| /* |
| * Copyright (C) 2004-2006 Atmel Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/init.h> |
| #include <linux/initrd.h> |
| #include <linux/mmzone.h> |
| #include <linux/bootmem.h> |
| #include <linux/pagemap.h> |
| #include <linux/pfn.h> |
| #include <linux/nodemask.h> |
| |
| #include <asm/page.h> |
| #include <asm/mmu_context.h> |
| #include <asm/tlb.h> |
| #include <asm/io.h> |
| #include <asm/dma.h> |
| #include <asm/setup.h> |
| #include <asm/sections.h> |
| |
| DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); |
| |
| pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| |
| struct page *empty_zero_page; |
| |
| /* |
| * Cache of MMU context last used. |
| */ |
| unsigned long mmu_context_cache = NO_CONTEXT; |
| |
| #define START_PFN (NODE_DATA(0)->bdata->node_boot_start >> PAGE_SHIFT) |
| #define MAX_LOW_PFN (NODE_DATA(0)->bdata->node_low_pfn) |
| |
| void show_mem(void) |
| { |
| int total = 0, reserved = 0, cached = 0; |
| int slab = 0, free = 0, shared = 0; |
| pg_data_t *pgdat; |
| |
| printk("Mem-info:\n"); |
| show_free_areas(); |
| |
| for_each_online_pgdat(pgdat) { |
| struct page *page, *end; |
| |
| page = pgdat->node_mem_map; |
| end = page + pgdat->node_spanned_pages; |
| |
| do { |
| total++; |
| if (PageReserved(page)) |
| reserved++; |
| else if (PageSwapCache(page)) |
| cached++; |
| else if (PageSlab(page)) |
| slab++; |
| else if (!page_count(page)) |
| free++; |
| else |
| shared += page_count(page) - 1; |
| page++; |
| } while (page < end); |
| } |
| |
| printk ("%d pages of RAM\n", total); |
| printk ("%d free pages\n", free); |
| printk ("%d reserved pages\n", reserved); |
| printk ("%d slab pages\n", slab); |
| printk ("%d pages shared\n", shared); |
| printk ("%d pages swap cached\n", cached); |
| } |
| |
| static void __init print_memory_map(const char *what, |
| struct tag_mem_range *mem) |
| { |
| printk ("%s:\n", what); |
| for (; mem; mem = mem->next) { |
| printk (" %08lx - %08lx\n", |
| (unsigned long)mem->addr, |
| (unsigned long)(mem->addr + mem->size)); |
| } |
| } |
| |
| #define MAX_LOWMEM HIGHMEM_START |
| #define MAX_LOWMEM_PFN PFN_DOWN(MAX_LOWMEM) |
| |
| /* |
| * Sort a list of memory regions in-place by ascending address. |
| * |
| * We're using bubble sort because we only have singly linked lists |
| * with few elements. |
| */ |
| static void __init sort_mem_list(struct tag_mem_range **pmem) |
| { |
| int done; |
| struct tag_mem_range **a, **b; |
| |
| if (!*pmem) |
| return; |
| |
| do { |
| done = 1; |
| a = pmem, b = &(*pmem)->next; |
| while (*b) { |
| if ((*a)->addr > (*b)->addr) { |
| struct tag_mem_range *tmp; |
| tmp = (*b)->next; |
| (*b)->next = *a; |
| *a = *b; |
| *b = tmp; |
| done = 0; |
| } |
| a = &(*a)->next; |
| b = &(*a)->next; |
| } |
| } while (!done); |
| } |
| |
| /* |
| * Find a free memory region large enough for storing the |
| * bootmem bitmap. |
| */ |
| static unsigned long __init |
| find_bootmap_pfn(const struct tag_mem_range *mem) |
| { |
| unsigned long bootmap_pages, bootmap_len; |
| unsigned long node_pages = PFN_UP(mem->size); |
| unsigned long bootmap_addr = mem->addr; |
| struct tag_mem_range *reserved = mem_reserved; |
| struct tag_mem_range *ramdisk = mem_ramdisk; |
| unsigned long kern_start = virt_to_phys(_stext); |
| unsigned long kern_end = virt_to_phys(_end); |
| |
| bootmap_pages = bootmem_bootmap_pages(node_pages); |
| bootmap_len = bootmap_pages << PAGE_SHIFT; |
| |
| /* |
| * Find a large enough region without reserved pages for |
| * storing the bootmem bitmap. We can take advantage of the |
| * fact that all lists have been sorted. |
| * |
| * We have to check explicitly reserved regions as well as the |
| * kernel image and any RAMDISK images... |
| * |
| * Oh, and we have to make sure we don't overwrite the taglist |
| * since we're going to use it until the bootmem allocator is |
| * fully up and running. |
| */ |
| while (1) { |
| if ((bootmap_addr < kern_end) && |
| ((bootmap_addr + bootmap_len) > kern_start)) |
| bootmap_addr = kern_end; |
| |
| while (reserved && |
| (bootmap_addr >= (reserved->addr + reserved->size))) |
| reserved = reserved->next; |
| |
| if (reserved && |
| ((bootmap_addr + bootmap_len) >= reserved->addr)) { |
| bootmap_addr = reserved->addr + reserved->size; |
| continue; |
| } |
| |
| while (ramdisk && |
| (bootmap_addr >= (ramdisk->addr + ramdisk->size))) |
| ramdisk = ramdisk->next; |
| |
| if (!ramdisk || |
| ((bootmap_addr + bootmap_len) < ramdisk->addr)) |
| break; |
| |
| bootmap_addr = ramdisk->addr + ramdisk->size; |
| } |
| |
| if ((PFN_UP(bootmap_addr) + bootmap_len) >= (mem->addr + mem->size)) |
| return ~0UL; |
| |
| return PFN_UP(bootmap_addr); |
| } |
| |
| void __init setup_bootmem(void) |
| { |
| unsigned bootmap_size; |
| unsigned long first_pfn, bootmap_pfn, pages; |
| unsigned long max_pfn, max_low_pfn; |
| unsigned long kern_start = virt_to_phys(_stext); |
| unsigned long kern_end = virt_to_phys(_end); |
| unsigned node = 0; |
| struct tag_mem_range *bank, *res; |
| |
| sort_mem_list(&mem_phys); |
| sort_mem_list(&mem_reserved); |
| |
| print_memory_map("Physical memory", mem_phys); |
| print_memory_map("Reserved memory", mem_reserved); |
| |
| nodes_clear(node_online_map); |
| |
| if (mem_ramdisk) { |
| #ifdef CONFIG_BLK_DEV_INITRD |
| initrd_start = __va(mem_ramdisk->addr); |
| initrd_end = initrd_start + mem_ramdisk->size; |
| |
| print_memory_map("RAMDISK images", mem_ramdisk); |
| if (mem_ramdisk->next) |
| printk(KERN_WARNING |
| "Warning: Only the first RAMDISK image " |
| "will be used\n"); |
| sort_mem_list(&mem_ramdisk); |
| #else |
| printk(KERN_WARNING "RAM disk image present, but " |
| "no initrd support in kernel!\n"); |
| #endif |
| } |
| |
| if (mem_phys->next) |
| printk(KERN_WARNING "Only using first memory bank\n"); |
| |
| for (bank = mem_phys; bank; bank = NULL) { |
| first_pfn = PFN_UP(bank->addr); |
| max_low_pfn = max_pfn = PFN_DOWN(bank->addr + bank->size); |
| bootmap_pfn = find_bootmap_pfn(bank); |
| if (bootmap_pfn > max_pfn) |
| panic("No space for bootmem bitmap!\n"); |
| |
| if (max_low_pfn > MAX_LOWMEM_PFN) { |
| max_low_pfn = MAX_LOWMEM_PFN; |
| #ifndef CONFIG_HIGHMEM |
| /* |
| * Lowmem is memory that can be addressed |
| * directly through P1/P2 |
| */ |
| printk(KERN_WARNING |
| "Node %u: Only %ld MiB of memory will be used.\n", |
| node, MAX_LOWMEM >> 20); |
| printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); |
| #else |
| #error HIGHMEM is not supported by AVR32 yet |
| #endif |
| } |
| |
| /* Initialize the boot-time allocator with low memory only. */ |
| bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn, |
| first_pfn, max_low_pfn); |
| |
| printk("Node %u: bdata = %p, bdata->node_bootmem_map = %p\n", |
| node, NODE_DATA(node)->bdata, |
| NODE_DATA(node)->bdata->node_bootmem_map); |
| |
| /* |
| * Register fully available RAM pages with the bootmem |
| * allocator. |
| */ |
| pages = max_low_pfn - first_pfn; |
| free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn), |
| PFN_PHYS(pages)); |
| |
| /* |
| * Reserve space for the kernel image (if present in |
| * this node)... |
| */ |
| if ((kern_start >= PFN_PHYS(first_pfn)) && |
| (kern_start < PFN_PHYS(max_pfn))) { |
| printk("Node %u: Kernel image %08lx - %08lx\n", |
| node, kern_start, kern_end); |
| reserve_bootmem_node(NODE_DATA(node), kern_start, |
| kern_end - kern_start); |
| } |
| |
| /* ...the bootmem bitmap... */ |
| reserve_bootmem_node(NODE_DATA(node), |
| PFN_PHYS(bootmap_pfn), |
| bootmap_size); |
| |
| /* ...any RAMDISK images... */ |
| for (res = mem_ramdisk; res; res = res->next) { |
| if (res->addr > PFN_PHYS(max_pfn)) |
| break; |
| |
| if (res->addr >= PFN_PHYS(first_pfn)) { |
| printk("Node %u: RAMDISK %08lx - %08lx\n", |
| node, |
| (unsigned long)res->addr, |
| (unsigned long)(res->addr + res->size)); |
| reserve_bootmem_node(NODE_DATA(node), |
| res->addr, res->size); |
| } |
| } |
| |
| /* ...and any other reserved regions. */ |
| for (res = mem_reserved; res; res = res->next) { |
| if (res->addr > PFN_PHYS(max_pfn)) |
| break; |
| |
| if (res->addr >= PFN_PHYS(first_pfn)) { |
| printk("Node %u: Reserved %08lx - %08lx\n", |
| node, |
| (unsigned long)res->addr, |
| (unsigned long)(res->addr + res->size)); |
| reserve_bootmem_node(NODE_DATA(node), |
| res->addr, res->size); |
| } |
| } |
| |
| node_set_online(node); |
| } |
| } |
| |
| /* |
| * paging_init() sets up the page tables |
| * |
| * This routine also unmaps the page at virtual kernel address 0, so |
| * that we can trap those pesky NULL-reference errors in the kernel. |
| */ |
| void __init paging_init(void) |
| { |
| extern unsigned long _evba; |
| void *zero_page; |
| int nid; |
| |
| /* |
| * Make sure we can handle exceptions before enabling |
| * paging. Not that we should ever _get_ any exceptions this |
| * early, but you never know... |
| */ |
| printk("Exception vectors start at %p\n", &_evba); |
| sysreg_write(EVBA, (unsigned long)&_evba); |
| |
| /* |
| * Since we are ready to handle exceptions now, we should let |
| * the CPU generate them... |
| */ |
| __asm__ __volatile__ ("csrf %0" : : "i"(SR_EM_BIT)); |
| |
| /* |
| * Allocate the zero page. The allocator will panic if it |
| * can't satisfy the request, so no need to check. |
| */ |
| zero_page = alloc_bootmem_low_pages_node(NODE_DATA(0), |
| PAGE_SIZE); |
| |
| { |
| pgd_t *pg_dir; |
| int i; |
| |
| pg_dir = swapper_pg_dir; |
| sysreg_write(PTBR, (unsigned long)pg_dir); |
| |
| for (i = 0; i < PTRS_PER_PGD; i++) |
| pgd_val(pg_dir[i]) = 0; |
| |
| enable_mmu(); |
| printk ("CPU: Paging enabled\n"); |
| } |
| |
| for_each_online_node(nid) { |
| pg_data_t *pgdat = NODE_DATA(nid); |
| unsigned long zones_size[MAX_NR_ZONES]; |
| unsigned long low, start_pfn; |
| |
| start_pfn = pgdat->bdata->node_boot_start; |
| start_pfn >>= PAGE_SHIFT; |
| low = pgdat->bdata->node_low_pfn; |
| |
| memset(zones_size, 0, sizeof(zones_size)); |
| zones_size[ZONE_NORMAL] = low - start_pfn; |
| |
| printk("Node %u: start_pfn = 0x%lx, low = 0x%lx\n", |
| nid, start_pfn, low); |
| |
| free_area_init_node(nid, pgdat, zones_size, start_pfn, NULL); |
| |
| printk("Node %u: mem_map starts at %p\n", |
| pgdat->node_id, pgdat->node_mem_map); |
| } |
| |
| mem_map = NODE_DATA(0)->node_mem_map; |
| |
| memset(zero_page, 0, PAGE_SIZE); |
| empty_zero_page = virt_to_page(zero_page); |
| flush_dcache_page(empty_zero_page); |
| } |
| |
| void __init mem_init(void) |
| { |
| int codesize, reservedpages, datasize, initsize; |
| int nid, i; |
| |
| reservedpages = 0; |
| high_memory = NULL; |
| |
| /* this will put all low memory onto the freelists */ |
| for_each_online_node(nid) { |
| pg_data_t *pgdat = NODE_DATA(nid); |
| unsigned long node_pages = 0; |
| void *node_high_memory; |
| |
| num_physpages += pgdat->node_present_pages; |
| |
| if (pgdat->node_spanned_pages != 0) |
| node_pages = free_all_bootmem_node(pgdat); |
| |
| totalram_pages += node_pages; |
| |
| for (i = 0; i < node_pages; i++) |
| if (PageReserved(pgdat->node_mem_map + i)) |
| reservedpages++; |
| |
| node_high_memory = (void *)((pgdat->node_start_pfn |
| + pgdat->node_spanned_pages) |
| << PAGE_SHIFT); |
| if (node_high_memory > high_memory) |
| high_memory = node_high_memory; |
| } |
| |
| max_mapnr = MAP_NR(high_memory); |
| |
| codesize = (unsigned long)_etext - (unsigned long)_text; |
| datasize = (unsigned long)_edata - (unsigned long)_data; |
| initsize = (unsigned long)__init_end - (unsigned long)__init_begin; |
| |
| printk ("Memory: %luk/%luk available (%dk kernel code, " |
| "%dk reserved, %dk data, %dk init)\n", |
| (unsigned long)nr_free_pages() << (PAGE_SHIFT - 10), |
| totalram_pages << (PAGE_SHIFT - 10), |
| codesize >> 10, |
| reservedpages << (PAGE_SHIFT - 10), |
| datasize >> 10, |
| initsize >> 10); |
| } |
| |
| static inline void free_area(unsigned long addr, unsigned long end, char *s) |
| { |
| unsigned int size = (end - addr) >> 10; |
| |
| for (; addr < end; addr += PAGE_SIZE) { |
| struct page *page = virt_to_page(addr); |
| ClearPageReserved(page); |
| init_page_count(page); |
| free_page(addr); |
| totalram_pages++; |
| } |
| |
| if (size && s) |
| printk(KERN_INFO "Freeing %s memory: %dK (%lx - %lx)\n", |
| s, size, end - (size << 10), end); |
| } |
| |
| void free_initmem(void) |
| { |
| free_area((unsigned long)__init_begin, (unsigned long)__init_end, |
| "init"); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| |
| static int keep_initrd; |
| |
| void free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| if (!keep_initrd) |
| free_area(start, end, "initrd"); |
| } |
| |
| static int __init keepinitrd_setup(char *__unused) |
| { |
| keep_initrd = 1; |
| return 1; |
| } |
| |
| __setup("keepinitrd", keepinitrd_setup); |
| #endif |