| /* |
| * Copyright 2006 Dave Airlie |
| * Copyright 2007 Maarten Maathuis |
| * Copyright 2007-2009 Stuart Bennett |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
| * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF |
| * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include "drmP.h" |
| #include "nouveau_drv.h" |
| #include "nouveau_hw.h" |
| |
| #define CHIPSET_NFORCE 0x01a0 |
| #define CHIPSET_NFORCE2 0x01f0 |
| |
| /* |
| * misc hw access wrappers/control functions |
| */ |
| |
| void |
| NVWriteVgaSeq(struct drm_device *dev, int head, uint8_t index, uint8_t value) |
| { |
| NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index); |
| NVWritePRMVIO(dev, head, NV_PRMVIO_SR, value); |
| } |
| |
| uint8_t |
| NVReadVgaSeq(struct drm_device *dev, int head, uint8_t index) |
| { |
| NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index); |
| return NVReadPRMVIO(dev, head, NV_PRMVIO_SR); |
| } |
| |
| void |
| NVWriteVgaGr(struct drm_device *dev, int head, uint8_t index, uint8_t value) |
| { |
| NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index); |
| NVWritePRMVIO(dev, head, NV_PRMVIO_GX, value); |
| } |
| |
| uint8_t |
| NVReadVgaGr(struct drm_device *dev, int head, uint8_t index) |
| { |
| NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index); |
| return NVReadPRMVIO(dev, head, NV_PRMVIO_GX); |
| } |
| |
| /* CR44 takes values 0 (head A), 3 (head B) and 4 (heads tied) |
| * it affects only the 8 bit vga io regs, which we access using mmio at |
| * 0xc{0,2}3c*, 0x60{1,3}3*, and 0x68{1,3}3d* |
| * in general, the set value of cr44 does not matter: reg access works as |
| * expected and values can be set for the appropriate head by using a 0x2000 |
| * offset as required |
| * however: |
| * a) pre nv40, the head B range of PRMVIO regs at 0xc23c* was not exposed and |
| * cr44 must be set to 0 or 3 for accessing values on the correct head |
| * through the common 0xc03c* addresses |
| * b) in tied mode (4) head B is programmed to the values set on head A, and |
| * access using the head B addresses can have strange results, ergo we leave |
| * tied mode in init once we know to what cr44 should be restored on exit |
| * |
| * the owner parameter is slightly abused: |
| * 0 and 1 are treated as head values and so the set value is (owner * 3) |
| * other values are treated as literal values to set |
| */ |
| void |
| NVSetOwner(struct drm_device *dev, int owner) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| |
| if (owner == 1) |
| owner *= 3; |
| |
| if (dev_priv->chipset == 0x11) { |
| /* This might seem stupid, but the blob does it and |
| * omitting it often locks the system up. |
| */ |
| NVReadVgaCrtc(dev, 0, NV_CIO_SR_LOCK_INDEX); |
| NVReadVgaCrtc(dev, 1, NV_CIO_SR_LOCK_INDEX); |
| } |
| |
| /* CR44 is always changed on CRTC0 */ |
| NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_44, owner); |
| |
| if (dev_priv->chipset == 0x11) { /* set me harder */ |
| NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner); |
| NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner); |
| } |
| } |
| |
| void |
| NVBlankScreen(struct drm_device *dev, int head, bool blank) |
| { |
| unsigned char seq1; |
| |
| if (nv_two_heads(dev)) |
| NVSetOwner(dev, head); |
| |
| seq1 = NVReadVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX); |
| |
| NVVgaSeqReset(dev, head, true); |
| if (blank) |
| NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 | 0x20); |
| else |
| NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 & ~0x20); |
| NVVgaSeqReset(dev, head, false); |
| } |
| |
| /* |
| * PLL setting |
| */ |
| |
| static int |
| powerctrl_1_shift(int chip_version, int reg) |
| { |
| int shift = -4; |
| |
| if (chip_version < 0x17 || chip_version == 0x1a || chip_version == 0x20) |
| return shift; |
| |
| switch (reg) { |
| case NV_RAMDAC_VPLL2: |
| shift += 4; |
| case NV_PRAMDAC_VPLL_COEFF: |
| shift += 4; |
| case NV_PRAMDAC_MPLL_COEFF: |
| shift += 4; |
| case NV_PRAMDAC_NVPLL_COEFF: |
| shift += 4; |
| } |
| |
| /* |
| * the shift for vpll regs is only used for nv3x chips with a single |
| * stage pll |
| */ |
| if (shift > 4 && (chip_version < 0x32 || chip_version == 0x35 || |
| chip_version == 0x36 || chip_version >= 0x40)) |
| shift = -4; |
| |
| return shift; |
| } |
| |
| static void |
| setPLL_single(struct drm_device *dev, uint32_t reg, struct nouveau_pll_vals *pv) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| int chip_version = dev_priv->vbios.chip_version; |
| uint32_t oldpll = NVReadRAMDAC(dev, 0, reg); |
| int oldN = (oldpll >> 8) & 0xff, oldM = oldpll & 0xff; |
| uint32_t pll = (oldpll & 0xfff80000) | pv->log2P << 16 | pv->NM1; |
| uint32_t saved_powerctrl_1 = 0; |
| int shift_powerctrl_1 = powerctrl_1_shift(chip_version, reg); |
| |
| if (oldpll == pll) |
| return; /* already set */ |
| |
| if (shift_powerctrl_1 >= 0) { |
| saved_powerctrl_1 = nvReadMC(dev, NV_PBUS_POWERCTRL_1); |
| nvWriteMC(dev, NV_PBUS_POWERCTRL_1, |
| (saved_powerctrl_1 & ~(0xf << shift_powerctrl_1)) | |
| 1 << shift_powerctrl_1); |
| } |
| |
| if (oldM && pv->M1 && (oldN / oldM < pv->N1 / pv->M1)) |
| /* upclock -- write new post divider first */ |
| NVWriteRAMDAC(dev, 0, reg, pv->log2P << 16 | (oldpll & 0xffff)); |
| else |
| /* downclock -- write new NM first */ |
| NVWriteRAMDAC(dev, 0, reg, (oldpll & 0xffff0000) | pv->NM1); |
| |
| if (chip_version < 0x17 && chip_version != 0x11) |
| /* wait a bit on older chips */ |
| msleep(64); |
| NVReadRAMDAC(dev, 0, reg); |
| |
| /* then write the other half as well */ |
| NVWriteRAMDAC(dev, 0, reg, pll); |
| |
| if (shift_powerctrl_1 >= 0) |
| nvWriteMC(dev, NV_PBUS_POWERCTRL_1, saved_powerctrl_1); |
| } |
| |
| static uint32_t |
| new_ramdac580(uint32_t reg1, bool ss, uint32_t ramdac580) |
| { |
| bool head_a = (reg1 == NV_PRAMDAC_VPLL_COEFF); |
| |
| if (ss) /* single stage pll mode */ |
| ramdac580 |= head_a ? NV_RAMDAC_580_VPLL1_ACTIVE : |
| NV_RAMDAC_580_VPLL2_ACTIVE; |
| else |
| ramdac580 &= head_a ? ~NV_RAMDAC_580_VPLL1_ACTIVE : |
| ~NV_RAMDAC_580_VPLL2_ACTIVE; |
| |
| return ramdac580; |
| } |
| |
| static void |
| setPLL_double_highregs(struct drm_device *dev, uint32_t reg1, |
| struct nouveau_pll_vals *pv) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| int chip_version = dev_priv->vbios.chip_version; |
| bool nv3035 = chip_version == 0x30 || chip_version == 0x35; |
| uint32_t reg2 = reg1 + ((reg1 == NV_RAMDAC_VPLL2) ? 0x5c : 0x70); |
| uint32_t oldpll1 = NVReadRAMDAC(dev, 0, reg1); |
| uint32_t oldpll2 = !nv3035 ? NVReadRAMDAC(dev, 0, reg2) : 0; |
| uint32_t pll1 = (oldpll1 & 0xfff80000) | pv->log2P << 16 | pv->NM1; |
| uint32_t pll2 = (oldpll2 & 0x7fff0000) | 1 << 31 | pv->NM2; |
| uint32_t oldramdac580 = 0, ramdac580 = 0; |
| bool single_stage = !pv->NM2 || pv->N2 == pv->M2; /* nv41+ only */ |
| uint32_t saved_powerctrl_1 = 0, savedc040 = 0; |
| int shift_powerctrl_1 = powerctrl_1_shift(chip_version, reg1); |
| |
| /* model specific additions to generic pll1 and pll2 set up above */ |
| if (nv3035) { |
| pll1 = (pll1 & 0xfcc7ffff) | (pv->N2 & 0x18) << 21 | |
| (pv->N2 & 0x7) << 19 | 8 << 4 | (pv->M2 & 7) << 4; |
| pll2 = 0; |
| } |
| if (chip_version > 0x40 && reg1 >= NV_PRAMDAC_VPLL_COEFF) { /* !nv40 */ |
| oldramdac580 = NVReadRAMDAC(dev, 0, NV_PRAMDAC_580); |
| ramdac580 = new_ramdac580(reg1, single_stage, oldramdac580); |
| if (oldramdac580 != ramdac580) |
| oldpll1 = ~0; /* force mismatch */ |
| if (single_stage) |
| /* magic value used by nvidia in single stage mode */ |
| pll2 |= 0x011f; |
| } |
| if (chip_version > 0x70) |
| /* magic bits set by the blob (but not the bios) on g71-73 */ |
| pll1 = (pll1 & 0x7fffffff) | (single_stage ? 0x4 : 0xc) << 28; |
| |
| if (oldpll1 == pll1 && oldpll2 == pll2) |
| return; /* already set */ |
| |
| if (shift_powerctrl_1 >= 0) { |
| saved_powerctrl_1 = nvReadMC(dev, NV_PBUS_POWERCTRL_1); |
| nvWriteMC(dev, NV_PBUS_POWERCTRL_1, |
| (saved_powerctrl_1 & ~(0xf << shift_powerctrl_1)) | |
| 1 << shift_powerctrl_1); |
| } |
| |
| if (chip_version >= 0x40) { |
| int shift_c040 = 14; |
| |
| switch (reg1) { |
| case NV_PRAMDAC_MPLL_COEFF: |
| shift_c040 += 2; |
| case NV_PRAMDAC_NVPLL_COEFF: |
| shift_c040 += 2; |
| case NV_RAMDAC_VPLL2: |
| shift_c040 += 2; |
| case NV_PRAMDAC_VPLL_COEFF: |
| shift_c040 += 2; |
| } |
| |
| savedc040 = nvReadMC(dev, 0xc040); |
| if (shift_c040 != 14) |
| nvWriteMC(dev, 0xc040, savedc040 & ~(3 << shift_c040)); |
| } |
| |
| if (oldramdac580 != ramdac580) |
| NVWriteRAMDAC(dev, 0, NV_PRAMDAC_580, ramdac580); |
| |
| if (!nv3035) |
| NVWriteRAMDAC(dev, 0, reg2, pll2); |
| NVWriteRAMDAC(dev, 0, reg1, pll1); |
| |
| if (shift_powerctrl_1 >= 0) |
| nvWriteMC(dev, NV_PBUS_POWERCTRL_1, saved_powerctrl_1); |
| if (chip_version >= 0x40) |
| nvWriteMC(dev, 0xc040, savedc040); |
| } |
| |
| static void |
| setPLL_double_lowregs(struct drm_device *dev, uint32_t NMNMreg, |
| struct nouveau_pll_vals *pv) |
| { |
| /* When setting PLLs, there is a merry game of disabling and enabling |
| * various bits of hardware during the process. This function is a |
| * synthesis of six nv4x traces, nearly each card doing a subtly |
| * different thing. With luck all the necessary bits for each card are |
| * combined herein. Without luck it deviates from each card's formula |
| * so as to not work on any :) |
| */ |
| |
| uint32_t Preg = NMNMreg - 4; |
| bool mpll = Preg == 0x4020; |
| uint32_t oldPval = nvReadMC(dev, Preg); |
| uint32_t NMNM = pv->NM2 << 16 | pv->NM1; |
| uint32_t Pval = (oldPval & (mpll ? ~(0x77 << 16) : ~(7 << 16))) | |
| 0xc << 28 | pv->log2P << 16; |
| uint32_t saved4600 = 0; |
| /* some cards have different maskc040s */ |
| uint32_t maskc040 = ~(3 << 14), savedc040; |
| bool single_stage = !pv->NM2 || pv->N2 == pv->M2; |
| |
| if (nvReadMC(dev, NMNMreg) == NMNM && (oldPval & 0xc0070000) == Pval) |
| return; |
| |
| if (Preg == 0x4000) |
| maskc040 = ~0x333; |
| if (Preg == 0x4058) |
| maskc040 = ~(0xc << 24); |
| |
| if (mpll) { |
| struct pll_lims pll_lim; |
| uint8_t Pval2; |
| |
| if (get_pll_limits(dev, Preg, &pll_lim)) |
| return; |
| |
| Pval2 = pv->log2P + pll_lim.log2p_bias; |
| if (Pval2 > pll_lim.max_log2p) |
| Pval2 = pll_lim.max_log2p; |
| Pval |= 1 << 28 | Pval2 << 20; |
| |
| saved4600 = nvReadMC(dev, 0x4600); |
| nvWriteMC(dev, 0x4600, saved4600 | 8 << 28); |
| } |
| if (single_stage) |
| Pval |= mpll ? 1 << 12 : 1 << 8; |
| |
| nvWriteMC(dev, Preg, oldPval | 1 << 28); |
| nvWriteMC(dev, Preg, Pval & ~(4 << 28)); |
| if (mpll) { |
| Pval |= 8 << 20; |
| nvWriteMC(dev, 0x4020, Pval & ~(0xc << 28)); |
| nvWriteMC(dev, 0x4038, Pval & ~(0xc << 28)); |
| } |
| |
| savedc040 = nvReadMC(dev, 0xc040); |
| nvWriteMC(dev, 0xc040, savedc040 & maskc040); |
| |
| nvWriteMC(dev, NMNMreg, NMNM); |
| if (NMNMreg == 0x4024) |
| nvWriteMC(dev, 0x403c, NMNM); |
| |
| nvWriteMC(dev, Preg, Pval); |
| if (mpll) { |
| Pval &= ~(8 << 20); |
| nvWriteMC(dev, 0x4020, Pval); |
| nvWriteMC(dev, 0x4038, Pval); |
| nvWriteMC(dev, 0x4600, saved4600); |
| } |
| |
| nvWriteMC(dev, 0xc040, savedc040); |
| |
| if (mpll) { |
| nvWriteMC(dev, 0x4020, Pval & ~(1 << 28)); |
| nvWriteMC(dev, 0x4038, Pval & ~(1 << 28)); |
| } |
| } |
| |
| void |
| nouveau_hw_setpll(struct drm_device *dev, uint32_t reg1, |
| struct nouveau_pll_vals *pv) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| int cv = dev_priv->vbios.chip_version; |
| |
| if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 || |
| cv >= 0x40) { |
| if (reg1 > 0x405c) |
| setPLL_double_highregs(dev, reg1, pv); |
| else |
| setPLL_double_lowregs(dev, reg1, pv); |
| } else |
| setPLL_single(dev, reg1, pv); |
| } |
| |
| /* |
| * PLL getting |
| */ |
| |
| static void |
| nouveau_hw_decode_pll(struct drm_device *dev, uint32_t reg1, uint32_t pll1, |
| uint32_t pll2, struct nouveau_pll_vals *pllvals) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| |
| /* to force parsing as single stage (i.e. nv40 vplls) pass pll2 as 0 */ |
| |
| /* log2P is & 0x7 as never more than 7, and nv30/35 only uses 3 bits */ |
| pllvals->log2P = (pll1 >> 16) & 0x7; |
| pllvals->N2 = pllvals->M2 = 1; |
| |
| if (reg1 <= 0x405c) { |
| pllvals->NM1 = pll2 & 0xffff; |
| /* single stage NVPLL and VPLLs use 1 << 8, MPLL uses 1 << 12 */ |
| if (!(pll1 & 0x1100)) |
| pllvals->NM2 = pll2 >> 16; |
| } else { |
| pllvals->NM1 = pll1 & 0xffff; |
| if (nv_two_reg_pll(dev) && pll2 & NV31_RAMDAC_ENABLE_VCO2) |
| pllvals->NM2 = pll2 & 0xffff; |
| else if (dev_priv->chipset == 0x30 || dev_priv->chipset == 0x35) { |
| pllvals->M1 &= 0xf; /* only 4 bits */ |
| if (pll1 & NV30_RAMDAC_ENABLE_VCO2) { |
| pllvals->M2 = (pll1 >> 4) & 0x7; |
| pllvals->N2 = ((pll1 >> 21) & 0x18) | |
| ((pll1 >> 19) & 0x7); |
| } |
| } |
| } |
| } |
| |
| int |
| nouveau_hw_get_pllvals(struct drm_device *dev, enum pll_types plltype, |
| struct nouveau_pll_vals *pllvals) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| uint32_t reg1 = get_pll_register(dev, plltype), pll1, pll2 = 0; |
| struct pll_lims pll_lim; |
| int ret; |
| |
| if (reg1 == 0) |
| return -ENOENT; |
| |
| pll1 = nvReadMC(dev, reg1); |
| |
| if (reg1 <= 0x405c) |
| pll2 = nvReadMC(dev, reg1 + 4); |
| else if (nv_two_reg_pll(dev)) { |
| uint32_t reg2 = reg1 + (reg1 == NV_RAMDAC_VPLL2 ? 0x5c : 0x70); |
| |
| pll2 = nvReadMC(dev, reg2); |
| } |
| |
| if (dev_priv->card_type == 0x40 && reg1 >= NV_PRAMDAC_VPLL_COEFF) { |
| uint32_t ramdac580 = NVReadRAMDAC(dev, 0, NV_PRAMDAC_580); |
| |
| /* check whether vpll has been forced into single stage mode */ |
| if (reg1 == NV_PRAMDAC_VPLL_COEFF) { |
| if (ramdac580 & NV_RAMDAC_580_VPLL1_ACTIVE) |
| pll2 = 0; |
| } else |
| if (ramdac580 & NV_RAMDAC_580_VPLL2_ACTIVE) |
| pll2 = 0; |
| } |
| |
| nouveau_hw_decode_pll(dev, reg1, pll1, pll2, pllvals); |
| |
| ret = get_pll_limits(dev, plltype, &pll_lim); |
| if (ret) |
| return ret; |
| |
| pllvals->refclk = pll_lim.refclk; |
| |
| return 0; |
| } |
| |
| int |
| nouveau_hw_pllvals_to_clk(struct nouveau_pll_vals *pv) |
| { |
| /* Avoid divide by zero if called at an inappropriate time */ |
| if (!pv->M1 || !pv->M2) |
| return 0; |
| |
| return pv->N1 * pv->N2 * pv->refclk / (pv->M1 * pv->M2) >> pv->log2P; |
| } |
| |
| int |
| nouveau_hw_get_clock(struct drm_device *dev, enum pll_types plltype) |
| { |
| struct nouveau_pll_vals pllvals; |
| int ret; |
| |
| if (plltype == PLL_MEMORY && |
| (dev->pci_device & 0x0ff0) == CHIPSET_NFORCE) { |
| uint32_t mpllP; |
| |
| pci_read_config_dword(pci_get_bus_and_slot(0, 3), 0x6c, &mpllP); |
| if (!mpllP) |
| mpllP = 4; |
| |
| return 400000 / mpllP; |
| } else |
| if (plltype == PLL_MEMORY && |
| (dev->pci_device & 0xff0) == CHIPSET_NFORCE2) { |
| uint32_t clock; |
| |
| pci_read_config_dword(pci_get_bus_and_slot(0, 5), 0x4c, &clock); |
| return clock; |
| } |
| |
| ret = nouveau_hw_get_pllvals(dev, plltype, &pllvals); |
| if (ret) |
| return ret; |
| |
| return nouveau_hw_pllvals_to_clk(&pllvals); |
| } |
| |
| static void |
| nouveau_hw_fix_bad_vpll(struct drm_device *dev, int head) |
| { |
| /* the vpll on an unused head can come up with a random value, way |
| * beyond the pll limits. for some reason this causes the chip to |
| * lock up when reading the dac palette regs, so set a valid pll here |
| * when such a condition detected. only seen on nv11 to date |
| */ |
| |
| struct pll_lims pll_lim; |
| struct nouveau_pll_vals pv; |
| enum pll_types pll = head ? PLL_VPLL1 : PLL_VPLL0; |
| |
| if (get_pll_limits(dev, pll, &pll_lim)) |
| return; |
| nouveau_hw_get_pllvals(dev, pll, &pv); |
| |
| if (pv.M1 >= pll_lim.vco1.min_m && pv.M1 <= pll_lim.vco1.max_m && |
| pv.N1 >= pll_lim.vco1.min_n && pv.N1 <= pll_lim.vco1.max_n && |
| pv.log2P <= pll_lim.max_log2p) |
| return; |
| |
| NV_WARN(dev, "VPLL %d outwith limits, attempting to fix\n", head + 1); |
| |
| /* set lowest clock within static limits */ |
| pv.M1 = pll_lim.vco1.max_m; |
| pv.N1 = pll_lim.vco1.min_n; |
| pv.log2P = pll_lim.max_usable_log2p; |
| nouveau_hw_setpll(dev, pll_lim.reg, &pv); |
| } |
| |
| /* |
| * vga font save/restore |
| */ |
| |
| static void nouveau_vga_font_io(struct drm_device *dev, |
| void __iomem *iovram, |
| bool save, unsigned plane) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| unsigned i; |
| |
| NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, 1 << plane); |
| NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, plane); |
| for (i = 0; i < 16384; i++) { |
| if (save) { |
| dev_priv->saved_vga_font[plane][i] = |
| ioread32_native(iovram + i * 4); |
| } else { |
| iowrite32_native(dev_priv->saved_vga_font[plane][i], |
| iovram + i * 4); |
| } |
| } |
| } |
| |
| void |
| nouveau_hw_save_vga_fonts(struct drm_device *dev, bool save) |
| { |
| uint8_t misc, gr4, gr5, gr6, seq2, seq4; |
| bool graphicsmode; |
| unsigned plane; |
| void __iomem *iovram; |
| |
| if (nv_two_heads(dev)) |
| NVSetOwner(dev, 0); |
| |
| NVSetEnablePalette(dev, 0, true); |
| graphicsmode = NVReadVgaAttr(dev, 0, NV_CIO_AR_MODE_INDEX) & 1; |
| NVSetEnablePalette(dev, 0, false); |
| |
| if (graphicsmode) /* graphics mode => framebuffer => no need to save */ |
| return; |
| |
| NV_INFO(dev, "%sing VGA fonts\n", save ? "Sav" : "Restor"); |
| |
| /* map first 64KiB of VRAM, holds VGA fonts etc */ |
| iovram = ioremap(pci_resource_start(dev->pdev, 1), 65536); |
| if (!iovram) { |
| NV_ERROR(dev, "Failed to map VRAM, " |
| "cannot save/restore VGA fonts.\n"); |
| return; |
| } |
| |
| if (nv_two_heads(dev)) |
| NVBlankScreen(dev, 1, true); |
| NVBlankScreen(dev, 0, true); |
| |
| /* save control regs */ |
| misc = NVReadPRMVIO(dev, 0, NV_PRMVIO_MISC__READ); |
| seq2 = NVReadVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX); |
| seq4 = NVReadVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX); |
| gr4 = NVReadVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX); |
| gr5 = NVReadVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX); |
| gr6 = NVReadVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX); |
| |
| NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, 0x67); |
| NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, 0x6); |
| NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, 0x0); |
| NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, 0x5); |
| |
| /* store font in planes 0..3 */ |
| for (plane = 0; plane < 4; plane++) |
| nouveau_vga_font_io(dev, iovram, save, plane); |
| |
| /* restore control regs */ |
| NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, misc); |
| NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, gr4); |
| NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, gr5); |
| NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, gr6); |
| NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, seq2); |
| NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, seq4); |
| |
| if (nv_two_heads(dev)) |
| NVBlankScreen(dev, 1, false); |
| NVBlankScreen(dev, 0, false); |
| |
| iounmap(iovram); |
| } |
| |
| /* |
| * mode state save/load |
| */ |
| |
| static void |
| rd_cio_state(struct drm_device *dev, int head, |
| struct nv04_crtc_reg *crtcstate, int index) |
| { |
| crtcstate->CRTC[index] = NVReadVgaCrtc(dev, head, index); |
| } |
| |
| static void |
| wr_cio_state(struct drm_device *dev, int head, |
| struct nv04_crtc_reg *crtcstate, int index) |
| { |
| NVWriteVgaCrtc(dev, head, index, crtcstate->CRTC[index]); |
| } |
| |
| static void |
| nv_save_state_ramdac(struct drm_device *dev, int head, |
| struct nv04_mode_state *state) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nv04_crtc_reg *regp = &state->crtc_reg[head]; |
| int i; |
| |
| if (dev_priv->card_type >= NV_10) |
| regp->nv10_cursync = NVReadRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC); |
| |
| nouveau_hw_get_pllvals(dev, head ? PLL_VPLL1 : PLL_VPLL0, ®p->pllvals); |
| state->pllsel = NVReadRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT); |
| if (nv_two_heads(dev)) |
| state->sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK); |
| if (dev_priv->chipset == 0x11) |
| regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11); |
| |
| regp->ramdac_gen_ctrl = NVReadRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL); |
| |
| if (nv_gf4_disp_arch(dev)) |
| regp->ramdac_630 = NVReadRAMDAC(dev, head, NV_PRAMDAC_630); |
| if (dev_priv->chipset >= 0x30) |
| regp->ramdac_634 = NVReadRAMDAC(dev, head, NV_PRAMDAC_634); |
| |
| regp->tv_setup = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP); |
| regp->tv_vtotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL); |
| regp->tv_vskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW); |
| regp->tv_vsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY); |
| regp->tv_htotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL); |
| regp->tv_hskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW); |
| regp->tv_hsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY); |
| regp->tv_hsync_delay2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2); |
| |
| for (i = 0; i < 7; i++) { |
| uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4); |
| regp->fp_vert_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg); |
| regp->fp_horiz_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg + 0x20); |
| } |
| |
| if (nv_gf4_disp_arch(dev)) { |
| regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_FP_DITHER); |
| for (i = 0; i < 3; i++) { |
| regp->dither_regs[i] = NVReadRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4); |
| regp->dither_regs[i + 3] = NVReadRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4); |
| } |
| } |
| |
| regp->fp_control = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL); |
| regp->fp_debug_0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0); |
| if (!nv_gf4_disp_arch(dev) && head == 0) { |
| /* early chips don't allow access to PRAMDAC_TMDS_* without |
| * the head A FPCLK on (nv11 even locks up) */ |
| NVWriteRAMDAC(dev, 0, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0 & |
| ~NV_PRAMDAC_FP_DEBUG_0_PWRDOWN_FPCLK); |
| } |
| regp->fp_debug_1 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1); |
| regp->fp_debug_2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2); |
| |
| regp->fp_margin_color = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR); |
| |
| if (nv_gf4_disp_arch(dev)) |
| regp->ramdac_8c0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_8C0); |
| |
| if (dev_priv->card_type == NV_40) { |
| regp->ramdac_a20 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A20); |
| regp->ramdac_a24 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A24); |
| regp->ramdac_a34 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A34); |
| |
| for (i = 0; i < 38; i++) |
| regp->ctv_regs[i] = NVReadRAMDAC(dev, head, |
| NV_PRAMDAC_CTV + 4*i); |
| } |
| } |
| |
| static void |
| nv_load_state_ramdac(struct drm_device *dev, int head, |
| struct nv04_mode_state *state) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nv04_crtc_reg *regp = &state->crtc_reg[head]; |
| uint32_t pllreg = head ? NV_RAMDAC_VPLL2 : NV_PRAMDAC_VPLL_COEFF; |
| int i; |
| |
| if (dev_priv->card_type >= NV_10) |
| NVWriteRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC, regp->nv10_cursync); |
| |
| nouveau_hw_setpll(dev, pllreg, ®p->pllvals); |
| NVWriteRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT, state->pllsel); |
| if (nv_two_heads(dev)) |
| NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, state->sel_clk); |
| if (dev_priv->chipset == 0x11) |
| NVWriteRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11, regp->dither); |
| |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL, regp->ramdac_gen_ctrl); |
| |
| if (nv_gf4_disp_arch(dev)) |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_630, regp->ramdac_630); |
| if (dev_priv->chipset >= 0x30) |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_634, regp->ramdac_634); |
| |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP, regp->tv_setup); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL, regp->tv_vtotal); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW, regp->tv_vskew); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY, regp->tv_vsync_delay); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL, regp->tv_htotal); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW, regp->tv_hskew); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY, regp->tv_hsync_delay); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2, regp->tv_hsync_delay2); |
| |
| for (i = 0; i < 7; i++) { |
| uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4); |
| |
| NVWriteRAMDAC(dev, head, ramdac_reg, regp->fp_vert_regs[i]); |
| NVWriteRAMDAC(dev, head, ramdac_reg + 0x20, regp->fp_horiz_regs[i]); |
| } |
| |
| if (nv_gf4_disp_arch(dev)) { |
| NVWriteRAMDAC(dev, head, NV_RAMDAC_FP_DITHER, regp->dither); |
| for (i = 0; i < 3; i++) { |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4, regp->dither_regs[i]); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4, regp->dither_regs[i + 3]); |
| } |
| } |
| |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, regp->fp_control); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1, regp->fp_debug_1); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2, regp->fp_debug_2); |
| |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR, regp->fp_margin_color); |
| |
| if (nv_gf4_disp_arch(dev)) |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_8C0, regp->ramdac_8c0); |
| |
| if (dev_priv->card_type == NV_40) { |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_A20, regp->ramdac_a20); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_A24, regp->ramdac_a24); |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_A34, regp->ramdac_a34); |
| |
| for (i = 0; i < 38; i++) |
| NVWriteRAMDAC(dev, head, |
| NV_PRAMDAC_CTV + 4*i, regp->ctv_regs[i]); |
| } |
| } |
| |
| static void |
| nv_save_state_vga(struct drm_device *dev, int head, |
| struct nv04_mode_state *state) |
| { |
| struct nv04_crtc_reg *regp = &state->crtc_reg[head]; |
| int i; |
| |
| regp->MiscOutReg = NVReadPRMVIO(dev, head, NV_PRMVIO_MISC__READ); |
| |
| for (i = 0; i < 25; i++) |
| rd_cio_state(dev, head, regp, i); |
| |
| NVSetEnablePalette(dev, head, true); |
| for (i = 0; i < 21; i++) |
| regp->Attribute[i] = NVReadVgaAttr(dev, head, i); |
| NVSetEnablePalette(dev, head, false); |
| |
| for (i = 0; i < 9; i++) |
| regp->Graphics[i] = NVReadVgaGr(dev, head, i); |
| |
| for (i = 0; i < 5; i++) |
| regp->Sequencer[i] = NVReadVgaSeq(dev, head, i); |
| } |
| |
| static void |
| nv_load_state_vga(struct drm_device *dev, int head, |
| struct nv04_mode_state *state) |
| { |
| struct nv04_crtc_reg *regp = &state->crtc_reg[head]; |
| int i; |
| |
| NVWritePRMVIO(dev, head, NV_PRMVIO_MISC__WRITE, regp->MiscOutReg); |
| |
| for (i = 0; i < 5; i++) |
| NVWriteVgaSeq(dev, head, i, regp->Sequencer[i]); |
| |
| nv_lock_vga_crtc_base(dev, head, false); |
| for (i = 0; i < 25; i++) |
| wr_cio_state(dev, head, regp, i); |
| nv_lock_vga_crtc_base(dev, head, true); |
| |
| for (i = 0; i < 9; i++) |
| NVWriteVgaGr(dev, head, i, regp->Graphics[i]); |
| |
| NVSetEnablePalette(dev, head, true); |
| for (i = 0; i < 21; i++) |
| NVWriteVgaAttr(dev, head, i, regp->Attribute[i]); |
| NVSetEnablePalette(dev, head, false); |
| } |
| |
| static void |
| nv_save_state_ext(struct drm_device *dev, int head, |
| struct nv04_mode_state *state) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nv04_crtc_reg *regp = &state->crtc_reg[head]; |
| int i; |
| |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX); |
| |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_21); |
| |
| if (dev_priv->card_type >= NV_20) |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_47); |
| |
| if (dev_priv->card_type >= NV_30) |
| rd_cio_state(dev, head, regp, 0x9f); |
| |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_49); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX); |
| |
| if (dev_priv->card_type >= NV_10) { |
| regp->crtc_830 = NVReadCRTC(dev, head, NV_PCRTC_830); |
| regp->crtc_834 = NVReadCRTC(dev, head, NV_PCRTC_834); |
| |
| if (dev_priv->card_type >= NV_30) |
| regp->gpio_ext = NVReadCRTC(dev, head, NV_PCRTC_GPIO_EXT); |
| |
| if (dev_priv->card_type == NV_40) |
| regp->crtc_850 = NVReadCRTC(dev, head, NV_PCRTC_850); |
| |
| if (nv_two_heads(dev)) |
| regp->crtc_eng_ctrl = NVReadCRTC(dev, head, NV_PCRTC_ENGINE_CTRL); |
| regp->cursor_cfg = NVReadCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG); |
| } |
| |
| regp->crtc_cfg = NVReadCRTC(dev, head, NV_PCRTC_CONFIG); |
| |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX); |
| if (dev_priv->card_type >= NV_10) { |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_CSB); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_4B); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY); |
| } |
| /* NV11 and NV20 don't have this, they stop at 0x52. */ |
| if (nv_gf4_disp_arch(dev)) { |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_42); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_53); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_54); |
| |
| for (i = 0; i < 0x10; i++) |
| regp->CR58[i] = NVReadVgaCrtc5758(dev, head, i); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_59); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_5B); |
| |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_85); |
| rd_cio_state(dev, head, regp, NV_CIO_CRE_86); |
| } |
| |
| regp->fb_start = NVReadCRTC(dev, head, NV_PCRTC_START); |
| } |
| |
| static void |
| nv_load_state_ext(struct drm_device *dev, int head, |
| struct nv04_mode_state *state) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nv04_crtc_reg *regp = &state->crtc_reg[head]; |
| uint32_t reg900; |
| int i; |
| |
| if (dev_priv->card_type >= NV_10) { |
| if (nv_two_heads(dev)) |
| /* setting ENGINE_CTRL (EC) *must* come before |
| * CIO_CRE_LCD, as writing CRE_LCD sets bits 16 & 17 in |
| * EC that should not be overwritten by writing stale EC |
| */ |
| NVWriteCRTC(dev, head, NV_PCRTC_ENGINE_CTRL, regp->crtc_eng_ctrl); |
| |
| nvWriteVIDEO(dev, NV_PVIDEO_STOP, 1); |
| nvWriteVIDEO(dev, NV_PVIDEO_INTR_EN, 0); |
| nvWriteVIDEO(dev, NV_PVIDEO_OFFSET_BUFF(0), 0); |
| nvWriteVIDEO(dev, NV_PVIDEO_OFFSET_BUFF(1), 0); |
| nvWriteVIDEO(dev, NV_PVIDEO_LIMIT(0), dev_priv->fb_available_size - 1); |
| nvWriteVIDEO(dev, NV_PVIDEO_LIMIT(1), dev_priv->fb_available_size - 1); |
| nvWriteVIDEO(dev, NV_PVIDEO_UVPLANE_LIMIT(0), dev_priv->fb_available_size - 1); |
| nvWriteVIDEO(dev, NV_PVIDEO_UVPLANE_LIMIT(1), dev_priv->fb_available_size - 1); |
| nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0); |
| |
| NVWriteCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG, regp->cursor_cfg); |
| NVWriteCRTC(dev, head, NV_PCRTC_830, regp->crtc_830); |
| NVWriteCRTC(dev, head, NV_PCRTC_834, regp->crtc_834); |
| |
| if (dev_priv->card_type >= NV_30) |
| NVWriteCRTC(dev, head, NV_PCRTC_GPIO_EXT, regp->gpio_ext); |
| |
| if (dev_priv->card_type == NV_40) { |
| NVWriteCRTC(dev, head, NV_PCRTC_850, regp->crtc_850); |
| |
| reg900 = NVReadRAMDAC(dev, head, NV_PRAMDAC_900); |
| if (regp->crtc_cfg == NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC) |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 | 0x10000); |
| else |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 & ~0x10000); |
| } |
| } |
| |
| NVWriteCRTC(dev, head, NV_PCRTC_CONFIG, regp->crtc_cfg); |
| |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX); |
| |
| if (dev_priv->card_type >= NV_20) |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_47); |
| |
| if (dev_priv->card_type >= NV_30) |
| wr_cio_state(dev, head, regp, 0x9f); |
| |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_49); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX); |
| if (dev_priv->card_type == NV_40) |
| nv_fix_nv40_hw_cursor(dev, head); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX); |
| |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX); |
| if (dev_priv->card_type >= NV_10) { |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_CSB); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_4B); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY); |
| } |
| /* NV11 and NV20 stop at 0x52. */ |
| if (nv_gf4_disp_arch(dev)) { |
| if (dev_priv->card_type == NV_10) { |
| /* Not waiting for vertical retrace before modifying |
| CRE_53/CRE_54 causes lockups. */ |
| nouveau_wait_eq(dev, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x8); |
| nouveau_wait_eq(dev, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x0); |
| } |
| |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_42); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_53); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_54); |
| |
| for (i = 0; i < 0x10; i++) |
| NVWriteVgaCrtc5758(dev, head, i, regp->CR58[i]); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_59); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_5B); |
| |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_85); |
| wr_cio_state(dev, head, regp, NV_CIO_CRE_86); |
| } |
| |
| NVWriteCRTC(dev, head, NV_PCRTC_START, regp->fb_start); |
| } |
| |
| static void |
| nv_save_state_palette(struct drm_device *dev, int head, |
| struct nv04_mode_state *state) |
| { |
| int head_offset = head * NV_PRMDIO_SIZE, i; |
| |
| nv_wr08(dev, NV_PRMDIO_PIXEL_MASK + head_offset, |
| NV_PRMDIO_PIXEL_MASK_MASK); |
| nv_wr08(dev, NV_PRMDIO_READ_MODE_ADDRESS + head_offset, 0x0); |
| |
| for (i = 0; i < 768; i++) { |
| state->crtc_reg[head].DAC[i] = nv_rd08(dev, |
| NV_PRMDIO_PALETTE_DATA + head_offset); |
| } |
| |
| NVSetEnablePalette(dev, head, false); |
| } |
| |
| void |
| nouveau_hw_load_state_palette(struct drm_device *dev, int head, |
| struct nv04_mode_state *state) |
| { |
| int head_offset = head * NV_PRMDIO_SIZE, i; |
| |
| nv_wr08(dev, NV_PRMDIO_PIXEL_MASK + head_offset, |
| NV_PRMDIO_PIXEL_MASK_MASK); |
| nv_wr08(dev, NV_PRMDIO_WRITE_MODE_ADDRESS + head_offset, 0x0); |
| |
| for (i = 0; i < 768; i++) { |
| nv_wr08(dev, NV_PRMDIO_PALETTE_DATA + head_offset, |
| state->crtc_reg[head].DAC[i]); |
| } |
| |
| NVSetEnablePalette(dev, head, false); |
| } |
| |
| void nouveau_hw_save_state(struct drm_device *dev, int head, |
| struct nv04_mode_state *state) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| |
| if (dev_priv->chipset == 0x11) |
| /* NB: no attempt is made to restore the bad pll later on */ |
| nouveau_hw_fix_bad_vpll(dev, head); |
| nv_save_state_ramdac(dev, head, state); |
| nv_save_state_vga(dev, head, state); |
| nv_save_state_palette(dev, head, state); |
| nv_save_state_ext(dev, head, state); |
| } |
| |
| void nouveau_hw_load_state(struct drm_device *dev, int head, |
| struct nv04_mode_state *state) |
| { |
| NVVgaProtect(dev, head, true); |
| nv_load_state_ramdac(dev, head, state); |
| nv_load_state_ext(dev, head, state); |
| nouveau_hw_load_state_palette(dev, head, state); |
| nv_load_state_vga(dev, head, state); |
| NVVgaProtect(dev, head, false); |
| } |