blob: 47db12bef9c64dc7ae95e776f3f0591a827300a0 [file] [log] [blame]
/*
* Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/usb/phy.h>
#include <linux/reset.h>
#define QUSB2PHY_PLL_STATUS 0x38
#define QUSB2PHY_PLL_LOCK BIT(5)
#define QUSB2PHY_PORT_QC1 0x70
#define VDM_SRC_EN BIT(4)
#define VDP_SRC_EN BIT(2)
#define QUSB2PHY_PORT_QC2 0x74
#define RDM_UP_EN BIT(1)
#define RDP_UP_EN BIT(3)
#define RPUM_LOW_EN BIT(4)
#define RPUP_LOW_EN BIT(5)
#define QUSB2PHY_PORT_POWERDOWN 0xB4
#define CLAMP_N_EN BIT(5)
#define FREEZIO_N BIT(1)
#define POWER_DOWN BIT(0)
#define QUSB2PHY_PORT_TEST_CTRL 0xB8
#define QUSB2PHY_PWR_CTRL1 0x210
#define PWR_CTRL1_CLAMP_N_EN BIT(1)
#define PWR_CTRL1_POWR_DOWN BIT(0)
#define QUSB2PHY_PLL_COMMON_STATUS_ONE 0x1A0
#define CORE_READY_STATUS BIT(0)
#define QUSB2PHY_PORT_UTMI_CTRL1 0xC0
#define TERM_SELECT BIT(4)
#define XCVR_SELECT_FS BIT(2)
#define OP_MODE_NON_DRIVE BIT(0)
#define QUSB2PHY_PORT_UTMI_CTRL2 0xC4
#define UTMI_ULPI_SEL BIT(7)
#define UTMI_TEST_MUX_SEL BIT(6)
#define QUSB2PHY_PLL_TEST 0x04
#define CLK_REF_SEL BIT(7)
#define QUSB2PHY_PORT_TUNE1 0x80
#define QUSB2PHY_PORT_TUNE2 0x84
#define QUSB2PHY_PORT_TUNE3 0x88
#define QUSB2PHY_PORT_TUNE4 0x8C
#define QUSB2PHY_PORT_TUNE5 0x90
/* Get TUNE2's high nibble value read from efuse */
#define TUNE2_HIGH_NIBBLE_VAL(val, pos, mask) ((val >> pos) & mask)
#define QUSB2PHY_PORT_INTR_CTRL 0xBC
#define CHG_DET_INTR_EN BIT(4)
#define DMSE_INTR_HIGH_SEL BIT(3)
#define DMSE_INTR_EN BIT(2)
#define DPSE_INTR_HIGH_SEL BIT(1)
#define DPSE_INTR_EN BIT(0)
#define QUSB2PHY_PORT_UTMI_STATUS 0xF4
#define LINESTATE_DP BIT(0)
#define LINESTATE_DM BIT(1)
#define QUSB2PHY_1P8_VOL_MIN 1800000 /* uV */
#define QUSB2PHY_1P8_VOL_MAX 1800000 /* uV */
#define QUSB2PHY_1P8_HPM_LOAD 30000 /* uA */
#define QUSB2PHY_3P3_VOL_MIN 3075000 /* uV */
#define QUSB2PHY_3P3_VOL_MAX 3200000 /* uV */
#define QUSB2PHY_3P3_HPM_LOAD 30000 /* uA */
#define QUSB2PHY_REFCLK_ENABLE BIT(0)
static unsigned int tune1;
module_param(tune1, uint, 0644);
MODULE_PARM_DESC(tune1, "QUSB PHY TUNE1");
static unsigned int tune2;
module_param(tune2, uint, 0644);
MODULE_PARM_DESC(tune2, "QUSB PHY TUNE2");
static unsigned int tune3;
module_param(tune3, uint, 0644);
MODULE_PARM_DESC(tune3, "QUSB PHY TUNE3");
static unsigned int tune4;
module_param(tune4, uint, 0644);
MODULE_PARM_DESC(tune4, "QUSB PHY TUNE4");
static unsigned int tune5;
module_param(tune5, uint, 0644);
MODULE_PARM_DESC(tune5, "QUSB PHY TUNE5");
struct qusb_phy {
struct usb_phy phy;
void __iomem *base;
void __iomem *tune2_efuse_reg;
void __iomem *ref_clk_base;
void __iomem *tcsr_clamp_dig_n;
struct clk *ref_clk_src;
struct clk *ref_clk;
struct clk *cfg_ahb_clk;
struct reset_control *phy_reset;
struct clk *iface_clk;
struct clk *core_clk;
struct regulator *gdsc;
struct regulator *vdd;
struct regulator *vdda33;
struct regulator *vdda18;
int vdd_levels[3]; /* none, low, high */
int init_seq_len;
int *qusb_phy_init_seq;
u32 major_rev;
u32 tune2_val;
int tune2_efuse_bit_pos;
int tune2_efuse_num_of_bits;
int tune2_efuse_correction;
bool power_enabled;
bool clocks_enabled;
bool cable_connected;
bool suspended;
bool ulpi_mode;
bool dpdm_enable;
bool is_se_clk;
struct regulator_desc dpdm_rdesc;
struct regulator_dev *dpdm_rdev;
/* emulation targets specific */
void __iomem *emu_phy_base;
bool emulation;
int *emu_init_seq;
int emu_init_seq_len;
int *phy_pll_reset_seq;
int phy_pll_reset_seq_len;
int *emu_dcm_reset_seq;
int emu_dcm_reset_seq_len;
bool put_into_high_z_state;
struct mutex phy_lock;
};
static void qusb_phy_enable_clocks(struct qusb_phy *qphy, bool on)
{
dev_dbg(qphy->phy.dev, "%s(): clocks_enabled:%d on:%d\n",
__func__, qphy->clocks_enabled, on);
if (!qphy->clocks_enabled && on) {
clk_prepare_enable(qphy->ref_clk_src);
clk_prepare_enable(qphy->ref_clk);
clk_prepare_enable(qphy->iface_clk);
clk_prepare_enable(qphy->core_clk);
clk_prepare_enable(qphy->cfg_ahb_clk);
qphy->clocks_enabled = true;
}
if (qphy->clocks_enabled && !on) {
clk_disable_unprepare(qphy->cfg_ahb_clk);
/*
* FSM depedency beween iface_clk and core_clk.
* Hence turned off core_clk before iface_clk.
*/
clk_disable_unprepare(qphy->core_clk);
clk_disable_unprepare(qphy->iface_clk);
clk_disable_unprepare(qphy->ref_clk);
clk_disable_unprepare(qphy->ref_clk_src);
qphy->clocks_enabled = false;
}
dev_dbg(qphy->phy.dev, "%s(): clocks_enabled:%d\n", __func__,
qphy->clocks_enabled);
}
static int qusb_phy_gdsc(struct qusb_phy *qphy, bool on)
{
int ret;
if (IS_ERR_OR_NULL(qphy->gdsc))
return -EPERM;
if (on) {
dev_dbg(qphy->phy.dev, "TURNING ON GDSC\n");
ret = regulator_enable(qphy->gdsc);
if (ret) {
dev_err(qphy->phy.dev, "unable to enable gdsc\n");
return ret;
}
} else {
dev_dbg(qphy->phy.dev, "TURNING OFF GDSC\n");
ret = regulator_disable(qphy->gdsc);
if (ret) {
dev_err(qphy->phy.dev, "unable to disable gdsc\n");
return ret;
}
}
return ret;
}
static int qusb_phy_config_vdd(struct qusb_phy *qphy, int high)
{
int min, ret;
min = high ? 1 : 0; /* low or none? */
ret = regulator_set_voltage(qphy->vdd, qphy->vdd_levels[min],
qphy->vdd_levels[2]);
if (ret) {
dev_err(qphy->phy.dev, "unable to set voltage for qusb vdd\n");
return ret;
}
dev_dbg(qphy->phy.dev, "min_vol:%d max_vol:%d\n",
qphy->vdd_levels[min], qphy->vdd_levels[2]);
return ret;
}
static int qusb_phy_enable_power(struct qusb_phy *qphy, bool on)
{
int ret = 0;
dev_dbg(qphy->phy.dev, "%s turn %s regulators. power_enabled:%d\n",
__func__, on ? "on" : "off", qphy->power_enabled);
if (qphy->power_enabled == on) {
dev_dbg(qphy->phy.dev, "PHYs' regulators are already ON.\n");
return 0;
}
if (!on)
goto disable_vdda33;
ret = qusb_phy_config_vdd(qphy, true);
if (ret) {
dev_err(qphy->phy.dev, "Unable to config VDD:%d\n",
ret);
goto err_vdd;
}
ret = regulator_enable(qphy->vdd);
if (ret) {
dev_err(qphy->phy.dev, "Unable to enable VDD\n");
goto unconfig_vdd;
}
ret = regulator_set_load(qphy->vdda18, QUSB2PHY_1P8_HPM_LOAD);
if (ret < 0) {
dev_err(qphy->phy.dev, "Unable to set HPM of vdda18:%d\n", ret);
goto disable_vdd;
}
ret = regulator_set_voltage(qphy->vdda18, QUSB2PHY_1P8_VOL_MIN,
QUSB2PHY_1P8_VOL_MAX);
if (ret) {
dev_err(qphy->phy.dev,
"Unable to set voltage for vdda18:%d\n", ret);
goto put_vdda18_lpm;
}
ret = regulator_enable(qphy->vdda18);
if (ret) {
dev_err(qphy->phy.dev, "Unable to enable vdda18:%d\n", ret);
goto unset_vdda18;
}
ret = regulator_set_load(qphy->vdda33, QUSB2PHY_3P3_HPM_LOAD);
if (ret < 0) {
dev_err(qphy->phy.dev, "Unable to set HPM of vdda33:%d\n", ret);
goto disable_vdda18;
}
ret = regulator_set_voltage(qphy->vdda33, QUSB2PHY_3P3_VOL_MIN,
QUSB2PHY_3P3_VOL_MAX);
if (ret) {
dev_err(qphy->phy.dev,
"Unable to set voltage for vdda33:%d\n", ret);
goto put_vdda33_lpm;
}
ret = regulator_enable(qphy->vdda33);
if (ret) {
dev_err(qphy->phy.dev, "Unable to enable vdda33:%d\n", ret);
goto unset_vdd33;
}
qphy->power_enabled = true;
pr_debug("%s(): QUSB PHY's regulators are turned ON.\n", __func__);
return ret;
disable_vdda33:
ret = regulator_disable(qphy->vdda33);
if (ret)
dev_err(qphy->phy.dev, "Unable to disable vdda33:%d\n", ret);
unset_vdd33:
ret = regulator_set_voltage(qphy->vdda33, 0, QUSB2PHY_3P3_VOL_MAX);
if (ret)
dev_err(qphy->phy.dev,
"Unable to set (0) voltage for vdda33:%d\n", ret);
put_vdda33_lpm:
ret = regulator_set_load(qphy->vdda33, 0);
if (ret < 0)
dev_err(qphy->phy.dev, "Unable to set (0) HPM of vdda33\n");
disable_vdda18:
ret = regulator_disable(qphy->vdda18);
if (ret)
dev_err(qphy->phy.dev, "Unable to disable vdda18:%d\n", ret);
unset_vdda18:
ret = regulator_set_voltage(qphy->vdda18, 0, QUSB2PHY_1P8_VOL_MAX);
if (ret)
dev_err(qphy->phy.dev,
"Unable to set (0) voltage for vdda18:%d\n", ret);
put_vdda18_lpm:
ret = regulator_set_load(qphy->vdda18, 0);
if (ret < 0)
dev_err(qphy->phy.dev, "Unable to set LPM of vdda18\n");
disable_vdd:
ret = regulator_disable(qphy->vdd);
if (ret)
dev_err(qphy->phy.dev, "Unable to disable vdd:%d\n",
ret);
unconfig_vdd:
ret = qusb_phy_config_vdd(qphy, false);
if (ret)
dev_err(qphy->phy.dev, "Unable unconfig VDD:%d\n",
ret);
err_vdd:
qphy->power_enabled = false;
dev_dbg(qphy->phy.dev, "QUSB PHY's regulators are turned OFF.\n");
return ret;
}
static void qusb_phy_get_tune2_param(struct qusb_phy *qphy)
{
u8 num_of_bits;
u32 bit_mask = 1;
u8 reg_val;
pr_debug("%s(): num_of_bits:%d bit_pos:%d\n", __func__,
qphy->tune2_efuse_num_of_bits,
qphy->tune2_efuse_bit_pos);
/* get bit mask based on number of bits to use with efuse reg */
if (qphy->tune2_efuse_num_of_bits) {
num_of_bits = qphy->tune2_efuse_num_of_bits;
bit_mask = (bit_mask << num_of_bits) - 1;
}
/*
* Read EFUSE register having TUNE2 parameter's high nibble.
* If efuse register shows value as 0x0, then use previous value
* as it is. Otherwise use efuse register based value for this purpose.
*/
qphy->tune2_val = readl_relaxed(qphy->tune2_efuse_reg);
pr_debug("%s(): bit_mask:%d efuse based tune2 value:%d\n",
__func__, bit_mask, qphy->tune2_val);
qphy->tune2_val = TUNE2_HIGH_NIBBLE_VAL(qphy->tune2_val,
qphy->tune2_efuse_bit_pos, bit_mask);
/* Update higher nibble of TUNE2 value for better rise/fall times */
if (qphy->tune2_efuse_correction && qphy->tune2_val) {
if (qphy->tune2_efuse_correction > 5 ||
qphy->tune2_efuse_correction < -10)
pr_warn("Correction value is out of range : %d\n",
qphy->tune2_efuse_correction);
else
qphy->tune2_val = qphy->tune2_val +
qphy->tune2_efuse_correction;
}
reg_val = readb_relaxed(qphy->base + QUSB2PHY_PORT_TUNE2);
if (qphy->tune2_val) {
reg_val &= 0x0f;
reg_val |= (qphy->tune2_val << 4);
}
qphy->tune2_val = reg_val;
}
static void qusb_phy_write_seq(void __iomem *base, u32 *seq, int cnt,
unsigned long delay)
{
int i;
pr_debug("Seq count:%d\n", cnt);
for (i = 0; i < cnt; i = i+2) {
pr_debug("write 0x%02x to 0x%02x\n", seq[i], seq[i+1]);
writel_relaxed(seq[i], base + seq[i+1]);
if (delay)
usleep_range(delay, (delay + 2000));
}
}
static int qusb_phy_init(struct usb_phy *phy)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
int ret, reset_val = 0;
u8 reg;
bool pll_lock_fail = false;
dev_dbg(phy->dev, "%s\n", __func__);
ret = qusb_phy_enable_power(qphy, true);
if (ret)
return ret;
qusb_phy_enable_clocks(qphy, true);
/*
* ref clock is enabled by default after power on reset. Linux clock
* driver will disable this clock as part of late init if peripheral
* driver(s) does not explicitly votes for it. Linux clock driver also
* does not disable the clock until late init even if peripheral
* driver explicitly requests it and cannot defer the probe until late
* init. Hence, Explicitly disable the clock using register write to
* allow QUSB PHY PLL to lock properly.
*/
if (qphy->ref_clk_base) {
writel_relaxed((readl_relaxed(qphy->ref_clk_base) &
~QUSB2PHY_REFCLK_ENABLE),
qphy->ref_clk_base);
/* Make sure that above write complete to get ref clk OFF */
wmb();
}
/* Perform phy reset */
ret = reset_control_assert(qphy->phy_reset);
if (ret)
dev_err(phy->dev, "%s: phy_reset assert failed\n", __func__);
usleep_range(100, 150);
ret = reset_control_deassert(qphy->phy_reset);
if (ret)
dev_err(phy->dev, "%s: phy_reset deassert failed\n", __func__);
if (qphy->emulation) {
if (qphy->emu_init_seq)
qusb_phy_write_seq(qphy->emu_phy_base,
qphy->emu_init_seq, qphy->emu_init_seq_len, 0);
if (qphy->qusb_phy_init_seq)
qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq,
qphy->init_seq_len, 0);
/* Wait for 5ms as per QUSB2 RUMI sequence */
usleep_range(5000, 7000);
if (qphy->phy_pll_reset_seq)
qusb_phy_write_seq(qphy->base, qphy->phy_pll_reset_seq,
qphy->phy_pll_reset_seq_len, 10000);
if (qphy->emu_dcm_reset_seq)
qusb_phy_write_seq(qphy->emu_phy_base,
qphy->emu_dcm_reset_seq,
qphy->emu_dcm_reset_seq_len, 10000);
return 0;
}
/* Disable the PHY */
if (qphy->major_rev < 2)
writel_relaxed(CLAMP_N_EN | FREEZIO_N | POWER_DOWN,
qphy->base + QUSB2PHY_PORT_POWERDOWN);
else
writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) |
PWR_CTRL1_POWR_DOWN,
qphy->base + QUSB2PHY_PWR_CTRL1);
/* configure for ULPI mode if requested */
if (qphy->ulpi_mode)
writel_relaxed(0x0, qphy->base + QUSB2PHY_PORT_UTMI_CTRL2);
/* save reset value to override based on clk scheme */
if (qphy->ref_clk_base)
reset_val = readl_relaxed(qphy->base + QUSB2PHY_PLL_TEST);
if (qphy->qusb_phy_init_seq)
qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq,
qphy->init_seq_len, 0);
/*
* Check for EFUSE value only if tune2_efuse_reg is available
* and try to read EFUSE value only once i.e. not every USB
* cable connect case.
*/
if (qphy->tune2_efuse_reg && !tune2) {
if (!qphy->tune2_val)
qusb_phy_get_tune2_param(qphy);
pr_debug("%s(): Programming TUNE2 parameter as:%x\n", __func__,
qphy->tune2_val);
writel_relaxed(qphy->tune2_val,
qphy->base + QUSB2PHY_PORT_TUNE2);
}
/* If tune modparam set, override tune value */
pr_debug("%s():userspecified modparams TUNEX val:0x%x %x %x %x %x\n",
__func__, tune1, tune2, tune3, tune4, tune5);
if (tune1)
writel_relaxed(tune1,
qphy->base + QUSB2PHY_PORT_TUNE1);
if (tune2)
writel_relaxed(tune2,
qphy->base + QUSB2PHY_PORT_TUNE2);
if (tune3)
writel_relaxed(tune3,
qphy->base + QUSB2PHY_PORT_TUNE3);
if (tune4)
writel_relaxed(tune4,
qphy->base + QUSB2PHY_PORT_TUNE4);
if (tune5)
writel_relaxed(tune5,
qphy->base + QUSB2PHY_PORT_TUNE5);
/* ensure above writes are completed before re-enabling PHY */
wmb();
/* Enable the PHY */
if (qphy->major_rev < 2)
writel_relaxed(CLAMP_N_EN | FREEZIO_N,
qphy->base + QUSB2PHY_PORT_POWERDOWN);
else
writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) &
~PWR_CTRL1_POWR_DOWN,
qphy->base + QUSB2PHY_PWR_CTRL1);
/* Ensure above write is completed before turning ON ref clk */
wmb();
/* Require to get phy pll lock successfully */
usleep_range(150, 160);
/* Turn on phy ref_clk if DIFF_CLK else select SE_CLK */
if (qphy->ref_clk_base) {
if (!qphy->is_se_clk) {
reset_val &= ~CLK_REF_SEL;
writel_relaxed((readl_relaxed(qphy->ref_clk_base) |
QUSB2PHY_REFCLK_ENABLE),
qphy->ref_clk_base);
} else {
reset_val |= CLK_REF_SEL;
writel_relaxed(reset_val,
qphy->base + QUSB2PHY_PLL_TEST);
}
/* Make sure above write is completed to get PLL source clock */
wmb();
/* Required to get PHY PLL lock successfully */
usleep_range(100, 110);
}
if (qphy->major_rev < 2) {
reg = readb_relaxed(qphy->base + QUSB2PHY_PLL_STATUS);
dev_dbg(phy->dev, "QUSB2PHY_PLL_STATUS:%x\n", reg);
if (!(reg & QUSB2PHY_PLL_LOCK))
pll_lock_fail = true;
} else {
reg = readb_relaxed(qphy->base +
QUSB2PHY_PLL_COMMON_STATUS_ONE);
dev_dbg(phy->dev, "QUSB2PHY_PLL_COMMON_STATUS_ONE:%x\n", reg);
if (!(reg & CORE_READY_STATUS))
pll_lock_fail = true;
}
if (pll_lock_fail) {
dev_err(phy->dev, "QUSB PHY PLL LOCK fails:%x\n", reg);
WARN_ON(1);
}
return 0;
}
static void qusb_phy_shutdown(struct usb_phy *phy)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
dev_dbg(phy->dev, "%s\n", __func__);
qusb_phy_enable_clocks(qphy, true);
/* Disable the PHY */
if (qphy->major_rev < 2)
writel_relaxed(CLAMP_N_EN | FREEZIO_N | POWER_DOWN,
qphy->base + QUSB2PHY_PORT_POWERDOWN);
else
writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) |
PWR_CTRL1_POWR_DOWN,
qphy->base + QUSB2PHY_PWR_CTRL1);
/* Make sure above write complete before turning off clocks */
wmb();
qusb_phy_enable_clocks(qphy, false);
}
/**
* Performs QUSB2 PHY suspend/resume functionality.
*
* @uphy - usb phy pointer.
* @suspend - to enable suspend or not. 1 - suspend, 0 - resume
*
*/
static int qusb_phy_set_suspend(struct usb_phy *phy, int suspend)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
u32 linestate = 0, intr_mask = 0;
if (qphy->suspended && suspend) {
dev_dbg(phy->dev, "%s: USB PHY is already suspended\n",
__func__);
return 0;
}
if (suspend) {
/* Bus suspend case */
if (qphy->cable_connected ||
(qphy->phy.flags & PHY_HOST_MODE)) {
/* Clear all interrupts */
writel_relaxed(0x00,
qphy->base + QUSB2PHY_PORT_INTR_CTRL);
linestate = readl_relaxed(qphy->base +
QUSB2PHY_PORT_UTMI_STATUS);
/*
* D+/D- interrupts are level-triggered, but we are
* only interested if the line state changes, so enable
* the high/low trigger based on current state. In
* other words, enable the triggers _opposite_ of what
* the current D+/D- levels are.
* e.g. if currently D+ high, D- low (HS 'J'/Suspend),
* configure the mask to trigger on D+ low OR D- high
*/
intr_mask = DPSE_INTR_EN | DMSE_INTR_EN;
if (!(linestate & LINESTATE_DP)) /* D+ low */
intr_mask |= DPSE_INTR_HIGH_SEL;
if (!(linestate & LINESTATE_DM)) /* D- low */
intr_mask |= DMSE_INTR_HIGH_SEL;
writel_relaxed(intr_mask,
qphy->base + QUSB2PHY_PORT_INTR_CTRL);
if (linestate & (LINESTATE_DP | LINESTATE_DM)) {
/* enable phy auto-resume */
writel_relaxed(0x0C,
qphy->base + QUSB2PHY_PORT_TEST_CTRL);
/* flush the previous write before next write */
wmb();
writel_relaxed(0x04,
qphy->base + QUSB2PHY_PORT_TEST_CTRL);
}
dev_dbg(phy->dev, "%s: intr_mask = %x\n",
__func__, intr_mask);
/* Makes sure that above write goes through */
wmb();
qusb_phy_enable_clocks(qphy, false);
} else { /* Disconnect case */
mutex_lock(&qphy->phy_lock);
/* Disable all interrupts */
writel_relaxed(0x00,
qphy->base + QUSB2PHY_PORT_INTR_CTRL);
/* Disable PHY */
writel_relaxed(POWER_DOWN |
readl_relaxed(qphy->base +
QUSB2PHY_PORT_POWERDOWN),
qphy->base + QUSB2PHY_PORT_POWERDOWN);
/* Make sure that above write is completed */
wmb();
qusb_phy_enable_clocks(qphy, false);
if (qphy->tcsr_clamp_dig_n)
writel_relaxed(0x0,
qphy->tcsr_clamp_dig_n);
/* Do not disable power rails if there is vote for it */
if (!qphy->dpdm_enable)
qusb_phy_enable_power(qphy, false);
else
dev_dbg(phy->dev, "race with rm_pulldown. Keep ldo ON\n");
mutex_unlock(&qphy->phy_lock);
/*
* Set put_into_high_z_state to true so next USB
* cable connect, DPF_DMF request performs PHY
* reset and put it into high-z state. For bootup
* with or without USB cable, it doesn't require
* to put QUSB PHY into high-z state.
*/
qphy->put_into_high_z_state = true;
}
qphy->suspended = true;
} else {
/* Bus suspend case */
if (qphy->cable_connected ||
(qphy->phy.flags & PHY_HOST_MODE)) {
qusb_phy_enable_clocks(qphy, true);
/* Clear all interrupts on resume */
writel_relaxed(0x00,
qphy->base + QUSB2PHY_PORT_INTR_CTRL);
} else {
qusb_phy_enable_power(qphy, true);
if (qphy->tcsr_clamp_dig_n)
writel_relaxed(0x1,
qphy->tcsr_clamp_dig_n);
qusb_phy_enable_clocks(qphy, true);
}
qphy->suspended = false;
}
return 0;
}
static int qusb_phy_notify_connect(struct usb_phy *phy,
enum usb_device_speed speed)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
qphy->cable_connected = true;
dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n",
qphy->cable_connected);
return 0;
}
static int qusb_phy_notify_disconnect(struct usb_phy *phy,
enum usb_device_speed speed)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
qphy->cable_connected = false;
dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n",
qphy->cable_connected);
return 0;
}
static int qusb_phy_dpdm_regulator_enable(struct regulator_dev *rdev)
{
int ret = 0;
struct qusb_phy *qphy = rdev_get_drvdata(rdev);
dev_dbg(qphy->phy.dev, "%s dpdm_enable:%d\n",
__func__, qphy->dpdm_enable);
mutex_lock(&qphy->phy_lock);
if (!qphy->dpdm_enable) {
ret = qusb_phy_enable_power(qphy, true);
if (ret < 0) {
dev_dbg(qphy->phy.dev,
"dpdm regulator enable failed:%d\n", ret);
mutex_unlock(&qphy->phy_lock);
return ret;
}
qphy->dpdm_enable = true;
if (qphy->put_into_high_z_state) {
if (qphy->tcsr_clamp_dig_n)
writel_relaxed(0x1,
qphy->tcsr_clamp_dig_n);
qusb_phy_gdsc(qphy, true);
qusb_phy_enable_clocks(qphy, true);
dev_dbg(qphy->phy.dev, "RESET QUSB PHY\n");
ret = reset_control_assert(qphy->phy_reset);
if (ret)
dev_err(qphy->phy.dev, "phyassert failed\n");
usleep_range(100, 150);
ret = reset_control_deassert(qphy->phy_reset);
if (ret)
dev_err(qphy->phy.dev, "deassert failed\n");
/*
* Phy in non-driving mode leaves Dp and Dm
* lines in high-Z state. Controller power
* collapse is not switching phy to non-driving
* mode causing charger detection failure. Bring
* phy to non-driving mode by overriding
* controller output via UTMI interface.
*/
writel_relaxed(TERM_SELECT | XCVR_SELECT_FS |
OP_MODE_NON_DRIVE,
qphy->base + QUSB2PHY_PORT_UTMI_CTRL1);
writel_relaxed(UTMI_ULPI_SEL |
UTMI_TEST_MUX_SEL,
qphy->base + QUSB2PHY_PORT_UTMI_CTRL2);
/* Disable PHY */
writel_relaxed(CLAMP_N_EN | FREEZIO_N |
POWER_DOWN,
qphy->base + QUSB2PHY_PORT_POWERDOWN);
/* Make sure that above write is completed */
wmb();
qusb_phy_enable_clocks(qphy, false);
qusb_phy_gdsc(qphy, false);
}
}
mutex_unlock(&qphy->phy_lock);
return ret;
}
static int qusb_phy_dpdm_regulator_disable(struct regulator_dev *rdev)
{
int ret = 0;
struct qusb_phy *qphy = rdev_get_drvdata(rdev);
dev_dbg(qphy->phy.dev, "%s dpdm_enable:%d\n",
__func__, qphy->dpdm_enable);
mutex_lock(&qphy->phy_lock);
if (qphy->dpdm_enable) {
if (!qphy->cable_connected) {
if (qphy->tcsr_clamp_dig_n)
writel_relaxed(0x0,
qphy->tcsr_clamp_dig_n);
dev_dbg(qphy->phy.dev, "turn off for HVDCP case\n");
ret = qusb_phy_enable_power(qphy, false);
if (ret < 0) {
dev_dbg(qphy->phy.dev,
"dpdm regulator disable failed:%d\n",
ret);
mutex_unlock(&qphy->phy_lock);
return ret;
}
}
qphy->dpdm_enable = false;
}
mutex_unlock(&qphy->phy_lock);
return ret;
}
static int qusb_phy_dpdm_regulator_is_enabled(struct regulator_dev *rdev)
{
struct qusb_phy *qphy = rdev_get_drvdata(rdev);
dev_dbg(qphy->phy.dev, "%s qphy->dpdm_enable = %d\n", __func__,
qphy->dpdm_enable);
return qphy->dpdm_enable;
}
static struct regulator_ops qusb_phy_dpdm_regulator_ops = {
.enable = qusb_phy_dpdm_regulator_enable,
.disable = qusb_phy_dpdm_regulator_disable,
.is_enabled = qusb_phy_dpdm_regulator_is_enabled,
};
static int qusb_phy_regulator_init(struct qusb_phy *qphy)
{
struct device *dev = qphy->phy.dev;
struct regulator_config cfg = {};
struct regulator_init_data *init_data;
init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL);
if (!init_data)
return -ENOMEM;
init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS;
qphy->dpdm_rdesc.owner = THIS_MODULE;
qphy->dpdm_rdesc.type = REGULATOR_VOLTAGE;
qphy->dpdm_rdesc.ops = &qusb_phy_dpdm_regulator_ops;
qphy->dpdm_rdesc.name = kbasename(dev->of_node->full_name);
cfg.dev = dev;
cfg.init_data = init_data;
cfg.driver_data = qphy;
cfg.of_node = dev->of_node;
qphy->dpdm_rdev = devm_regulator_register(dev, &qphy->dpdm_rdesc, &cfg);
if (IS_ERR(qphy->dpdm_rdev))
return PTR_ERR(qphy->dpdm_rdev);
return 0;
}
static int qusb_phy_probe(struct platform_device *pdev)
{
struct qusb_phy *qphy;
struct device *dev = &pdev->dev;
struct resource *res;
int ret = 0, size = 0;
const char *phy_type;
bool hold_phy_reset;
qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL);
if (!qphy)
return -ENOMEM;
qphy->phy.dev = dev;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"qusb_phy_base");
qphy->base = devm_ioremap_resource(dev, res);
if (IS_ERR(qphy->base))
return PTR_ERR(qphy->base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"emu_phy_base");
if (res) {
qphy->emu_phy_base = devm_ioremap_resource(dev, res);
if (IS_ERR(qphy->emu_phy_base)) {
dev_dbg(dev, "couldn't ioremap emu_phy_base\n");
qphy->emu_phy_base = NULL;
}
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"tune2_efuse_addr");
if (res) {
qphy->tune2_efuse_reg = devm_ioremap_nocache(dev, res->start,
resource_size(res));
if (!IS_ERR_OR_NULL(qphy->tune2_efuse_reg)) {
ret = of_property_read_u32(dev->of_node,
"qcom,tune2-efuse-bit-pos",
&qphy->tune2_efuse_bit_pos);
if (!ret) {
ret = of_property_read_u32(dev->of_node,
"qcom,tune2-efuse-num-bits",
&qphy->tune2_efuse_num_of_bits);
}
of_property_read_u32(dev->of_node,
"qcom,tune2-efuse-correction",
&qphy->tune2_efuse_correction);
if (ret) {
dev_err(dev, "DT Value for tune2 efuse is invalid.\n");
return -EINVAL;
}
}
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"ref_clk_addr");
if (res) {
qphy->ref_clk_base = devm_ioremap_nocache(dev,
res->start, resource_size(res));
if (IS_ERR(qphy->ref_clk_base)) {
dev_dbg(dev, "ref_clk_address is not available.\n");
return PTR_ERR(qphy->ref_clk_base);
}
ret = of_property_read_string(dev->of_node,
"qcom,phy-clk-scheme", &phy_type);
if (ret) {
dev_err(dev, "error need qsub_phy_clk_scheme.\n");
return ret;
}
if (!strcasecmp(phy_type, "cml")) {
qphy->is_se_clk = false;
} else if (!strcasecmp(phy_type, "cmos")) {
qphy->is_se_clk = true;
} else {
dev_err(dev, "erro invalid qusb_phy_clk_scheme\n");
return -EINVAL;
}
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"tcsr_clamp_dig_n_1p8");
if (res) {
qphy->tcsr_clamp_dig_n = devm_ioremap_nocache(dev,
res->start, resource_size(res));
if (IS_ERR(qphy->tcsr_clamp_dig_n)) {
dev_err(dev, "err reading tcsr_clamp_dig_n\n");
qphy->tcsr_clamp_dig_n = NULL;
}
}
qphy->ref_clk_src = devm_clk_get(dev, "ref_clk_src");
if (IS_ERR(qphy->ref_clk_src))
dev_dbg(dev, "clk get failed for ref_clk_src\n");
qphy->ref_clk = devm_clk_get(dev, "ref_clk");
if (IS_ERR(qphy->ref_clk))
dev_dbg(dev, "clk get failed for ref_clk\n");
else
clk_set_rate(qphy->ref_clk, 19200000);
qphy->cfg_ahb_clk = devm_clk_get(dev, "cfg_ahb_clk");
if (IS_ERR(qphy->cfg_ahb_clk))
return PTR_ERR(qphy->cfg_ahb_clk);
qphy->phy_reset = devm_reset_control_get(dev, "phy_reset");
if (IS_ERR(qphy->phy_reset))
return PTR_ERR(qphy->phy_reset);
if (of_property_match_string(dev->of_node,
"clock-names", "iface_clk") >= 0) {
qphy->iface_clk = devm_clk_get(dev, "iface_clk");
if (IS_ERR(qphy->iface_clk)) {
ret = PTR_ERR(qphy->iface_clk);
qphy->iface_clk = NULL;
if (ret == -EPROBE_DEFER)
return ret;
dev_err(dev, "couldn't get iface_clk(%d)\n", ret);
}
}
if (of_property_match_string(dev->of_node,
"clock-names", "core_clk") >= 0) {
qphy->core_clk = devm_clk_get(dev, "core_clk");
if (IS_ERR(qphy->core_clk)) {
ret = PTR_ERR(qphy->core_clk);
qphy->core_clk = NULL;
if (ret == -EPROBE_DEFER)
return ret;
dev_err(dev, "couldn't get core_clk(%d)\n", ret);
}
}
qphy->gdsc = devm_regulator_get(dev, "USB3_GDSC");
if (IS_ERR(qphy->gdsc))
qphy->gdsc = NULL;
qphy->emulation = of_property_read_bool(dev->of_node,
"qcom,emulation");
of_get_property(dev->of_node, "qcom,emu-init-seq", &size);
if (size) {
qphy->emu_init_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (qphy->emu_init_seq) {
qphy->emu_init_seq_len =
(size / sizeof(*qphy->emu_init_seq));
if (qphy->emu_init_seq_len % 2) {
dev_err(dev, "invalid emu_init_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,emu-init-seq",
qphy->emu_init_seq,
qphy->emu_init_seq_len);
} else {
dev_dbg(dev, "error allocating memory for emu_init_seq\n");
}
}
size = 0;
of_get_property(dev->of_node, "qcom,phy-pll-reset-seq", &size);
if (size) {
qphy->phy_pll_reset_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (qphy->phy_pll_reset_seq) {
qphy->phy_pll_reset_seq_len =
(size / sizeof(*qphy->phy_pll_reset_seq));
if (qphy->phy_pll_reset_seq_len % 2) {
dev_err(dev, "invalid phy_pll_reset_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,phy-pll-reset-seq",
qphy->phy_pll_reset_seq,
qphy->phy_pll_reset_seq_len);
} else {
dev_dbg(dev, "error allocating memory for phy_pll_reset_seq\n");
}
}
size = 0;
of_get_property(dev->of_node, "qcom,emu-dcm-reset-seq", &size);
if (size) {
qphy->emu_dcm_reset_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (qphy->emu_dcm_reset_seq) {
qphy->emu_dcm_reset_seq_len =
(size / sizeof(*qphy->emu_dcm_reset_seq));
if (qphy->emu_dcm_reset_seq_len % 2) {
dev_err(dev, "invalid emu_dcm_reset_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,emu-dcm-reset-seq",
qphy->emu_dcm_reset_seq,
qphy->emu_dcm_reset_seq_len);
} else {
dev_dbg(dev, "error allocating memory for emu_dcm_reset_seq\n");
}
}
size = 0;
of_get_property(dev->of_node, "qcom,qusb-phy-init-seq", &size);
if (size) {
qphy->qusb_phy_init_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (qphy->qusb_phy_init_seq) {
qphy->init_seq_len =
(size / sizeof(*qphy->qusb_phy_init_seq));
if (qphy->init_seq_len % 2) {
dev_err(dev, "invalid init_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,qusb-phy-init-seq",
qphy->qusb_phy_init_seq,
qphy->init_seq_len);
} else {
dev_err(dev, "error allocating memory for phy_init_seq\n");
}
}
qphy->ulpi_mode = false;
ret = of_property_read_string(dev->of_node, "phy_type", &phy_type);
if (!ret) {
if (!strcasecmp(phy_type, "ulpi"))
qphy->ulpi_mode = true;
} else {
dev_err(dev, "error reading phy_type property\n");
return ret;
}
hold_phy_reset = of_property_read_bool(dev->of_node, "qcom,hold-reset");
/* use default major revision as 2 */
qphy->major_rev = 2;
ret = of_property_read_u32(dev->of_node, "qcom,major-rev",
&qphy->major_rev);
ret = of_property_read_u32_array(dev->of_node, "qcom,vdd-voltage-level",
(u32 *) qphy->vdd_levels,
ARRAY_SIZE(qphy->vdd_levels));
if (ret) {
dev_err(dev, "error reading qcom,vdd-voltage-level property\n");
return ret;
}
qphy->vdd = devm_regulator_get(dev, "vdd");
if (IS_ERR(qphy->vdd)) {
dev_err(dev, "unable to get vdd supply\n");
return PTR_ERR(qphy->vdd);
}
qphy->vdda33 = devm_regulator_get(dev, "vdda33");
if (IS_ERR(qphy->vdda33)) {
dev_err(dev, "unable to get vdda33 supply\n");
return PTR_ERR(qphy->vdda33);
}
qphy->vdda18 = devm_regulator_get(dev, "vdda18");
if (IS_ERR(qphy->vdda18)) {
dev_err(dev, "unable to get vdda18 supply\n");
return PTR_ERR(qphy->vdda18);
}
mutex_init(&qphy->phy_lock);
platform_set_drvdata(pdev, qphy);
qphy->phy.label = "msm-qusb-phy";
qphy->phy.init = qusb_phy_init;
qphy->phy.set_suspend = qusb_phy_set_suspend;
qphy->phy.shutdown = qusb_phy_shutdown;
qphy->phy.type = USB_PHY_TYPE_USB2;
qphy->phy.notify_connect = qusb_phy_notify_connect;
qphy->phy.notify_disconnect = qusb_phy_notify_disconnect;
/*
* On some platforms multiple QUSB PHYs are available. If QUSB PHY is
* not used, there is leakage current seen with QUSB PHY related voltage
* rail. Hence keep QUSB PHY into reset state explicitly here.
*/
if (hold_phy_reset) {
ret = reset_control_assert(qphy->phy_reset);
if (ret)
dev_err(dev, "%s:phy_reset assert failed\n", __func__);
}
ret = usb_add_phy_dev(&qphy->phy);
if (ret)
return ret;
ret = qusb_phy_regulator_init(qphy);
if (ret)
usb_remove_phy(&qphy->phy);
/* de-assert clamp dig n to reduce leakage on 1p8 upon boot up */
if (qphy->tcsr_clamp_dig_n)
writel_relaxed(0x0, qphy->tcsr_clamp_dig_n);
return ret;
}
static int qusb_phy_remove(struct platform_device *pdev)
{
struct qusb_phy *qphy = platform_get_drvdata(pdev);
usb_remove_phy(&qphy->phy);
if (qphy->clocks_enabled) {
clk_disable_unprepare(qphy->cfg_ahb_clk);
clk_disable_unprepare(qphy->ref_clk);
clk_disable_unprepare(qphy->ref_clk_src);
qphy->clocks_enabled = false;
}
qusb_phy_enable_power(qphy, false);
return 0;
}
static const struct of_device_id qusb_phy_id_table[] = {
{ .compatible = "qcom,qusb2phy", },
{ },
};
MODULE_DEVICE_TABLE(of, qusb_phy_id_table);
static struct platform_driver qusb_phy_driver = {
.probe = qusb_phy_probe,
.remove = qusb_phy_remove,
.driver = {
.name = "msm-qusb-phy",
.of_match_table = of_match_ptr(qusb_phy_id_table),
},
};
module_platform_driver(qusb_phy_driver);
MODULE_DESCRIPTION("MSM QUSB2 PHY driver");
MODULE_LICENSE("GPL v2");