| #ifndef _PARISC_BITOPS_H |
| #define _PARISC_BITOPS_H |
| |
| #include <linux/compiler.h> |
| #include <asm/types.h> /* for BITS_PER_LONG/SHIFT_PER_LONG */ |
| #include <asm/byteorder.h> |
| #include <asm/atomic.h> |
| |
| /* |
| * HP-PARISC specific bit operations |
| * for a detailed description of the functions please refer |
| * to include/asm-i386/bitops.h or kerneldoc |
| */ |
| |
| #define CHOP_SHIFTCOUNT(x) (((unsigned long) (x)) & (BITS_PER_LONG - 1)) |
| |
| |
| #define smp_mb__before_clear_bit() smp_mb() |
| #define smp_mb__after_clear_bit() smp_mb() |
| |
| /* See http://marc.theaimsgroup.com/?t=108826637900003 for discussion |
| * on use of volatile and __*_bit() (set/clear/change): |
| * *_bit() want use of volatile. |
| * __*_bit() are "relaxed" and don't use spinlock or volatile. |
| */ |
| |
| static __inline__ void set_bit(int nr, volatile unsigned long * addr) |
| { |
| unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); |
| unsigned long flags; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| _atomic_spin_lock_irqsave(addr, flags); |
| *addr |= mask; |
| _atomic_spin_unlock_irqrestore(addr, flags); |
| } |
| |
| static __inline__ void __set_bit(unsigned long nr, volatile unsigned long * addr) |
| { |
| unsigned long *m = (unsigned long *) addr + (nr >> SHIFT_PER_LONG); |
| |
| *m |= 1UL << CHOP_SHIFTCOUNT(nr); |
| } |
| |
| static __inline__ void clear_bit(int nr, volatile unsigned long * addr) |
| { |
| unsigned long mask = ~(1UL << CHOP_SHIFTCOUNT(nr)); |
| unsigned long flags; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| _atomic_spin_lock_irqsave(addr, flags); |
| *addr &= mask; |
| _atomic_spin_unlock_irqrestore(addr, flags); |
| } |
| |
| static __inline__ void __clear_bit(unsigned long nr, volatile unsigned long * addr) |
| { |
| unsigned long *m = (unsigned long *) addr + (nr >> SHIFT_PER_LONG); |
| |
| *m &= ~(1UL << CHOP_SHIFTCOUNT(nr)); |
| } |
| |
| static __inline__ void change_bit(int nr, volatile unsigned long * addr) |
| { |
| unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); |
| unsigned long flags; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| _atomic_spin_lock_irqsave(addr, flags); |
| *addr ^= mask; |
| _atomic_spin_unlock_irqrestore(addr, flags); |
| } |
| |
| static __inline__ void __change_bit(unsigned long nr, volatile unsigned long * addr) |
| { |
| unsigned long *m = (unsigned long *) addr + (nr >> SHIFT_PER_LONG); |
| |
| *m ^= 1UL << CHOP_SHIFTCOUNT(nr); |
| } |
| |
| static __inline__ int test_and_set_bit(int nr, volatile unsigned long * addr) |
| { |
| unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); |
| unsigned long oldbit; |
| unsigned long flags; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| _atomic_spin_lock_irqsave(addr, flags); |
| oldbit = *addr; |
| *addr = oldbit | mask; |
| _atomic_spin_unlock_irqrestore(addr, flags); |
| |
| return (oldbit & mask) ? 1 : 0; |
| } |
| |
| static __inline__ int __test_and_set_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); |
| unsigned long oldbit; |
| unsigned long *addr = (unsigned long *)address + (nr >> SHIFT_PER_LONG); |
| |
| oldbit = *addr; |
| *addr = oldbit | mask; |
| |
| return (oldbit & mask) ? 1 : 0; |
| } |
| |
| static __inline__ int test_and_clear_bit(int nr, volatile unsigned long * addr) |
| { |
| unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); |
| unsigned long oldbit; |
| unsigned long flags; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| _atomic_spin_lock_irqsave(addr, flags); |
| oldbit = *addr; |
| *addr = oldbit & ~mask; |
| _atomic_spin_unlock_irqrestore(addr, flags); |
| |
| return (oldbit & mask) ? 1 : 0; |
| } |
| |
| static __inline__ int __test_and_clear_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); |
| unsigned long *addr = (unsigned long *)address + (nr >> SHIFT_PER_LONG); |
| unsigned long oldbit; |
| |
| oldbit = *addr; |
| *addr = oldbit & ~mask; |
| |
| return (oldbit & mask) ? 1 : 0; |
| } |
| |
| static __inline__ int test_and_change_bit(int nr, volatile unsigned long * addr) |
| { |
| unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); |
| unsigned long oldbit; |
| unsigned long flags; |
| |
| addr += (nr >> SHIFT_PER_LONG); |
| _atomic_spin_lock_irqsave(addr, flags); |
| oldbit = *addr; |
| *addr = oldbit ^ mask; |
| _atomic_spin_unlock_irqrestore(addr, flags); |
| |
| return (oldbit & mask) ? 1 : 0; |
| } |
| |
| static __inline__ int __test_and_change_bit(int nr, volatile unsigned long * address) |
| { |
| unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); |
| unsigned long *addr = (unsigned long *)address + (nr >> SHIFT_PER_LONG); |
| unsigned long oldbit; |
| |
| oldbit = *addr; |
| *addr = oldbit ^ mask; |
| |
| return (oldbit & mask) ? 1 : 0; |
| } |
| |
| static __inline__ int test_bit(int nr, const volatile unsigned long *address) |
| { |
| unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); |
| const unsigned long *addr = (const unsigned long *)address + (nr >> SHIFT_PER_LONG); |
| |
| return !!(*addr & mask); |
| } |
| |
| #ifdef __KERNEL__ |
| |
| /** |
| * __ffs - find first bit in word. returns 0 to "BITS_PER_LONG-1". |
| * @word: The word to search |
| * |
| * __ffs() return is undefined if no bit is set. |
| * |
| * 32-bit fast __ffs by LaMont Jones "lamont At hp com". |
| * 64-bit enhancement by Grant Grundler "grundler At parisc-linux org". |
| * (with help from willy/jejb to get the semantics right) |
| * |
| * This algorithm avoids branches by making use of nullification. |
| * One side effect of "extr" instructions is it sets PSW[N] bit. |
| * How PSW[N] (nullify next insn) gets set is determined by the |
| * "condition" field (eg "<>" or "TR" below) in the extr* insn. |
| * Only the 1st and one of either the 2cd or 3rd insn will get executed. |
| * Each set of 3 insn will get executed in 2 cycles on PA8x00 vs 16 or so |
| * cycles for each mispredicted branch. |
| */ |
| |
| static __inline__ unsigned long __ffs(unsigned long x) |
| { |
| unsigned long ret; |
| |
| __asm__( |
| #ifdef __LP64__ |
| " ldi 63,%1\n" |
| " extrd,u,*<> %0,63,32,%%r0\n" |
| " extrd,u,*TR %0,31,32,%0\n" /* move top 32-bits down */ |
| " addi -32,%1,%1\n" |
| #else |
| " ldi 31,%1\n" |
| #endif |
| " extru,<> %0,31,16,%%r0\n" |
| " extru,TR %0,15,16,%0\n" /* xxxx0000 -> 0000xxxx */ |
| " addi -16,%1,%1\n" |
| " extru,<> %0,31,8,%%r0\n" |
| " extru,TR %0,23,8,%0\n" /* 0000xx00 -> 000000xx */ |
| " addi -8,%1,%1\n" |
| " extru,<> %0,31,4,%%r0\n" |
| " extru,TR %0,27,4,%0\n" /* 000000x0 -> 0000000x */ |
| " addi -4,%1,%1\n" |
| " extru,<> %0,31,2,%%r0\n" |
| " extru,TR %0,29,2,%0\n" /* 0000000y, 1100b -> 0011b */ |
| " addi -2,%1,%1\n" |
| " extru,= %0,31,1,%%r0\n" /* check last bit */ |
| " addi -1,%1,%1\n" |
| : "+r" (x), "=r" (ret) ); |
| return ret; |
| } |
| |
| /* Undefined if no bit is zero. */ |
| #define ffz(x) __ffs(~x) |
| |
| /* |
| * ffs: find first bit set. returns 1 to BITS_PER_LONG or 0 (if none set) |
| * This is defined the same way as the libc and compiler builtin |
| * ffs routines, therefore differs in spirit from the above ffz (man ffs). |
| */ |
| static __inline__ int ffs(int x) |
| { |
| return x ? (__ffs((unsigned long)x) + 1) : 0; |
| } |
| |
| /* |
| * fls: find last (most significant) bit set. |
| * fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. |
| */ |
| |
| static __inline__ int fls(int x) |
| { |
| int ret; |
| if (!x) |
| return 0; |
| |
| __asm__( |
| " ldi 1,%1\n" |
| " extru,<> %0,15,16,%%r0\n" |
| " zdep,TR %0,15,16,%0\n" /* xxxx0000 */ |
| " addi 16,%1,%1\n" |
| " extru,<> %0,7,8,%%r0\n" |
| " zdep,TR %0,23,24,%0\n" /* xx000000 */ |
| " addi 8,%1,%1\n" |
| " extru,<> %0,3,4,%%r0\n" |
| " zdep,TR %0,27,28,%0\n" /* x0000000 */ |
| " addi 4,%1,%1\n" |
| " extru,<> %0,1,2,%%r0\n" |
| " zdep,TR %0,29,30,%0\n" /* y0000000 (y&3 = 0) */ |
| " addi 2,%1,%1\n" |
| " extru,= %0,0,1,%%r0\n" |
| " addi 1,%1,%1\n" /* if y & 8, add 1 */ |
| : "+r" (x), "=r" (ret) ); |
| |
| return ret; |
| } |
| #define fls64(x) generic_fls64(x) |
| |
| /* |
| * hweightN: returns the hamming weight (i.e. the number |
| * of bits set) of a N-bit word |
| */ |
| #define hweight64(x) generic_hweight64(x) |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is cleared. |
| */ |
| static inline int sched_find_first_bit(const unsigned long *b) |
| { |
| #ifdef __LP64__ |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 64; |
| return __ffs(b[2]) + 128; |
| #else |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 32; |
| if (unlikely(b[2])) |
| return __ffs(b[2]) + 64; |
| if (b[3]) |
| return __ffs(b[3]) + 96; |
| return __ffs(b[4]) + 128; |
| #endif |
| } |
| |
| #endif /* __KERNEL__ */ |
| |
| /* |
| * This implementation of find_{first,next}_zero_bit was stolen from |
| * Linus' asm-alpha/bitops.h. |
| */ |
| #define find_first_zero_bit(addr, size) \ |
| find_next_zero_bit((addr), (size), 0) |
| |
| static __inline__ unsigned long find_next_zero_bit(const void * addr, unsigned long size, unsigned long offset) |
| { |
| const unsigned long * p = ((unsigned long *) addr) + (offset >> SHIFT_PER_LONG); |
| unsigned long result = offset & ~(BITS_PER_LONG-1); |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= (BITS_PER_LONG-1); |
| if (offset) { |
| tmp = *(p++); |
| tmp |= ~0UL >> (BITS_PER_LONG-offset); |
| if (size < BITS_PER_LONG) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= BITS_PER_LONG; |
| result += BITS_PER_LONG; |
| } |
| while (size & ~(BITS_PER_LONG -1)) { |
| if (~(tmp = *(p++))) |
| goto found_middle; |
| result += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| found_first: |
| tmp |= ~0UL << size; |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| static __inline__ unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + (offset >> SHIFT_PER_LONG); |
| unsigned long result = offset & ~(BITS_PER_LONG-1); |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= (BITS_PER_LONG-1); |
| if (offset) { |
| tmp = *(p++); |
| tmp &= (~0UL << offset); |
| if (size < BITS_PER_LONG) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| size -= BITS_PER_LONG; |
| result += BITS_PER_LONG; |
| } |
| while (size & ~(BITS_PER_LONG-1)) { |
| if ((tmp = *(p++))) |
| goto found_middle; |
| result += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp &= (~0UL >> (BITS_PER_LONG - size)); |
| if (tmp == 0UL) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __ffs(tmp); |
| } |
| |
| /** |
| * find_first_bit - find the first set bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first set bit, not the number of the byte |
| * containing a bit. |
| */ |
| #define find_first_bit(addr, size) \ |
| find_next_bit((addr), (size), 0) |
| |
| #define _EXT2_HAVE_ASM_BITOPS_ |
| |
| #ifdef __KERNEL__ |
| /* |
| * test_and_{set,clear}_bit guarantee atomicity without |
| * disabling interrupts. |
| */ |
| |
| /* '3' is bits per byte */ |
| #define LE_BYTE_ADDR ((sizeof(unsigned long) - 1) << 3) |
| |
| #define ext2_test_bit(nr, addr) \ |
| test_bit((nr) ^ LE_BYTE_ADDR, (unsigned long *)addr) |
| #define ext2_set_bit(nr, addr) \ |
| __test_and_set_bit((nr) ^ LE_BYTE_ADDR, (unsigned long *)addr) |
| #define ext2_clear_bit(nr, addr) \ |
| __test_and_clear_bit((nr) ^ LE_BYTE_ADDR, (unsigned long *)addr) |
| |
| #define ext2_set_bit_atomic(l,nr,addr) \ |
| test_and_set_bit((nr) ^ LE_BYTE_ADDR, (unsigned long *)addr) |
| #define ext2_clear_bit_atomic(l,nr,addr) \ |
| test_and_clear_bit( (nr) ^ LE_BYTE_ADDR, (unsigned long *)addr) |
| |
| #endif /* __KERNEL__ */ |
| |
| |
| #define ext2_find_first_zero_bit(addr, size) \ |
| ext2_find_next_zero_bit((addr), (size), 0) |
| |
| /* include/linux/byteorder does not support "unsigned long" type */ |
| static inline unsigned long ext2_swabp(unsigned long * x) |
| { |
| #ifdef __LP64__ |
| return (unsigned long) __swab64p((u64 *) x); |
| #else |
| return (unsigned long) __swab32p((u32 *) x); |
| #endif |
| } |
| |
| /* include/linux/byteorder doesn't support "unsigned long" type */ |
| static inline unsigned long ext2_swab(unsigned long y) |
| { |
| #ifdef __LP64__ |
| return (unsigned long) __swab64((u64) y); |
| #else |
| return (unsigned long) __swab32((u32) y); |
| #endif |
| } |
| |
| static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) |
| { |
| unsigned long *p = (unsigned long *) addr + (offset >> SHIFT_PER_LONG); |
| unsigned long result = offset & ~(BITS_PER_LONG - 1); |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= (BITS_PER_LONG - 1UL); |
| if (offset) { |
| tmp = ext2_swabp(p++); |
| tmp |= (~0UL >> (BITS_PER_LONG - offset)); |
| if (size < BITS_PER_LONG) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= BITS_PER_LONG; |
| result += BITS_PER_LONG; |
| } |
| |
| while (size & ~(BITS_PER_LONG - 1)) { |
| if (~(tmp = *(p++))) |
| goto found_middle_swap; |
| result += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| } |
| if (!size) |
| return result; |
| tmp = ext2_swabp(p); |
| found_first: |
| tmp |= ~0UL << size; |
| if (tmp == ~0UL) /* Are any bits zero? */ |
| return result + size; /* Nope. Skip ffz */ |
| found_middle: |
| return result + ffz(tmp); |
| |
| found_middle_swap: |
| return result + ffz(ext2_swab(tmp)); |
| } |
| |
| |
| /* Bitmap functions for the minix filesystem. */ |
| #define minix_test_and_set_bit(nr,addr) ext2_set_bit(nr,addr) |
| #define minix_set_bit(nr,addr) ((void)ext2_set_bit(nr,addr)) |
| #define minix_test_and_clear_bit(nr,addr) ext2_clear_bit(nr,addr) |
| #define minix_test_bit(nr,addr) ext2_test_bit(nr,addr) |
| #define minix_find_first_zero_bit(addr,size) ext2_find_first_zero_bit(addr,size) |
| |
| #endif /* _PARISC_BITOPS_H */ |