| /* |
| * This code implements the MD5 message-digest algorithm. |
| * The algorithm is due to Ron Rivest. This code was |
| * written by Colin Plumb in 1993, no copyright is claimed. |
| * This code is in the public domain; do with it what you wish. |
| * |
| * Equivalent code is available from RSA Data Security, Inc. |
| * This code has been tested against that, and is equivalent, |
| * except that you don't need to include two pages of legalese |
| * with every copy. |
| * |
| * To compute the message digest of a chunk of bytes, declare an |
| * MD5Context structure, pass it to MD5Init, call MD5Update as |
| * needed on buffers full of bytes, and then call MD5Final, which |
| * will fill a supplied 16-byte array with the digest. |
| */ |
| |
| /* This code slightly modified to fit into Samba by |
| abartlet@samba.org Jun 2001 |
| and to fit the cifs vfs by |
| Steve French sfrench@us.ibm.com */ |
| |
| #include <linux/string.h> |
| #include "md5.h" |
| |
| static void MD5Transform(__u32 buf[4], __u32 const in[16]); |
| |
| /* |
| * Note: this code is harmless on little-endian machines. |
| */ |
| static void |
| byteReverse(unsigned char *buf, unsigned longs) |
| { |
| __u32 t; |
| do { |
| t = (__u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 | |
| ((unsigned) buf[1] << 8 | buf[0]); |
| *(__u32 *) buf = t; |
| buf += 4; |
| } while (--longs); |
| } |
| |
| /* |
| * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
| * initialization constants. |
| */ |
| void |
| MD5Init(struct MD5Context *ctx) |
| { |
| ctx->buf[0] = 0x67452301; |
| ctx->buf[1] = 0xefcdab89; |
| ctx->buf[2] = 0x98badcfe; |
| ctx->buf[3] = 0x10325476; |
| |
| ctx->bits[0] = 0; |
| ctx->bits[1] = 0; |
| } |
| |
| /* |
| * Update context to reflect the concatenation of another buffer full |
| * of bytes. |
| */ |
| void |
| MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len) |
| { |
| register __u32 t; |
| |
| /* Update bitcount */ |
| |
| t = ctx->bits[0]; |
| if ((ctx->bits[0] = t + ((__u32) len << 3)) < t) |
| ctx->bits[1]++; /* Carry from low to high */ |
| ctx->bits[1] += len >> 29; |
| |
| t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ |
| |
| /* Handle any leading odd-sized chunks */ |
| |
| if (t) { |
| unsigned char *p = (unsigned char *) ctx->in + t; |
| |
| t = 64 - t; |
| if (len < t) { |
| memmove(p, buf, len); |
| return; |
| } |
| memmove(p, buf, t); |
| byteReverse(ctx->in, 16); |
| MD5Transform(ctx->buf, (__u32 *) ctx->in); |
| buf += t; |
| len -= t; |
| } |
| /* Process data in 64-byte chunks */ |
| |
| while (len >= 64) { |
| memmove(ctx->in, buf, 64); |
| byteReverse(ctx->in, 16); |
| MD5Transform(ctx->buf, (__u32 *) ctx->in); |
| buf += 64; |
| len -= 64; |
| } |
| |
| /* Handle any remaining bytes of data. */ |
| |
| memmove(ctx->in, buf, len); |
| } |
| |
| /* |
| * Final wrapup - pad to 64-byte boundary with the bit pattern |
| * 1 0* (64-bit count of bits processed, MSB-first) |
| */ |
| void |
| MD5Final(unsigned char digest[16], struct MD5Context *ctx) |
| { |
| unsigned int count; |
| unsigned char *p; |
| |
| /* Compute number of bytes mod 64 */ |
| count = (ctx->bits[0] >> 3) & 0x3F; |
| |
| /* Set the first char of padding to 0x80. This is safe since there is |
| always at least one byte free */ |
| p = ctx->in + count; |
| *p++ = 0x80; |
| |
| /* Bytes of padding needed to make 64 bytes */ |
| count = 64 - 1 - count; |
| |
| /* Pad out to 56 mod 64 */ |
| if (count < 8) { |
| /* Two lots of padding: Pad the first block to 64 bytes */ |
| memset(p, 0, count); |
| byteReverse(ctx->in, 16); |
| MD5Transform(ctx->buf, (__u32 *) ctx->in); |
| |
| /* Now fill the next block with 56 bytes */ |
| memset(ctx->in, 0, 56); |
| } else { |
| /* Pad block to 56 bytes */ |
| memset(p, 0, count - 8); |
| } |
| byteReverse(ctx->in, 14); |
| |
| /* Append length in bits and transform */ |
| ((__u32 *) ctx->in)[14] = ctx->bits[0]; |
| ((__u32 *) ctx->in)[15] = ctx->bits[1]; |
| |
| MD5Transform(ctx->buf, (__u32 *) ctx->in); |
| byteReverse((unsigned char *) ctx->buf, 4); |
| memmove(digest, ctx->buf, 16); |
| memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ |
| } |
| |
| /* The four core functions - F1 is optimized somewhat */ |
| |
| /* #define F1(x, y, z) (x & y | ~x & z) */ |
| #define F1(x, y, z) (z ^ (x & (y ^ z))) |
| #define F2(x, y, z) F1(z, x, y) |
| #define F3(x, y, z) (x ^ y ^ z) |
| #define F4(x, y, z) (y ^ (x | ~z)) |
| |
| /* This is the central step in the MD5 algorithm. */ |
| #define MD5STEP(f, w, x, y, z, data, s) \ |
| ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) |
| |
| /* |
| * The core of the MD5 algorithm, this alters an existing MD5 hash to |
| * reflect the addition of 16 longwords of new data. MD5Update blocks |
| * the data and converts bytes into longwords for this routine. |
| */ |
| static void |
| MD5Transform(__u32 buf[4], __u32 const in[16]) |
| { |
| register __u32 a, b, c, d; |
| |
| a = buf[0]; |
| b = buf[1]; |
| c = buf[2]; |
| d = buf[3]; |
| |
| MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
| MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
| MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
| MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
| MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
| MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
| MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
| MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
| MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
| MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
| MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
| MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
| MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
| MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
| MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
| MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
| |
| MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
| MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
| MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
| MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
| MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
| MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
| MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
| MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
| MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
| MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
| MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
| MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
| MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
| MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
| MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
| MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
| |
| MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
| MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
| MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
| MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
| MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
| MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
| MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
| MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
| MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
| MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
| MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
| MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
| MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
| MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
| MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
| MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
| |
| MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
| MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
| MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
| MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
| MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
| MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
| MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
| MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
| MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
| MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
| MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
| MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
| MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
| MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
| MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
| MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
| |
| buf[0] += a; |
| buf[1] += b; |
| buf[2] += c; |
| buf[3] += d; |
| } |
| |
| #if 0 /* currently unused */ |
| /*********************************************************************** |
| the rfc 2104 version of hmac_md5 initialisation. |
| ***********************************************************************/ |
| static void |
| hmac_md5_init_rfc2104(unsigned char *key, int key_len, |
| struct HMACMD5Context *ctx) |
| { |
| int i; |
| |
| /* if key is longer than 64 bytes reset it to key=MD5(key) */ |
| if (key_len > 64) { |
| unsigned char tk[16]; |
| struct MD5Context tctx; |
| |
| MD5Init(&tctx); |
| MD5Update(&tctx, key, key_len); |
| MD5Final(tk, &tctx); |
| |
| key = tk; |
| key_len = 16; |
| } |
| |
| /* start out by storing key in pads */ |
| memset(ctx->k_ipad, 0, sizeof(ctx->k_ipad)); |
| memset(ctx->k_opad, 0, sizeof(ctx->k_opad)); |
| memcpy(ctx->k_ipad, key, key_len); |
| memcpy(ctx->k_opad, key, key_len); |
| |
| /* XOR key with ipad and opad values */ |
| for (i = 0; i < 64; i++) { |
| ctx->k_ipad[i] ^= 0x36; |
| ctx->k_opad[i] ^= 0x5c; |
| } |
| |
| MD5Init(&ctx->ctx); |
| MD5Update(&ctx->ctx, ctx->k_ipad, 64); |
| } |
| #endif |
| |
| /*********************************************************************** |
| the microsoft version of hmac_md5 initialisation. |
| ***********************************************************************/ |
| void |
| hmac_md5_init_limK_to_64(const unsigned char *key, int key_len, |
| struct HMACMD5Context *ctx) |
| { |
| int i; |
| |
| /* if key is longer than 64 bytes truncate it */ |
| if (key_len > 64) { |
| key_len = 64; |
| } |
| |
| /* start out by storing key in pads */ |
| memset(ctx->k_ipad, 0, sizeof(ctx->k_ipad)); |
| memset(ctx->k_opad, 0, sizeof(ctx->k_opad)); |
| memcpy(ctx->k_ipad, key, key_len); |
| memcpy(ctx->k_opad, key, key_len); |
| |
| /* XOR key with ipad and opad values */ |
| for (i = 0; i < 64; i++) { |
| ctx->k_ipad[i] ^= 0x36; |
| ctx->k_opad[i] ^= 0x5c; |
| } |
| |
| MD5Init(&ctx->ctx); |
| MD5Update(&ctx->ctx, ctx->k_ipad, 64); |
| } |
| |
| /*********************************************************************** |
| update hmac_md5 "inner" buffer |
| ***********************************************************************/ |
| void |
| hmac_md5_update(const unsigned char *text, int text_len, |
| struct HMACMD5Context *ctx) |
| { |
| MD5Update(&ctx->ctx, text, text_len); /* then text of datagram */ |
| } |
| |
| /*********************************************************************** |
| finish off hmac_md5 "inner" buffer and generate outer one. |
| ***********************************************************************/ |
| void |
| hmac_md5_final(unsigned char *digest, struct HMACMD5Context *ctx) |
| { |
| struct MD5Context ctx_o; |
| |
| MD5Final(digest, &ctx->ctx); |
| |
| MD5Init(&ctx_o); |
| MD5Update(&ctx_o, ctx->k_opad, 64); |
| MD5Update(&ctx_o, digest, 16); |
| MD5Final(digest, &ctx_o); |
| } |
| |
| /*********************************************************** |
| single function to calculate an HMAC MD5 digest from data. |
| use the microsoft hmacmd5 init method because the key is 16 bytes. |
| ************************************************************/ |
| #if 0 /* currently unused */ |
| static void |
| hmac_md5(unsigned char key[16], unsigned char *data, int data_len, |
| unsigned char *digest) |
| { |
| struct HMACMD5Context ctx; |
| hmac_md5_init_limK_to_64(key, 16, &ctx); |
| if (data_len != 0) { |
| hmac_md5_update(data, data_len, &ctx); |
| } |
| hmac_md5_final(digest, &ctx); |
| } |
| #endif |