| #include <linux/bitops.h> |
| #include <linux/slab.h> |
| #include <linux/bio.h> |
| #include <linux/mm.h> |
| #include <linux/gfp.h> |
| #include <linux/pagemap.h> |
| #include <linux/page-flags.h> |
| #include <linux/module.h> |
| #include <linux/spinlock.h> |
| #include <linux/blkdev.h> |
| #include "extent_map.h" |
| |
| static struct kmem_cache *extent_map_cache; |
| static struct kmem_cache *extent_state_cache; |
| |
| struct tree_entry { |
| u64 start; |
| u64 end; |
| int in_tree; |
| struct rb_node rb_node; |
| }; |
| |
| /* bits for the extent state */ |
| #define EXTENT_DIRTY 1 |
| #define EXTENT_WRITEBACK (1 << 1) |
| #define EXTENT_UPTODATE (1 << 2) |
| #define EXTENT_LOCKED (1 << 3) |
| #define EXTENT_NEW (1 << 4) |
| #define EXTENT_DELALLOC (1 << 5) |
| |
| #define EXTENT_IOBITS (EXTENT_LOCKED | EXTENT_WRITEBACK) |
| |
| void __init extent_map_init(void) |
| { |
| extent_map_cache = kmem_cache_create("extent_map", |
| sizeof(struct extent_map), 0, |
| SLAB_RECLAIM_ACCOUNT | |
| SLAB_DESTROY_BY_RCU, |
| NULL); |
| extent_state_cache = kmem_cache_create("extent_state", |
| sizeof(struct extent_state), 0, |
| SLAB_RECLAIM_ACCOUNT | |
| SLAB_DESTROY_BY_RCU, |
| NULL); |
| } |
| |
| void __exit extent_map_exit(void) |
| { |
| if (extent_map_cache) |
| kmem_cache_destroy(extent_map_cache); |
| if (extent_state_cache) |
| kmem_cache_destroy(extent_state_cache); |
| } |
| |
| void extent_map_tree_init(struct extent_map_tree *tree, |
| struct address_space *mapping, gfp_t mask) |
| { |
| tree->map.rb_node = NULL; |
| tree->state.rb_node = NULL; |
| tree->ops = NULL; |
| rwlock_init(&tree->lock); |
| tree->mapping = mapping; |
| } |
| EXPORT_SYMBOL(extent_map_tree_init); |
| |
| struct extent_map *alloc_extent_map(gfp_t mask) |
| { |
| struct extent_map *em; |
| em = kmem_cache_alloc(extent_map_cache, mask); |
| if (!em || IS_ERR(em)) |
| return em; |
| em->in_tree = 0; |
| atomic_set(&em->refs, 1); |
| return em; |
| } |
| EXPORT_SYMBOL(alloc_extent_map); |
| |
| void free_extent_map(struct extent_map *em) |
| { |
| if (atomic_dec_and_test(&em->refs)) { |
| WARN_ON(em->in_tree); |
| kmem_cache_free(extent_map_cache, em); |
| } |
| } |
| EXPORT_SYMBOL(free_extent_map); |
| |
| |
| struct extent_state *alloc_extent_state(gfp_t mask) |
| { |
| struct extent_state *state; |
| state = kmem_cache_alloc(extent_state_cache, mask); |
| if (!state || IS_ERR(state)) |
| return state; |
| state->state = 0; |
| state->in_tree = 0; |
| state->private = 0; |
| atomic_set(&state->refs, 1); |
| init_waitqueue_head(&state->wq); |
| return state; |
| } |
| EXPORT_SYMBOL(alloc_extent_state); |
| |
| void free_extent_state(struct extent_state *state) |
| { |
| if (atomic_dec_and_test(&state->refs)) { |
| WARN_ON(state->in_tree); |
| kmem_cache_free(extent_state_cache, state); |
| } |
| } |
| EXPORT_SYMBOL(free_extent_state); |
| |
| static struct rb_node *tree_insert(struct rb_root *root, u64 offset, |
| struct rb_node *node) |
| { |
| struct rb_node ** p = &root->rb_node; |
| struct rb_node * parent = NULL; |
| struct tree_entry *entry; |
| |
| while(*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct tree_entry, rb_node); |
| |
| if (offset < entry->start) |
| p = &(*p)->rb_left; |
| else if (offset > entry->end) |
| p = &(*p)->rb_right; |
| else |
| return parent; |
| } |
| |
| entry = rb_entry(node, struct tree_entry, rb_node); |
| entry->in_tree = 1; |
| rb_link_node(node, parent, p); |
| rb_insert_color(node, root); |
| return NULL; |
| } |
| |
| static struct rb_node *__tree_search(struct rb_root *root, u64 offset, |
| struct rb_node **prev_ret) |
| { |
| struct rb_node * n = root->rb_node; |
| struct rb_node *prev = NULL; |
| struct tree_entry *entry; |
| struct tree_entry *prev_entry = NULL; |
| |
| while(n) { |
| entry = rb_entry(n, struct tree_entry, rb_node); |
| prev = n; |
| prev_entry = entry; |
| |
| if (offset < entry->start) |
| n = n->rb_left; |
| else if (offset > entry->end) |
| n = n->rb_right; |
| else |
| return n; |
| } |
| if (!prev_ret) |
| return NULL; |
| while(prev && offset > prev_entry->end) { |
| prev = rb_next(prev); |
| prev_entry = rb_entry(prev, struct tree_entry, rb_node); |
| } |
| *prev_ret = prev; |
| return NULL; |
| } |
| |
| static inline struct rb_node *tree_search(struct rb_root *root, u64 offset) |
| { |
| struct rb_node *prev; |
| struct rb_node *ret; |
| ret = __tree_search(root, offset, &prev); |
| if (!ret) |
| return prev; |
| return ret; |
| } |
| |
| static int tree_delete(struct rb_root *root, u64 offset) |
| { |
| struct rb_node *node; |
| struct tree_entry *entry; |
| |
| node = __tree_search(root, offset, NULL); |
| if (!node) |
| return -ENOENT; |
| entry = rb_entry(node, struct tree_entry, rb_node); |
| entry->in_tree = 0; |
| rb_erase(node, root); |
| return 0; |
| } |
| |
| /* |
| * add_extent_mapping tries a simple backward merge with existing |
| * mappings. The extent_map struct passed in will be inserted into |
| * the tree directly (no copies made, just a reference taken). |
| */ |
| int add_extent_mapping(struct extent_map_tree *tree, |
| struct extent_map *em) |
| { |
| int ret = 0; |
| struct extent_map *prev = NULL; |
| struct rb_node *rb; |
| |
| write_lock_irq(&tree->lock); |
| rb = tree_insert(&tree->map, em->end, &em->rb_node); |
| if (rb) { |
| prev = rb_entry(rb, struct extent_map, rb_node); |
| printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end); |
| ret = -EEXIST; |
| goto out; |
| } |
| atomic_inc(&em->refs); |
| if (em->start != 0) { |
| rb = rb_prev(&em->rb_node); |
| if (rb) |
| prev = rb_entry(rb, struct extent_map, rb_node); |
| if (prev && prev->end + 1 == em->start && |
| ((em->block_start == 0 && prev->block_start == 0) || |
| (em->block_start == prev->block_end + 1))) { |
| em->start = prev->start; |
| em->block_start = prev->block_start; |
| rb_erase(&prev->rb_node, &tree->map); |
| prev->in_tree = 0; |
| free_extent_map(prev); |
| } |
| } |
| out: |
| write_unlock_irq(&tree->lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(add_extent_mapping); |
| |
| /* |
| * lookup_extent_mapping returns the first extent_map struct in the |
| * tree that intersects the [start, end] (inclusive) range. There may |
| * be additional objects in the tree that intersect, so check the object |
| * returned carefully to make sure you don't need additional lookups. |
| */ |
| struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree, |
| u64 start, u64 end) |
| { |
| struct extent_map *em; |
| struct rb_node *rb_node; |
| |
| read_lock_irq(&tree->lock); |
| rb_node = tree_search(&tree->map, start); |
| if (!rb_node) { |
| em = NULL; |
| goto out; |
| } |
| if (IS_ERR(rb_node)) { |
| em = ERR_PTR(PTR_ERR(rb_node)); |
| goto out; |
| } |
| em = rb_entry(rb_node, struct extent_map, rb_node); |
| if (em->end < start || em->start > end) { |
| em = NULL; |
| goto out; |
| } |
| atomic_inc(&em->refs); |
| out: |
| read_unlock_irq(&tree->lock); |
| return em; |
| } |
| EXPORT_SYMBOL(lookup_extent_mapping); |
| |
| /* |
| * removes an extent_map struct from the tree. No reference counts are |
| * dropped, and no checks are done to see if the range is in use |
| */ |
| int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em) |
| { |
| int ret; |
| |
| write_lock_irq(&tree->lock); |
| ret = tree_delete(&tree->map, em->end); |
| write_unlock_irq(&tree->lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(remove_extent_mapping); |
| |
| /* |
| * utility function to look for merge candidates inside a given range. |
| * Any extents with matching state are merged together into a single |
| * extent in the tree. Extents with EXTENT_IO in their state field |
| * are not merged because the end_io handlers need to be able to do |
| * operations on them without sleeping (or doing allocations/splits). |
| * |
| * This should be called with the tree lock held. |
| */ |
| static int merge_state(struct extent_map_tree *tree, |
| struct extent_state *state) |
| { |
| struct extent_state *other; |
| struct rb_node *other_node; |
| |
| if (state->state & EXTENT_IOBITS) |
| return 0; |
| |
| other_node = rb_prev(&state->rb_node); |
| if (other_node) { |
| other = rb_entry(other_node, struct extent_state, rb_node); |
| if (other->end == state->start - 1 && |
| other->state == state->state) { |
| state->start = other->start; |
| other->in_tree = 0; |
| rb_erase(&other->rb_node, &tree->state); |
| free_extent_state(other); |
| } |
| } |
| other_node = rb_next(&state->rb_node); |
| if (other_node) { |
| other = rb_entry(other_node, struct extent_state, rb_node); |
| if (other->start == state->end + 1 && |
| other->state == state->state) { |
| other->start = state->start; |
| state->in_tree = 0; |
| rb_erase(&state->rb_node, &tree->state); |
| free_extent_state(state); |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * insert an extent_state struct into the tree. 'bits' are set on the |
| * struct before it is inserted. |
| * |
| * This may return -EEXIST if the extent is already there, in which case the |
| * state struct is freed. |
| * |
| * The tree lock is not taken internally. This is a utility function and |
| * probably isn't what you want to call (see set/clear_extent_bit). |
| */ |
| static int insert_state(struct extent_map_tree *tree, |
| struct extent_state *state, u64 start, u64 end, |
| int bits) |
| { |
| struct rb_node *node; |
| |
| if (end < start) { |
| printk("end < start %Lu %Lu\n", end, start); |
| WARN_ON(1); |
| } |
| state->state |= bits; |
| state->start = start; |
| state->end = end; |
| if ((end & 4095) == 0) { |
| printk("insert state %Lu %Lu strange end\n", start, end); |
| WARN_ON(1); |
| } |
| node = tree_insert(&tree->state, end, &state->rb_node); |
| if (node) { |
| struct extent_state *found; |
| found = rb_entry(node, struct extent_state, rb_node); |
| printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end); |
| free_extent_state(state); |
| return -EEXIST; |
| } |
| merge_state(tree, state); |
| return 0; |
| } |
| |
| /* |
| * split a given extent state struct in two, inserting the preallocated |
| * struct 'prealloc' as the newly created second half. 'split' indicates an |
| * offset inside 'orig' where it should be split. |
| * |
| * Before calling, |
| * the tree has 'orig' at [orig->start, orig->end]. After calling, there |
| * are two extent state structs in the tree: |
| * prealloc: [orig->start, split - 1] |
| * orig: [ split, orig->end ] |
| * |
| * The tree locks are not taken by this function. They need to be held |
| * by the caller. |
| */ |
| static int split_state(struct extent_map_tree *tree, struct extent_state *orig, |
| struct extent_state *prealloc, u64 split) |
| { |
| struct rb_node *node; |
| prealloc->start = orig->start; |
| prealloc->end = split - 1; |
| prealloc->state = orig->state; |
| orig->start = split; |
| if ((prealloc->end & 4095) == 0) { |
| printk("insert state %Lu %Lu strange end\n", prealloc->start, |
| prealloc->end); |
| WARN_ON(1); |
| } |
| node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); |
| if (node) { |
| struct extent_state *found; |
| found = rb_entry(node, struct extent_state, rb_node); |
| printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end); |
| free_extent_state(prealloc); |
| return -EEXIST; |
| } |
| return 0; |
| } |
| |
| /* |
| * utility function to clear some bits in an extent state struct. |
| * it will optionally wake up any one waiting on this state (wake == 1), or |
| * forcibly remove the state from the tree (delete == 1). |
| * |
| * If no bits are set on the state struct after clearing things, the |
| * struct is freed and removed from the tree |
| */ |
| static int clear_state_bit(struct extent_map_tree *tree, |
| struct extent_state *state, int bits, int wake, |
| int delete) |
| { |
| int ret = state->state & bits; |
| state->state &= ~bits; |
| if (wake) |
| wake_up(&state->wq); |
| if (delete || state->state == 0) { |
| if (state->in_tree) { |
| rb_erase(&state->rb_node, &tree->state); |
| state->in_tree = 0; |
| free_extent_state(state); |
| } else { |
| WARN_ON(1); |
| } |
| } else { |
| merge_state(tree, state); |
| } |
| return ret; |
| } |
| |
| /* |
| * clear some bits on a range in the tree. This may require splitting |
| * or inserting elements in the tree, so the gfp mask is used to |
| * indicate which allocations or sleeping are allowed. |
| * |
| * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove |
| * the given range from the tree regardless of state (ie for truncate). |
| * |
| * the range [start, end] is inclusive. |
| * |
| * This takes the tree lock, and returns < 0 on error, > 0 if any of the |
| * bits were already set, or zero if none of the bits were already set. |
| */ |
| int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, |
| int bits, int wake, int delete, gfp_t mask) |
| { |
| struct extent_state *state; |
| struct extent_state *prealloc = NULL; |
| struct rb_node *node; |
| int err; |
| int set = 0; |
| |
| again: |
| if (!prealloc && (mask & __GFP_WAIT)) { |
| prealloc = alloc_extent_state(mask); |
| if (!prealloc) |
| return -ENOMEM; |
| } |
| |
| write_lock_irq(&tree->lock); |
| /* |
| * this search will find the extents that end after |
| * our range starts |
| */ |
| node = tree_search(&tree->state, start); |
| if (!node) |
| goto out; |
| state = rb_entry(node, struct extent_state, rb_node); |
| if (state->start > end) |
| goto out; |
| WARN_ON(state->end < start); |
| |
| /* |
| * | ---- desired range ---- | |
| * | state | or |
| * | ------------- state -------------- | |
| * |
| * We need to split the extent we found, and may flip |
| * bits on second half. |
| * |
| * If the extent we found extends past our range, we |
| * just split and search again. It'll get split again |
| * the next time though. |
| * |
| * If the extent we found is inside our range, we clear |
| * the desired bit on it. |
| */ |
| |
| if (state->start < start) { |
| err = split_state(tree, state, prealloc, start); |
| BUG_ON(err == -EEXIST); |
| prealloc = NULL; |
| if (err) |
| goto out; |
| if (state->end <= end) { |
| start = state->end + 1; |
| set |= clear_state_bit(tree, state, bits, |
| wake, delete); |
| } else { |
| start = state->start; |
| } |
| goto search_again; |
| } |
| /* |
| * | ---- desired range ---- | |
| * | state | |
| * We need to split the extent, and clear the bit |
| * on the first half |
| */ |
| if (state->start <= end && state->end > end) { |
| err = split_state(tree, state, prealloc, end + 1); |
| BUG_ON(err == -EEXIST); |
| |
| if (wake) |
| wake_up(&state->wq); |
| set |= clear_state_bit(tree, prealloc, bits, |
| wake, delete); |
| prealloc = NULL; |
| goto out; |
| } |
| |
| start = state->end + 1; |
| set |= clear_state_bit(tree, state, bits, wake, delete); |
| goto search_again; |
| |
| out: |
| write_unlock_irq(&tree->lock); |
| if (prealloc) |
| free_extent_state(prealloc); |
| |
| return set; |
| |
| search_again: |
| if (start >= end) |
| goto out; |
| write_unlock_irq(&tree->lock); |
| if (mask & __GFP_WAIT) |
| cond_resched(); |
| goto again; |
| } |
| EXPORT_SYMBOL(clear_extent_bit); |
| |
| static int wait_on_state(struct extent_map_tree *tree, |
| struct extent_state *state) |
| { |
| DEFINE_WAIT(wait); |
| prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); |
| read_unlock_irq(&tree->lock); |
| schedule(); |
| read_lock_irq(&tree->lock); |
| finish_wait(&state->wq, &wait); |
| return 0; |
| } |
| |
| /* |
| * waits for one or more bits to clear on a range in the state tree. |
| * The range [start, end] is inclusive. |
| * The tree lock is taken by this function |
| */ |
| int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits) |
| { |
| struct extent_state *state; |
| struct rb_node *node; |
| |
| read_lock_irq(&tree->lock); |
| again: |
| while (1) { |
| /* |
| * this search will find all the extents that end after |
| * our range starts |
| */ |
| node = tree_search(&tree->state, start); |
| if (!node) |
| break; |
| |
| state = rb_entry(node, struct extent_state, rb_node); |
| |
| if (state->start > end) |
| goto out; |
| |
| if (state->state & bits) { |
| start = state->start; |
| atomic_inc(&state->refs); |
| wait_on_state(tree, state); |
| free_extent_state(state); |
| goto again; |
| } |
| start = state->end + 1; |
| |
| if (start > end) |
| break; |
| |
| if (need_resched()) { |
| read_unlock_irq(&tree->lock); |
| cond_resched(); |
| read_lock_irq(&tree->lock); |
| } |
| } |
| out: |
| read_unlock_irq(&tree->lock); |
| return 0; |
| } |
| EXPORT_SYMBOL(wait_extent_bit); |
| |
| /* |
| * set some bits on a range in the tree. This may require allocations |
| * or sleeping, so the gfp mask is used to indicate what is allowed. |
| * |
| * If 'exclusive' == 1, this will fail with -EEXIST if some part of the |
| * range already has the desired bits set. The start of the existing |
| * range is returned in failed_start in this case. |
| * |
| * [start, end] is inclusive |
| * This takes the tree lock. |
| */ |
| int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits, |
| int exclusive, u64 *failed_start, gfp_t mask) |
| { |
| struct extent_state *state; |
| struct extent_state *prealloc = NULL; |
| struct rb_node *node; |
| int err = 0; |
| int set; |
| u64 last_start; |
| u64 last_end; |
| again: |
| if (!prealloc && (mask & __GFP_WAIT)) { |
| prealloc = alloc_extent_state(mask); |
| if (!prealloc) |
| return -ENOMEM; |
| } |
| |
| write_lock_irq(&tree->lock); |
| /* |
| * this search will find all the extents that end after |
| * our range starts. |
| */ |
| node = tree_search(&tree->state, start); |
| if (!node) { |
| err = insert_state(tree, prealloc, start, end, bits); |
| prealloc = NULL; |
| BUG_ON(err == -EEXIST); |
| goto out; |
| } |
| |
| state = rb_entry(node, struct extent_state, rb_node); |
| last_start = state->start; |
| last_end = state->end; |
| |
| /* |
| * | ---- desired range ---- | |
| * | state | |
| * |
| * Just lock what we found and keep going |
| */ |
| if (state->start == start && state->end <= end) { |
| set = state->state & bits; |
| if (set && exclusive) { |
| *failed_start = state->start; |
| err = -EEXIST; |
| goto out; |
| } |
| state->state |= bits; |
| start = state->end + 1; |
| merge_state(tree, state); |
| goto search_again; |
| } |
| |
| /* |
| * | ---- desired range ---- | |
| * | state | |
| * or |
| * | ------------- state -------------- | |
| * |
| * We need to split the extent we found, and may flip bits on |
| * second half. |
| * |
| * If the extent we found extends past our |
| * range, we just split and search again. It'll get split |
| * again the next time though. |
| * |
| * If the extent we found is inside our range, we set the |
| * desired bit on it. |
| */ |
| if (state->start < start) { |
| set = state->state & bits; |
| if (exclusive && set) { |
| *failed_start = start; |
| err = -EEXIST; |
| goto out; |
| } |
| err = split_state(tree, state, prealloc, start); |
| BUG_ON(err == -EEXIST); |
| prealloc = NULL; |
| if (err) |
| goto out; |
| if (state->end <= end) { |
| state->state |= bits; |
| start = state->end + 1; |
| merge_state(tree, state); |
| } else { |
| start = state->start; |
| } |
| goto search_again; |
| } |
| /* |
| * | ---- desired range ---- | |
| * | state | |
| * We need to split the extent, and set the bit |
| * on the first half |
| */ |
| if (state->start <= end && state->end > end) { |
| set = state->state & bits; |
| if (exclusive && set) { |
| *failed_start = start; |
| err = -EEXIST; |
| goto out; |
| } |
| err = split_state(tree, state, prealloc, end + 1); |
| BUG_ON(err == -EEXIST); |
| |
| prealloc->state |= bits; |
| merge_state(tree, prealloc); |
| prealloc = NULL; |
| goto out; |
| } |
| |
| /* |
| * | ---- desired range ---- | |
| * | state | or | state | |
| * |
| * There's a hole, we need to insert something in it and |
| * ignore the extent we found. |
| */ |
| if (state->start > start) { |
| u64 this_end; |
| if (end < last_start) |
| this_end = end; |
| else |
| this_end = last_start -1; |
| err = insert_state(tree, prealloc, start, this_end, |
| bits); |
| prealloc = NULL; |
| BUG_ON(err == -EEXIST); |
| if (err) |
| goto out; |
| start = this_end + 1; |
| goto search_again; |
| } |
| goto search_again; |
| |
| out: |
| write_unlock_irq(&tree->lock); |
| if (prealloc) |
| free_extent_state(prealloc); |
| |
| return err; |
| |
| search_again: |
| if (start > end) |
| goto out; |
| write_unlock_irq(&tree->lock); |
| if (mask & __GFP_WAIT) |
| cond_resched(); |
| goto again; |
| } |
| EXPORT_SYMBOL(set_extent_bit); |
| |
| /* wrappers around set/clear extent bit */ |
| int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL, |
| mask); |
| } |
| EXPORT_SYMBOL(set_extent_dirty); |
| |
| int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return set_extent_bit(tree, start, end, |
| EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL, |
| mask); |
| } |
| EXPORT_SYMBOL(set_extent_delalloc); |
| |
| int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return clear_extent_bit(tree, start, end, |
| EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask); |
| } |
| EXPORT_SYMBOL(clear_extent_dirty); |
| |
| int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL, |
| mask); |
| } |
| EXPORT_SYMBOL(set_extent_new); |
| |
| int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask); |
| } |
| EXPORT_SYMBOL(clear_extent_new); |
| |
| int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL, |
| mask); |
| } |
| EXPORT_SYMBOL(set_extent_uptodate); |
| |
| int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask); |
| } |
| EXPORT_SYMBOL(clear_extent_uptodate); |
| |
| int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return set_extent_bit(tree, start, end, EXTENT_WRITEBACK, |
| 0, NULL, mask); |
| } |
| EXPORT_SYMBOL(set_extent_writeback); |
| |
| int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask); |
| } |
| EXPORT_SYMBOL(clear_extent_writeback); |
| |
| int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end) |
| { |
| return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK); |
| } |
| EXPORT_SYMBOL(wait_on_extent_writeback); |
| |
| /* |
| * locks a range in ascending order, waiting for any locked regions |
| * it hits on the way. [start,end] are inclusive, and this will sleep. |
| */ |
| int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask) |
| { |
| int err; |
| u64 failed_start; |
| while (1) { |
| err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1, |
| &failed_start, mask); |
| if (err == -EEXIST && (mask & __GFP_WAIT)) { |
| wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); |
| start = failed_start; |
| } else { |
| break; |
| } |
| WARN_ON(start > end); |
| } |
| return err; |
| } |
| EXPORT_SYMBOL(lock_extent); |
| |
| int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end, |
| gfp_t mask) |
| { |
| return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask); |
| } |
| EXPORT_SYMBOL(unlock_extent); |
| |
| /* |
| * helper function to set pages and extents in the tree dirty |
| */ |
| int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end) |
| { |
| unsigned long index = start >> PAGE_CACHE_SHIFT; |
| unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| struct page *page; |
| |
| while (index <= end_index) { |
| page = find_get_page(tree->mapping, index); |
| BUG_ON(!page); |
| __set_page_dirty_nobuffers(page); |
| page_cache_release(page); |
| index++; |
| } |
| set_extent_dirty(tree, start, end, GFP_NOFS); |
| return 0; |
| } |
| EXPORT_SYMBOL(set_range_dirty); |
| |
| /* |
| * helper function to set both pages and extents in the tree writeback |
| */ |
| int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end) |
| { |
| unsigned long index = start >> PAGE_CACHE_SHIFT; |
| unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| struct page *page; |
| |
| while (index <= end_index) { |
| page = find_get_page(tree->mapping, index); |
| BUG_ON(!page); |
| set_page_writeback(page); |
| page_cache_release(page); |
| index++; |
| } |
| set_extent_writeback(tree, start, end, GFP_NOFS); |
| return 0; |
| } |
| EXPORT_SYMBOL(set_range_writeback); |
| |
| u64 find_lock_delalloc_range(struct extent_map_tree *tree, |
| u64 start, u64 lock_start, u64 *end, u64 max_bytes) |
| { |
| struct rb_node *node; |
| struct extent_state *state; |
| u64 cur_start = start; |
| u64 found = 0; |
| u64 total_bytes = 0; |
| |
| write_lock_irq(&tree->lock); |
| /* |
| * this search will find all the extents that end after |
| * our range starts. |
| */ |
| search_again: |
| node = tree_search(&tree->state, cur_start); |
| if (!node || IS_ERR(node)) { |
| goto out; |
| } |
| |
| while(1) { |
| state = rb_entry(node, struct extent_state, rb_node); |
| if (state->start != cur_start) { |
| goto out; |
| } |
| if (!(state->state & EXTENT_DELALLOC)) { |
| goto out; |
| } |
| if (state->start >= lock_start) { |
| if (state->state & EXTENT_LOCKED) { |
| DEFINE_WAIT(wait); |
| atomic_inc(&state->refs); |
| write_unlock_irq(&tree->lock); |
| schedule(); |
| write_lock_irq(&tree->lock); |
| finish_wait(&state->wq, &wait); |
| free_extent_state(state); |
| goto search_again; |
| } |
| state->state |= EXTENT_LOCKED; |
| } |
| found++; |
| *end = state->end; |
| cur_start = state->end + 1; |
| node = rb_next(node); |
| if (!node) |
| break; |
| total_bytes = state->end - state->start + 1; |
| if (total_bytes >= max_bytes) |
| break; |
| } |
| out: |
| write_unlock_irq(&tree->lock); |
| return found; |
| } |
| |
| /* |
| * helper function to lock both pages and extents in the tree. |
| * pages must be locked first. |
| */ |
| int lock_range(struct extent_map_tree *tree, u64 start, u64 end) |
| { |
| unsigned long index = start >> PAGE_CACHE_SHIFT; |
| unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| struct page *page; |
| int err; |
| |
| while (index <= end_index) { |
| page = grab_cache_page(tree->mapping, index); |
| if (!page) { |
| err = -ENOMEM; |
| goto failed; |
| } |
| if (IS_ERR(page)) { |
| err = PTR_ERR(page); |
| goto failed; |
| } |
| index++; |
| } |
| lock_extent(tree, start, end, GFP_NOFS); |
| return 0; |
| |
| failed: |
| /* |
| * we failed above in getting the page at 'index', so we undo here |
| * up to but not including the page at 'index' |
| */ |
| end_index = index; |
| index = start >> PAGE_CACHE_SHIFT; |
| while (index < end_index) { |
| page = find_get_page(tree->mapping, index); |
| unlock_page(page); |
| page_cache_release(page); |
| index++; |
| } |
| return err; |
| } |
| EXPORT_SYMBOL(lock_range); |
| |
| /* |
| * helper function to unlock both pages and extents in the tree. |
| */ |
| int unlock_range(struct extent_map_tree *tree, u64 start, u64 end) |
| { |
| unsigned long index = start >> PAGE_CACHE_SHIFT; |
| unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| struct page *page; |
| |
| while (index <= end_index) { |
| page = find_get_page(tree->mapping, index); |
| unlock_page(page); |
| page_cache_release(page); |
| index++; |
| } |
| unlock_extent(tree, start, end, GFP_NOFS); |
| return 0; |
| } |
| EXPORT_SYMBOL(unlock_range); |
| |
| int set_state_private(struct extent_map_tree *tree, u64 start, u64 private) |
| { |
| struct rb_node *node; |
| struct extent_state *state; |
| int ret = 0; |
| |
| write_lock_irq(&tree->lock); |
| /* |
| * this search will find all the extents that end after |
| * our range starts. |
| */ |
| node = tree_search(&tree->state, start); |
| if (!node || IS_ERR(node)) { |
| ret = -ENOENT; |
| goto out; |
| } |
| state = rb_entry(node, struct extent_state, rb_node); |
| if (state->start != start) { |
| ret = -ENOENT; |
| goto out; |
| } |
| state->private = private; |
| out: |
| write_unlock_irq(&tree->lock); |
| return ret; |
| |
| } |
| |
| int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private) |
| { |
| struct rb_node *node; |
| struct extent_state *state; |
| int ret = 0; |
| |
| read_lock_irq(&tree->lock); |
| /* |
| * this search will find all the extents that end after |
| * our range starts. |
| */ |
| node = tree_search(&tree->state, start); |
| if (!node || IS_ERR(node)) { |
| ret = -ENOENT; |
| goto out; |
| } |
| state = rb_entry(node, struct extent_state, rb_node); |
| if (state->start != start) { |
| ret = -ENOENT; |
| goto out; |
| } |
| *private = state->private; |
| out: |
| read_unlock_irq(&tree->lock); |
| return ret; |
| } |
| |
| /* |
| * searches a range in the state tree for a given mask. |
| * If 'filled' == 1, this returns 1 only if ever extent in the tree |
| * has the bits set. Otherwise, 1 is returned if any bit in the |
| * range is found set. |
| */ |
| static int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end, |
| int bits, int filled) |
| { |
| struct extent_state *state = NULL; |
| struct rb_node *node; |
| int bitset = 0; |
| |
| read_lock_irq(&tree->lock); |
| node = tree_search(&tree->state, start); |
| while (node && start <= end) { |
| state = rb_entry(node, struct extent_state, rb_node); |
| if (state->start > end) |
| break; |
| |
| if (filled && state->start > start) { |
| bitset = 0; |
| break; |
| } |
| if (state->state & bits) { |
| bitset = 1; |
| if (!filled) |
| break; |
| } else if (filled) { |
| bitset = 0; |
| break; |
| } |
| start = state->end + 1; |
| if (start > end) |
| break; |
| node = rb_next(node); |
| } |
| read_unlock_irq(&tree->lock); |
| return bitset; |
| } |
| |
| /* |
| * helper function to set a given page up to date if all the |
| * extents in the tree for that page are up to date |
| */ |
| static int check_page_uptodate(struct extent_map_tree *tree, |
| struct page *page) |
| { |
| u64 start = page->index << PAGE_CACHE_SHIFT; |
| u64 end = start + PAGE_CACHE_SIZE - 1; |
| if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1)) |
| SetPageUptodate(page); |
| return 0; |
| } |
| |
| /* |
| * helper function to unlock a page if all the extents in the tree |
| * for that page are unlocked |
| */ |
| static int check_page_locked(struct extent_map_tree *tree, |
| struct page *page) |
| { |
| u64 start = page->index << PAGE_CACHE_SHIFT; |
| u64 end = start + PAGE_CACHE_SIZE - 1; |
| if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0)) |
| unlock_page(page); |
| return 0; |
| } |
| |
| /* |
| * helper function to end page writeback if all the extents |
| * in the tree for that page are done with writeback |
| */ |
| static int check_page_writeback(struct extent_map_tree *tree, |
| struct page *page) |
| { |
| u64 start = page->index << PAGE_CACHE_SHIFT; |
| u64 end = start + PAGE_CACHE_SIZE - 1; |
| if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0)) |
| end_page_writeback(page); |
| return 0; |
| } |
| |
| /* lots and lots of room for performance fixes in the end_bio funcs */ |
| |
| /* |
| * after a writepage IO is done, we need to: |
| * clear the uptodate bits on error |
| * clear the writeback bits in the extent tree for this IO |
| * end_page_writeback if the page has no more pending IO |
| * |
| * Scheduling is not allowed, so the extent state tree is expected |
| * to have one and only one object corresponding to this IO. |
| */ |
| static int end_bio_extent_writepage(struct bio *bio, |
| unsigned int bytes_done, int err) |
| { |
| const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
| struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| struct extent_map_tree *tree = bio->bi_private; |
| u64 start; |
| u64 end; |
| int whole_page; |
| |
| if (bio->bi_size) |
| return 1; |
| |
| do { |
| struct page *page = bvec->bv_page; |
| start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; |
| end = start + bvec->bv_len - 1; |
| |
| if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) |
| whole_page = 1; |
| else |
| whole_page = 0; |
| |
| if (--bvec >= bio->bi_io_vec) |
| prefetchw(&bvec->bv_page->flags); |
| |
| if (!uptodate) { |
| clear_extent_uptodate(tree, start, end, GFP_ATOMIC); |
| ClearPageUptodate(page); |
| SetPageError(page); |
| } |
| clear_extent_writeback(tree, start, end, GFP_ATOMIC); |
| |
| if (whole_page) |
| end_page_writeback(page); |
| else |
| check_page_writeback(tree, page); |
| } while (bvec >= bio->bi_io_vec); |
| |
| bio_put(bio); |
| return 0; |
| } |
| |
| /* |
| * after a readpage IO is done, we need to: |
| * clear the uptodate bits on error |
| * set the uptodate bits if things worked |
| * set the page up to date if all extents in the tree are uptodate |
| * clear the lock bit in the extent tree |
| * unlock the page if there are no other extents locked for it |
| * |
| * Scheduling is not allowed, so the extent state tree is expected |
| * to have one and only one object corresponding to this IO. |
| */ |
| static int end_bio_extent_readpage(struct bio *bio, |
| unsigned int bytes_done, int err) |
| { |
| int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
| struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| struct extent_map_tree *tree = bio->bi_private; |
| u64 start; |
| u64 end; |
| int whole_page; |
| int ret; |
| |
| if (bio->bi_size) |
| return 1; |
| |
| do { |
| struct page *page = bvec->bv_page; |
| start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; |
| end = start + bvec->bv_len - 1; |
| |
| if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) |
| whole_page = 1; |
| else |
| whole_page = 0; |
| |
| if (--bvec >= bio->bi_io_vec) |
| prefetchw(&bvec->bv_page->flags); |
| |
| if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { |
| ret = tree->ops->readpage_end_io_hook(page, start, end); |
| if (ret) |
| uptodate = 0; |
| } |
| if (uptodate) { |
| set_extent_uptodate(tree, start, end, GFP_ATOMIC); |
| if (whole_page) |
| SetPageUptodate(page); |
| else |
| check_page_uptodate(tree, page); |
| } else { |
| ClearPageUptodate(page); |
| SetPageError(page); |
| } |
| |
| unlock_extent(tree, start, end, GFP_ATOMIC); |
| |
| if (whole_page) |
| unlock_page(page); |
| else |
| check_page_locked(tree, page); |
| } while (bvec >= bio->bi_io_vec); |
| |
| bio_put(bio); |
| return 0; |
| } |
| |
| /* |
| * IO done from prepare_write is pretty simple, we just unlock |
| * the structs in the extent tree when done, and set the uptodate bits |
| * as appropriate. |
| */ |
| static int end_bio_extent_preparewrite(struct bio *bio, |
| unsigned int bytes_done, int err) |
| { |
| const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
| struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| struct extent_map_tree *tree = bio->bi_private; |
| u64 start; |
| u64 end; |
| |
| if (bio->bi_size) |
| return 1; |
| |
| do { |
| struct page *page = bvec->bv_page; |
| start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; |
| end = start + bvec->bv_len - 1; |
| |
| if (--bvec >= bio->bi_io_vec) |
| prefetchw(&bvec->bv_page->flags); |
| |
| if (uptodate) { |
| set_extent_uptodate(tree, start, end, GFP_ATOMIC); |
| } else { |
| ClearPageUptodate(page); |
| SetPageError(page); |
| } |
| |
| unlock_extent(tree, start, end, GFP_ATOMIC); |
| |
| } while (bvec >= bio->bi_io_vec); |
| |
| bio_put(bio); |
| return 0; |
| } |
| |
| static int submit_extent_page(int rw, struct extent_map_tree *tree, |
| struct page *page, sector_t sector, |
| size_t size, unsigned long offset, |
| struct block_device *bdev, |
| bio_end_io_t end_io_func) |
| { |
| struct bio *bio; |
| int ret = 0; |
| |
| bio = bio_alloc(GFP_NOIO, 1); |
| |
| bio->bi_sector = sector; |
| bio->bi_bdev = bdev; |
| bio->bi_io_vec[0].bv_page = page; |
| bio->bi_io_vec[0].bv_len = size; |
| bio->bi_io_vec[0].bv_offset = offset; |
| |
| bio->bi_vcnt = 1; |
| bio->bi_idx = 0; |
| bio->bi_size = size; |
| |
| bio->bi_end_io = end_io_func; |
| bio->bi_private = tree; |
| |
| bio_get(bio); |
| submit_bio(rw, bio); |
| |
| if (bio_flagged(bio, BIO_EOPNOTSUPP)) |
| ret = -EOPNOTSUPP; |
| |
| bio_put(bio); |
| return ret; |
| } |
| |
| /* |
| * basic readpage implementation. Locked extent state structs are inserted |
| * into the tree that are removed when the IO is done (by the end_io |
| * handlers) |
| */ |
| int extent_read_full_page(struct extent_map_tree *tree, struct page *page, |
| get_extent_t *get_extent) |
| { |
| struct inode *inode = page->mapping->host; |
| u64 start = page->index << PAGE_CACHE_SHIFT; |
| u64 page_end = start + PAGE_CACHE_SIZE - 1; |
| u64 end; |
| u64 cur = start; |
| u64 extent_offset; |
| u64 last_byte = i_size_read(inode); |
| u64 block_start; |
| u64 cur_end; |
| sector_t sector; |
| struct extent_map *em; |
| struct block_device *bdev; |
| int ret; |
| int nr = 0; |
| size_t page_offset = 0; |
| size_t iosize; |
| size_t blocksize = inode->i_sb->s_blocksize; |
| |
| if (!PagePrivate(page)) { |
| SetPagePrivate(page); |
| set_page_private(page, 1); |
| WARN_ON(!page->mapping->a_ops->invalidatepage); |
| page_cache_get(page); |
| } |
| |
| end = page_end; |
| lock_extent(tree, start, end, GFP_NOFS); |
| |
| while (cur <= end) { |
| if (cur >= last_byte) { |
| iosize = PAGE_CACHE_SIZE - page_offset; |
| zero_user_page(page, page_offset, iosize, KM_USER0); |
| set_extent_uptodate(tree, cur, cur + iosize - 1, |
| GFP_NOFS); |
| unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); |
| break; |
| } |
| em = get_extent(inode, page, page_offset, cur, end, 0); |
| if (IS_ERR(em) || !em) { |
| SetPageError(page); |
| unlock_extent(tree, cur, end, GFP_NOFS); |
| break; |
| } |
| |
| extent_offset = cur - em->start; |
| BUG_ON(em->end < cur); |
| BUG_ON(end < cur); |
| |
| iosize = min(em->end - cur, end - cur) + 1; |
| cur_end = min(em->end, end); |
| iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); |
| sector = (em->block_start + extent_offset) >> 9; |
| bdev = em->bdev; |
| block_start = em->block_start; |
| free_extent_map(em); |
| em = NULL; |
| |
| /* we've found a hole, just zero and go on */ |
| if (block_start == 0) { |
| zero_user_page(page, page_offset, iosize, KM_USER0); |
| set_extent_uptodate(tree, cur, cur + iosize - 1, |
| GFP_NOFS); |
| unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); |
| cur = cur + iosize; |
| page_offset += iosize; |
| continue; |
| } |
| /* the get_extent function already copied into the page */ |
| if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) { |
| unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); |
| cur = cur + iosize; |
| page_offset += iosize; |
| continue; |
| } |
| |
| ret = 0; |
| if (tree->ops && tree->ops->readpage_io_hook) { |
| ret = tree->ops->readpage_io_hook(page, cur, |
| cur + iosize - 1); |
| } |
| if (!ret) { |
| ret = submit_extent_page(READ, tree, page, |
| sector, iosize, page_offset, |
| bdev, end_bio_extent_readpage); |
| } |
| if (ret) |
| SetPageError(page); |
| cur = cur + iosize; |
| page_offset += iosize; |
| nr++; |
| } |
| if (!nr) { |
| if (!PageError(page)) |
| SetPageUptodate(page); |
| unlock_page(page); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(extent_read_full_page); |
| |
| /* |
| * the writepage semantics are similar to regular writepage. extent |
| * records are inserted to lock ranges in the tree, and as dirty areas |
| * are found, they are marked writeback. Then the lock bits are removed |
| * and the end_io handler clears the writeback ranges |
| */ |
| int extent_write_full_page(struct extent_map_tree *tree, struct page *page, |
| get_extent_t *get_extent, |
| struct writeback_control *wbc) |
| { |
| struct inode *inode = page->mapping->host; |
| u64 start = page->index << PAGE_CACHE_SHIFT; |
| u64 page_end = start + PAGE_CACHE_SIZE - 1; |
| u64 end; |
| u64 cur = start; |
| u64 extent_offset; |
| u64 last_byte = i_size_read(inode); |
| u64 block_start; |
| sector_t sector; |
| struct extent_map *em; |
| struct block_device *bdev; |
| int ret; |
| int nr = 0; |
| size_t page_offset = 0; |
| size_t iosize; |
| size_t blocksize; |
| loff_t i_size = i_size_read(inode); |
| unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; |
| u64 nr_delalloc; |
| u64 delalloc_end; |
| |
| WARN_ON(!PageLocked(page)); |
| if (page->index > end_index) { |
| clear_extent_dirty(tree, start, page_end, GFP_NOFS); |
| unlock_page(page); |
| return 0; |
| } |
| |
| if (page->index == end_index) { |
| size_t offset = i_size & (PAGE_CACHE_SIZE - 1); |
| zero_user_page(page, offset, |
| PAGE_CACHE_SIZE - offset, KM_USER0); |
| } |
| |
| if (!PagePrivate(page)) { |
| SetPagePrivate(page); |
| set_page_private(page, 1); |
| WARN_ON(!page->mapping->a_ops->invalidatepage); |
| page_cache_get(page); |
| } |
| |
| lock_extent(tree, start, page_end, GFP_NOFS); |
| nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1, |
| &delalloc_end, |
| 128 * 1024 * 1024); |
| if (nr_delalloc) { |
| tree->ops->fill_delalloc(inode, start, delalloc_end); |
| if (delalloc_end >= page_end + 1) { |
| clear_extent_bit(tree, page_end + 1, delalloc_end, |
| EXTENT_LOCKED | EXTENT_DELALLOC, |
| 1, 0, GFP_NOFS); |
| } |
| clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC, |
| 0, 0, GFP_NOFS); |
| if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) { |
| printk("found delalloc bits after clear extent_bit\n"); |
| } |
| } else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) { |
| printk("found delalloc bits after find_delalloc_range returns 0\n"); |
| } |
| |
| end = page_end; |
| if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) { |
| printk("found delalloc bits after lock_extent\n"); |
| } |
| |
| if (last_byte <= start) { |
| clear_extent_dirty(tree, start, page_end, GFP_NOFS); |
| goto done; |
| } |
| |
| set_extent_uptodate(tree, start, page_end, GFP_NOFS); |
| blocksize = inode->i_sb->s_blocksize; |
| |
| while (cur <= end) { |
| if (cur >= last_byte) { |
| clear_extent_dirty(tree, cur, page_end, GFP_NOFS); |
| break; |
| } |
| em = get_extent(inode, page, page_offset, cur, end, 0); |
| if (IS_ERR(em) || !em) { |
| SetPageError(page); |
| break; |
| } |
| |
| extent_offset = cur - em->start; |
| BUG_ON(em->end < cur); |
| BUG_ON(end < cur); |
| iosize = min(em->end - cur, end - cur) + 1; |
| iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); |
| sector = (em->block_start + extent_offset) >> 9; |
| bdev = em->bdev; |
| block_start = em->block_start; |
| free_extent_map(em); |
| em = NULL; |
| |
| if (block_start == 0 || block_start == EXTENT_MAP_INLINE) { |
| clear_extent_dirty(tree, cur, |
| cur + iosize - 1, GFP_NOFS); |
| cur = cur + iosize; |
| page_offset += iosize; |
| continue; |
| } |
| |
| /* leave this out until we have a page_mkwrite call */ |
| if (0 && !test_range_bit(tree, cur, cur + iosize - 1, |
| EXTENT_DIRTY, 0)) { |
| cur = cur + iosize; |
| page_offset += iosize; |
| continue; |
| } |
| clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS); |
| ret = tree->ops->writepage_io_hook(page, cur, cur + iosize - 1); |
| if (ret) |
| SetPageError(page); |
| else { |
| set_range_writeback(tree, cur, cur + iosize - 1); |
| ret = submit_extent_page(WRITE, tree, page, sector, |
| iosize, page_offset, bdev, |
| end_bio_extent_writepage); |
| if (ret) |
| SetPageError(page); |
| } |
| cur = cur + iosize; |
| page_offset += iosize; |
| nr++; |
| } |
| done: |
| WARN_ON(test_range_bit(tree, start, page_end, EXTENT_DIRTY, 0)); |
| unlock_extent(tree, start, page_end, GFP_NOFS); |
| unlock_page(page); |
| return 0; |
| } |
| EXPORT_SYMBOL(extent_write_full_page); |
| |
| /* |
| * basic invalidatepage code, this waits on any locked or writeback |
| * ranges corresponding to the page, and then deletes any extent state |
| * records from the tree |
| */ |
| int extent_invalidatepage(struct extent_map_tree *tree, |
| struct page *page, unsigned long offset) |
| { |
| u64 start = (page->index << PAGE_CACHE_SHIFT); |
| u64 end = start + PAGE_CACHE_SIZE - 1; |
| size_t blocksize = page->mapping->host->i_sb->s_blocksize; |
| |
| start += (offset + blocksize -1) & ~(blocksize - 1); |
| if (start > end) |
| return 0; |
| |
| lock_extent(tree, start, end, GFP_NOFS); |
| wait_on_extent_writeback(tree, start, end); |
| clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DIRTY, |
| 1, 1, GFP_NOFS); |
| return 0; |
| } |
| EXPORT_SYMBOL(extent_invalidatepage); |
| |
| /* |
| * simple commit_write call, set_range_dirty is used to mark both |
| * the pages and the extent records as dirty |
| */ |
| int extent_commit_write(struct extent_map_tree *tree, |
| struct inode *inode, struct page *page, |
| unsigned from, unsigned to) |
| { |
| loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; |
| |
| if (!PagePrivate(page)) { |
| SetPagePrivate(page); |
| set_page_private(page, 1); |
| WARN_ON(!page->mapping->a_ops->invalidatepage); |
| page_cache_get(page); |
| } |
| |
| set_page_dirty(page); |
| |
| if (pos > inode->i_size) { |
| i_size_write(inode, pos); |
| mark_inode_dirty(inode); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(extent_commit_write); |
| |
| int extent_prepare_write(struct extent_map_tree *tree, |
| struct inode *inode, struct page *page, |
| unsigned from, unsigned to, get_extent_t *get_extent) |
| { |
| u64 page_start = page->index << PAGE_CACHE_SHIFT; |
| u64 page_end = page_start + PAGE_CACHE_SIZE - 1; |
| u64 block_start; |
| u64 orig_block_start; |
| u64 block_end; |
| u64 cur_end; |
| struct extent_map *em; |
| unsigned blocksize = 1 << inode->i_blkbits; |
| size_t page_offset = 0; |
| size_t block_off_start; |
| size_t block_off_end; |
| int err = 0; |
| int iocount = 0; |
| int ret = 0; |
| int isnew; |
| |
| if (!PagePrivate(page)) { |
| SetPagePrivate(page); |
| set_page_private(page, 1); |
| WARN_ON(!page->mapping->a_ops->invalidatepage); |
| page_cache_get(page); |
| } |
| block_start = (page_start + from) & ~((u64)blocksize - 1); |
| block_end = (page_start + to - 1) | (blocksize - 1); |
| orig_block_start = block_start; |
| |
| lock_extent(tree, page_start, page_end, GFP_NOFS); |
| while(block_start <= block_end) { |
| em = get_extent(inode, page, page_offset, block_start, |
| block_end, 1); |
| if (IS_ERR(em) || !em) { |
| goto err; |
| } |
| cur_end = min(block_end, em->end); |
| block_off_start = block_start & (PAGE_CACHE_SIZE - 1); |
| block_off_end = block_off_start + blocksize; |
| isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS); |
| |
| if (!PageUptodate(page) && isnew && |
| (block_off_end > to || block_off_start < from)) { |
| void *kaddr; |
| |
| kaddr = kmap_atomic(page, KM_USER0); |
| if (block_off_end > to) |
| memset(kaddr + to, 0, block_off_end - to); |
| if (block_off_start < from) |
| memset(kaddr + block_off_start, 0, |
| from - block_off_start); |
| flush_dcache_page(page); |
| kunmap_atomic(kaddr, KM_USER0); |
| } |
| if (!isnew && !PageUptodate(page) && |
| (block_off_end > to || block_off_start < from) && |
| !test_range_bit(tree, block_start, cur_end, |
| EXTENT_UPTODATE, 1)) { |
| u64 sector; |
| u64 extent_offset = block_start - em->start; |
| size_t iosize; |
| sector = (em->block_start + extent_offset) >> 9; |
| iosize = (cur_end - block_start + blocksize - 1) & |
| ~((u64)blocksize - 1); |
| /* |
| * we've already got the extent locked, but we |
| * need to split the state such that our end_bio |
| * handler can clear the lock. |
| */ |
| set_extent_bit(tree, block_start, |
| block_start + iosize - 1, |
| EXTENT_LOCKED, 0, NULL, GFP_NOFS); |
| ret = submit_extent_page(READ, tree, page, |
| sector, iosize, page_offset, em->bdev, |
| end_bio_extent_preparewrite); |
| iocount++; |
| block_start = block_start + iosize; |
| } else { |
| set_extent_uptodate(tree, block_start, cur_end, |
| GFP_NOFS); |
| unlock_extent(tree, block_start, cur_end, GFP_NOFS); |
| block_start = cur_end + 1; |
| } |
| page_offset = block_start & (PAGE_CACHE_SIZE - 1); |
| free_extent_map(em); |
| } |
| if (iocount) { |
| wait_extent_bit(tree, orig_block_start, |
| block_end, EXTENT_LOCKED); |
| } |
| check_page_uptodate(tree, page); |
| err: |
| /* FIXME, zero out newly allocated blocks on error */ |
| return err; |
| } |
| EXPORT_SYMBOL(extent_prepare_write); |
| |
| /* |
| * a helper for releasepage. As long as there are no locked extents |
| * in the range corresponding to the page, both state records and extent |
| * map records are removed |
| */ |
| int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page) |
| { |
| struct extent_map *em; |
| u64 start = page->index << PAGE_CACHE_SHIFT; |
| u64 end = start + PAGE_CACHE_SIZE - 1; |
| u64 orig_start = start; |
| int ret = 1; |
| |
| while (start <= end) { |
| em = lookup_extent_mapping(tree, start, end); |
| if (!em || IS_ERR(em)) |
| break; |
| if (!test_range_bit(tree, em->start, em->end, |
| EXTENT_LOCKED, 0)) { |
| remove_extent_mapping(tree, em); |
| /* once for the rb tree */ |
| free_extent_map(em); |
| } |
| start = em->end + 1; |
| /* once for us */ |
| free_extent_map(em); |
| } |
| if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0)) |
| ret = 0; |
| else |
| clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE, |
| 1, 1, GFP_NOFS); |
| return ret; |
| } |
| EXPORT_SYMBOL(try_release_extent_mapping); |
| |