
| */ |
| int cxgb4_t4_bar2_sge_qregs(struct adapter *adapter, |
| unsigned int qid, |
| enum t4_bar2_qtype qtype, |
| u64 *pbar2_qoffset, |
| unsigned int *pbar2_qid) |
| { |
| unsigned int page_shift, page_size, qpp_shift, qpp_mask; |
| u64 bar2_page_offset, bar2_qoffset; |
| unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; |
| |
| /* T4 doesn't support BAR2 SGE Queue registers. |
| */ |
| if (is_t4(adapter->params.chip)) |
| return -EINVAL; |
| |
| /* Get our SGE Page Size parameters. |
| */ |
| page_shift = adapter->params.sge.hps + 10; |
| page_size = 1 << page_shift; |
| |
| /* Get the right Queues per Page parameters for our Queue. |
| */ |
| qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS |
| ? adapter->params.sge.eq_qpp |
| : adapter->params.sge.iq_qpp); |
| qpp_mask = (1 << qpp_shift) - 1; |
| |
| /* Calculate the basics of the BAR2 SGE Queue register area: |
| * o The BAR2 page the Queue registers will be in. |
| * o The BAR2 Queue ID. |
| * o The BAR2 Queue ID Offset into the BAR2 page. |
| */ |
| bar2_page_offset = ((qid >> qpp_shift) << page_shift); |
| bar2_qid = qid & qpp_mask; |
| bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; |
| |
| /* If the BAR2 Queue ID Offset is less than the Page Size, then the |
| * hardware will infer the Absolute Queue ID simply from the writes to |
| * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a |
| * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply |
| * write to the first BAR2 SGE Queue Area within the BAR2 Page with |
| * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID |
| * from the BAR2 Page and BAR2 Queue ID. |
| * |
| * One important censequence of this is that some BAR2 SGE registers |
| * have a "Queue ID" field and we can write the BAR2 SGE Queue ID |
| * there. But other registers synthesize the SGE Queue ID purely |
| * from the writes to the registers -- the Write Combined Doorbell |
| * Buffer is a good example. These BAR2 SGE Registers are only |
| * available for those BAR2 SGE Register areas where the SGE Absolute |
| * Queue ID can be inferred from simple writes. |
| */ |
| bar2_qoffset = bar2_page_offset; |
| bar2_qinferred = (bar2_qid_offset < page_size); |
| if (bar2_qinferred) { |
| bar2_qoffset += bar2_qid_offset; |
| bar2_qid = 0; |
| } |
| |
| *pbar2_qoffset = bar2_qoffset; |
| *pbar2_qid = bar2_qid; |
| return 0; |
| } |
| |
| /** |
| * t4_init_sge_params - initialize adap->params.sge |
| * @adapter: the adapter |
| * |
| * Initialize various fields of the adapter's SGE Parameters structure. |
| */ |
| int t4_init_sge_params(struct adapter *adapter) |
| { |
| struct sge_params *sge_params = &adapter->params.sge; |
| u32 hps, qpp; |
| unsigned int s_hps, s_qpp; |
| |
| /* Extract the SGE Page Size for our PF. |
| */ |
| hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); |
| s_hps = (HOSTPAGESIZEPF0_S + |
| (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->fn); |
| sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); |
| |
| /* Extract the SGE Egress and Ingess Queues Per Page for our PF. |
| */ |
| s_qpp = (QUEUESPERPAGEPF0_S + |
| (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->fn); |
| qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); |
| sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); |
| qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); |
| sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); |
| |
| return 0; |
| } |
| |
| /** |
| * t4_init_tp_params - initialize adap->params.tp |
| * @adap: the adapter |
| * |
| * Initialize various fields of the adapter's TP Parameters structure. |
| */ |
| int t4_init_tp_params(struct adapter *adap) |
| { |
| int chan; |
| u32 v; |
| |
| v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); |
| adap->params.tp.tre = TIMERRESOLUTION_G(v); |
| adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); |
| |
| /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ |
| for (chan = 0; chan < NCHAN; chan++) |
| adap->params.tp.tx_modq[chan] = chan; |
| |
| /* Cache the adapter's Compressed Filter Mode and global Incress |
| * Configuration. |
| */ |
| t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, |
| &adap->params.tp.vlan_pri_map, 1, |
| TP_VLAN_PRI_MAP_A); |
| t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, |
| &adap->params.tp.ingress_config, 1, |
| TP_INGRESS_CONFIG_A); |
| |
| /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field |
| * shift positions of several elements of the Compressed Filter Tuple |
| * for this adapter which we need frequently ... |
| */ |
| adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); |
| adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); |
| adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); |
| adap->params.tp.protocol_shift = t4_filter_field_shift(adap, |
| PROTOCOL_F); |
| |
| /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID |
| * represents the presense of an Outer VLAN instead of a VNIC ID. |
| */ |
| if ((adap->params.tp.ingress_config & VNIC_F) == 0) |
| adap->params.tp.vnic_shift = -1; |
| |
| return 0; |
| } |
| |
| /** |
| * t4_filter_field_shift - calculate filter field shift |
| * @adap: the adapter |
| * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) |
| * |
| * Return the shift position of a filter field within the Compressed |
| * Filter Tuple. The filter field is specified via its selection bit |
| * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. |
| */ |
| int t4_filter_field_shift(const struct adapter *adap, int filter_sel) |
| { |
| unsigned int filter_mode = adap->params.tp.vlan_pri_map; |
| unsigned int sel; |
| int field_shift; |
| |
| if ((filter_mode & filter_sel) == 0) |
| return -1; |
| |
| for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { |
| switch (filter_mode & sel) { |
| case FCOE_F: |
| field_shift += FT_FCOE_W; |
| break; |
| case PORT_F: |
| field_shift += FT_PORT_W; |
| break; |
| case VNIC_ID_F: |
| field_shift += FT_VNIC_ID_W; |
| break; |
| case VLAN_F: |
| field_shift += FT_VLAN_W; |
| break; |
| case TOS_F: |
| field_shift += FT_TOS_W; |
| break; |
| case PROTOCOL_F: |
| field_shift += FT_PROTOCOL_W; |
| break; |
| case ETHERTYPE_F: |
| field_shift += FT_ETHERTYPE_W; |
| break; |
| case MACMATCH_F: |
| field_shift += FT_MACMATCH_W; |
| break; |
| case MPSHITTYPE_F: |
| field_shift += FT_MPSHITTYPE_W; |
| break; |
| case FRAGMENTATION_F: |
| field_shift += FT_FRAGMENTATION_W; |
| break; |
| } |
| } |
| return field_shift; |
| } |
| |
| int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) |
| { |
| u8 addr[6]; |
| int ret, i, j = 0; |
| struct fw_port_cmd c; |
| struct fw_rss_vi_config_cmd rvc; |
| |
| memset(&c, 0, sizeof(c)); |
| memset(&rvc, 0, sizeof(rvc)); |
| |
| for_each_port(adap, i) { |
| unsigned int rss_size; |
| struct port_info *p = adap2pinfo(adap, i); |
| |
| while ((adap->params.portvec & (1 << j)) == 0) |
| j++; |
| |
| c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | |
| FW_CMD_REQUEST_F | FW_CMD_READ_F | |
| FW_PORT_CMD_PORTID_V(j)); |
| c.action_to_len16 = htonl( |
| FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | |
| FW_LEN16(c)); |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); |
| if (ret) |
| return ret; |
| |
| ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size); |
| if (ret < 0) |
| return ret; |
| |
| p->viid = ret; |
| p->tx_chan = j; |
| p->lport = j; |
| p->rss_size = rss_size; |
| memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); |
| adap->port[i]->dev_port = j; |
| |
| ret = ntohl(c.u.info.lstatus_to_modtype); |
| p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ? |
| FW_PORT_CMD_MDIOADDR_G(ret) : -1; |
| p->port_type = FW_PORT_CMD_PTYPE_G(ret); |
| p->mod_type = FW_PORT_MOD_TYPE_NA; |
| |
| rvc.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | FW_CMD_READ_F | |
| FW_RSS_VI_CONFIG_CMD_VIID(p->viid)); |
| rvc.retval_len16 = htonl(FW_LEN16(rvc)); |
| ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); |
| if (ret) |
| return ret; |
| p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen); |
| |
| init_link_config(&p->link_cfg, ntohs(c.u.info.pcap)); |
| j++; |
| } |
| return 0; |
| } |
| |
| /** |
| * t4_read_cimq_cfg - read CIM queue configuration |
| * @adap: the adapter |
| * @base: holds the queue base addresses in bytes |
| * @size: holds the queue sizes in bytes |
| * @thres: holds the queue full thresholds in bytes |
| * |
| * Returns the current configuration of the CIM queues, starting with |
| * the IBQs, then the OBQs. |
| */ |
| void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) |
| { |
| unsigned int i, v; |
| int cim_num_obq = is_t4(adap->params.chip) ? |
| CIM_NUM_OBQ : CIM_NUM_OBQ_T5; |
| |
| for (i = 0; i < CIM_NUM_IBQ; i++) { |
| t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | |
| QUENUMSELECT_V(i)); |
| v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); |
| /* value is in 256-byte units */ |
| *base++ = CIMQBASE_G(v) * 256; |
| *size++ = CIMQSIZE_G(v) * 256; |
| *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ |
| } |
| for (i = 0; i < cim_num_obq; i++) { |
| t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | |
| QUENUMSELECT_V(i)); |
| v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); |
| /* value is in 256-byte units */ |
| *base++ = CIMQBASE_G(v) * 256; |
| *size++ = CIMQSIZE_G(v) * 256; |
| } |
| } |
| |
| /** |
| * t4_read_cim_ibq - read the contents of a CIM inbound queue |
| * @adap: the adapter |
| * @qid: the queue index |
| * @data: where to store the queue contents |
| * @n: capacity of @data in 32-bit words |
| * |
| * Reads the contents of the selected CIM queue starting at address 0 up |
| * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on |
| * error and the number of 32-bit words actually read on success. |
| */ |
| int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) |
| { |
| int i, err, attempts; |
| unsigned int addr; |
| const unsigned int nwords = CIM_IBQ_SIZE * 4; |
| |
| if (qid > 5 || (n & 3)) |
| return -EINVAL; |
| |
| addr = qid * nwords; |
| if (n > nwords) |
| n = nwords; |
| |
| /* It might take 3-10ms before the IBQ debug read access is allowed. |
| * Wait for 1 Sec with a delay of 1 usec. |
| */ |
| attempts = 1000000; |
| |
| for (i = 0; i < n; i++, addr++) { |
| t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | |
| IBQDBGEN_F); |
| err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, |
| attempts, 1); |
| if (err) |
| return err; |
| *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); |
| } |
| t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); |
| return i; |
| } |
| |
| /** |
| * t4_read_cim_obq - read the contents of a CIM outbound queue |
| * @adap: the adapter |
| * @qid: the queue index |
| * @data: where to store the queue contents |
| * @n: capacity of @data in 32-bit words |
| * |
| * Reads the contents of the selected CIM queue starting at address 0 up |
| * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on |
| * error and the number of 32-bit words actually read on success. |
| */ |
| int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) |
| { |
| int i, err; |
| unsigned int addr, v, nwords; |
| int cim_num_obq = is_t4(adap->params.chip) ? |
| CIM_NUM_OBQ : CIM_NUM_OBQ_T5; |
| |
| if ((qid > (cim_num_obq - 1)) || (n & 3)) |
| return -EINVAL; |
| |
| t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | |
| QUENUMSELECT_V(qid)); |
| v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); |
| |
| addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ |
| nwords = CIMQSIZE_G(v) * 64; /* same */ |
| if (n > nwords) |
| n = nwords; |
| |
| for (i = 0; i < n; i++, addr++) { |
| t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | |
| OBQDBGEN_F); |
| err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, |
| 2, 1); |
| if (err) |
| return err; |
| *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); |
| } |
| t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); |
| return i; |
| } |
| |
| /** |
| * t4_cim_read - read a block from CIM internal address space |
| * @adap: the adapter |
| * @addr: the start address within the CIM address space |
| * @n: number of words to read |
| * @valp: where to store the result |
| * |
| * Reads a block of 4-byte words from the CIM intenal address space. |
| */ |
| int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, |
| unsigned int *valp) |
| { |
| int ret = 0; |
| |
| if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) |
| return -EBUSY; |
| |
| for ( ; !ret && n--; addr += 4) { |
| t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); |
| ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, |
| 0, 5, 2); |
| if (!ret) |
| *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); |
| } |
| return ret; |
| } |
| |
| /** |
| * t4_cim_write - write a block into CIM internal address space |
| * @adap: the adapter |
| * @addr: the start address within the CIM address space |
| * @n: number of words to write |
| * @valp: set of values to write |
| * |
| * Writes a block of 4-byte words into the CIM intenal address space. |
| */ |
| int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, |
| const unsigned int *valp) |
| { |
| int ret = 0; |
| |
| if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) |
| return -EBUSY; |
| |
| for ( ; !ret && n--; addr += 4) { |
| t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); |
| t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); |
| ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, |
| 0, 5, 2); |
| } |
| return ret; |
| } |
| |
| static int t4_cim_write1(struct adapter *adap, unsigned int addr, |
| unsigned int val) |
| { |
| return t4_cim_write(adap, addr, 1, &val); |
| } |
| |
| /** |
| * t4_cim_read_la - read CIM LA capture buffer |
| * @adap: the adapter |
| * @la_buf: where to store the LA data |
| * @wrptr: the HW write pointer within the capture buffer |
| * |
| * Reads the contents of the CIM LA buffer with the most recent entry at |
| * the end of the returned data and with the entry at @wrptr first. |
| * We try to leave the LA in the running state we find it in. |
| */ |
| int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) |
| { |
| int i, ret; |
| unsigned int cfg, val, idx; |
| |
| ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); |
| if (ret) |
| return ret; |
| |
| if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ |
| ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); |
| if (ret) |
| return ret; |
| } |
| |
| ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); |
| if (ret) |
| goto restart; |
| |
| idx = UPDBGLAWRPTR_G(val); |
| if (wrptr) |
| *wrptr = idx; |
| |
| for (i = 0; i < adap->params.cim_la_size; i++) { |
| ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, |
| UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); |
| if (ret) |
| break; |
| ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); |
| if (ret) |
| break; |
| if (val & UPDBGLARDEN_F) { |
| ret = -ETIMEDOUT; |
| break; |
| } |
| ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); |
| if (ret) |
| break; |
| idx = (idx + 1) & UPDBGLARDPTR_M; |
| } |
| restart: |
| if (cfg & UPDBGLAEN_F) { |
| int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, |
| cfg & ~UPDBGLARDEN_F); |
| if (!ret) |
| ret = r; |
| } |
| return ret; |
| } |
| |
| /** |
| * t4_tp_read_la - read TP LA capture buffer |
| * @adap: the adapter |
| * @la_buf: where to store the LA data |
| * @wrptr: the HW write pointer within the capture buffer |
| * |
| * Reads the contents of the TP LA buffer with the most recent entry at |
| * the end of the returned data and with the entry at @wrptr first. |
| * We leave the LA in the running state we find it in. |
| */ |
| void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) |
| { |
| bool last_incomplete; |
| unsigned int i, cfg, val, idx; |
| |
| cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; |
| if (cfg & DBGLAENABLE_F) /* freeze LA */ |
| t4_write_reg(adap, TP_DBG_LA_CONFIG_A, |
| adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); |
| |
| val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); |
| idx = DBGLAWPTR_G(val); |
| last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; |
| if (last_incomplete) |
| idx = (idx + 1) & DBGLARPTR_M; |
| if (wrptr) |
| *wrptr = idx; |
| |
| val &= 0xffff; |
| val &= ~DBGLARPTR_V(DBGLARPTR_M); |
| val |= adap->params.tp.la_mask; |
| |
| for (i = 0; i < TPLA_SIZE; i++) { |
| t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); |
| la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); |
| idx = (idx + 1) & DBGLARPTR_M; |
| } |
| |
| /* Wipe out last entry if it isn't valid */ |
| if (last_incomplete) |
| la_buf[TPLA_SIZE - 1] = ~0ULL; |
| |
| if (cfg & DBGLAENABLE_F) /* restore running state */ |
| t4_write_reg(adap, TP_DBG_LA_CONFIG_A, |
| cfg | adap->params.tp.la_mask); |
| } |