| /* |
| * Stress userfaultfd syscall. |
| * |
| * Copyright (C) 2015 Red Hat, Inc. |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| * This test allocates two virtual areas and bounces the physical |
| * memory across the two virtual areas (from area_src to area_dst) |
| * using userfaultfd. |
| * |
| * There are three threads running per CPU: |
| * |
| * 1) one per-CPU thread takes a per-page pthread_mutex in a random |
| * page of the area_dst (while the physical page may still be in |
| * area_src), and increments a per-page counter in the same page, |
| * and checks its value against a verification region. |
| * |
| * 2) another per-CPU thread handles the userfaults generated by |
| * thread 1 above. userfaultfd blocking reads or poll() modes are |
| * exercised interleaved. |
| * |
| * 3) one last per-CPU thread transfers the memory in the background |
| * at maximum bandwidth (if not already transferred by thread |
| * 2). Each cpu thread takes cares of transferring a portion of the |
| * area. |
| * |
| * When all threads of type 3 completed the transfer, one bounce is |
| * complete. area_src and area_dst are then swapped. All threads are |
| * respawned and so the bounce is immediately restarted in the |
| * opposite direction. |
| * |
| * per-CPU threads 1 by triggering userfaults inside |
| * pthread_mutex_lock will also verify the atomicity of the memory |
| * transfer (UFFDIO_COPY). |
| * |
| * The program takes two parameters: the amounts of physical memory in |
| * megabytes (MiB) of the area and the number of bounces to execute. |
| * |
| * # 100MiB 99999 bounces |
| * ./userfaultfd 100 99999 |
| * |
| * # 1GiB 99 bounces |
| * ./userfaultfd 1000 99 |
| * |
| * # 10MiB-~6GiB 999 bounces, continue forever unless an error triggers |
| * while ./userfaultfd $[RANDOM % 6000 + 10] 999; do true; done |
| */ |
| |
| #define _GNU_SOURCE |
| #include <stdio.h> |
| #include <errno.h> |
| #include <unistd.h> |
| #include <stdlib.h> |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <fcntl.h> |
| #include <time.h> |
| #include <signal.h> |
| #include <poll.h> |
| #include <string.h> |
| #include <sys/mman.h> |
| #include <sys/syscall.h> |
| #include <sys/ioctl.h> |
| #include <pthread.h> |
| #include "../../../../include/uapi/linux/userfaultfd.h" |
| |
| #ifdef __x86_64__ |
| #define __NR_userfaultfd 323 |
| #elif defined(__i386__) |
| #define __NR_userfaultfd 374 |
| #elif defined(__powewrpc__) |
| #define __NR_userfaultfd 364 |
| #else |
| #error "missing __NR_userfaultfd definition" |
| #endif |
| |
| static unsigned long nr_cpus, nr_pages, nr_pages_per_cpu, page_size; |
| |
| #define BOUNCE_RANDOM (1<<0) |
| #define BOUNCE_RACINGFAULTS (1<<1) |
| #define BOUNCE_VERIFY (1<<2) |
| #define BOUNCE_POLL (1<<3) |
| static int bounces; |
| |
| static unsigned long long *count_verify; |
| static int uffd, finished, *pipefd; |
| static char *area_src, *area_dst; |
| static char *zeropage; |
| pthread_attr_t attr; |
| |
| /* pthread_mutex_t starts at page offset 0 */ |
| #define area_mutex(___area, ___nr) \ |
| ((pthread_mutex_t *) ((___area) + (___nr)*page_size)) |
| /* |
| * count is placed in the page after pthread_mutex_t naturally aligned |
| * to avoid non alignment faults on non-x86 archs. |
| */ |
| #define area_count(___area, ___nr) \ |
| ((volatile unsigned long long *) ((unsigned long) \ |
| ((___area) + (___nr)*page_size + \ |
| sizeof(pthread_mutex_t) + \ |
| sizeof(unsigned long long) - 1) & \ |
| ~(unsigned long)(sizeof(unsigned long long) \ |
| - 1))) |
| |
| static int my_bcmp(char *str1, char *str2, size_t n) |
| { |
| unsigned long i; |
| for (i = 0; i < n; i++) |
| if (str1[i] != str2[i]) |
| return 1; |
| return 0; |
| } |
| |
| static void *locking_thread(void *arg) |
| { |
| unsigned long cpu = (unsigned long) arg; |
| struct random_data rand; |
| unsigned long page_nr = *(&(page_nr)); /* uninitialized warning */ |
| int32_t rand_nr; |
| unsigned long long count; |
| char randstate[64]; |
| unsigned int seed; |
| time_t start; |
| |
| if (bounces & BOUNCE_RANDOM) { |
| seed = (unsigned int) time(NULL) - bounces; |
| if (!(bounces & BOUNCE_RACINGFAULTS)) |
| seed += cpu; |
| bzero(&rand, sizeof(rand)); |
| bzero(&randstate, sizeof(randstate)); |
| if (initstate_r(seed, randstate, sizeof(randstate), &rand)) |
| fprintf(stderr, "srandom_r error\n"), exit(1); |
| } else { |
| page_nr = -bounces; |
| if (!(bounces & BOUNCE_RACINGFAULTS)) |
| page_nr += cpu * nr_pages_per_cpu; |
| } |
| |
| while (!finished) { |
| if (bounces & BOUNCE_RANDOM) { |
| if (random_r(&rand, &rand_nr)) |
| fprintf(stderr, "random_r 1 error\n"), exit(1); |
| page_nr = rand_nr; |
| if (sizeof(page_nr) > sizeof(rand_nr)) { |
| if (random_r(&rand, &rand_nr)) |
| fprintf(stderr, "random_r 2 error\n"), exit(1); |
| page_nr |= (((unsigned long) rand_nr) << 16) << |
| 16; |
| } |
| } else |
| page_nr += 1; |
| page_nr %= nr_pages; |
| |
| start = time(NULL); |
| if (bounces & BOUNCE_VERIFY) { |
| count = *area_count(area_dst, page_nr); |
| if (!count) |
| fprintf(stderr, |
| "page_nr %lu wrong count %Lu %Lu\n", |
| page_nr, count, |
| count_verify[page_nr]), exit(1); |
| |
| |
| /* |
| * We can't use bcmp (or memcmp) because that |
| * returns 0 erroneously if the memory is |
| * changing under it (even if the end of the |
| * page is never changing and always |
| * different). |
| */ |
| #if 1 |
| if (!my_bcmp(area_dst + page_nr * page_size, zeropage, |
| page_size)) |
| fprintf(stderr, |
| "my_bcmp page_nr %lu wrong count %Lu %Lu\n", |
| page_nr, count, |
| count_verify[page_nr]), exit(1); |
| #else |
| unsigned long loops; |
| |
| loops = 0; |
| /* uncomment the below line to test with mutex */ |
| /* pthread_mutex_lock(area_mutex(area_dst, page_nr)); */ |
| while (!bcmp(area_dst + page_nr * page_size, zeropage, |
| page_size)) { |
| loops += 1; |
| if (loops > 10) |
| break; |
| } |
| /* uncomment below line to test with mutex */ |
| /* pthread_mutex_unlock(area_mutex(area_dst, page_nr)); */ |
| if (loops) { |
| fprintf(stderr, |
| "page_nr %lu all zero thread %lu %p %lu\n", |
| page_nr, cpu, area_dst + page_nr * page_size, |
| loops); |
| if (loops > 10) |
| exit(1); |
| } |
| #endif |
| } |
| |
| pthread_mutex_lock(area_mutex(area_dst, page_nr)); |
| count = *area_count(area_dst, page_nr); |
| if (count != count_verify[page_nr]) { |
| fprintf(stderr, |
| "page_nr %lu memory corruption %Lu %Lu\n", |
| page_nr, count, |
| count_verify[page_nr]), exit(1); |
| } |
| count++; |
| *area_count(area_dst, page_nr) = count_verify[page_nr] = count; |
| pthread_mutex_unlock(area_mutex(area_dst, page_nr)); |
| |
| if (time(NULL) - start > 1) |
| fprintf(stderr, |
| "userfault too slow %ld " |
| "possible false positive with overcommit\n", |
| time(NULL) - start); |
| } |
| |
| return NULL; |
| } |
| |
| static int copy_page(unsigned long offset) |
| { |
| struct uffdio_copy uffdio_copy; |
| |
| if (offset >= nr_pages * page_size) |
| fprintf(stderr, "unexpected offset %lu\n", |
| offset), exit(1); |
| uffdio_copy.dst = (unsigned long) area_dst + offset; |
| uffdio_copy.src = (unsigned long) area_src + offset; |
| uffdio_copy.len = page_size; |
| uffdio_copy.mode = 0; |
| uffdio_copy.copy = 0; |
| if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy)) { |
| /* real retval in ufdio_copy.copy */ |
| if (uffdio_copy.copy != -EEXIST) |
| fprintf(stderr, "UFFDIO_COPY error %Ld\n", |
| uffdio_copy.copy), exit(1); |
| } else if (uffdio_copy.copy != page_size) { |
| fprintf(stderr, "UFFDIO_COPY unexpected copy %Ld\n", |
| uffdio_copy.copy), exit(1); |
| } else |
| return 1; |
| return 0; |
| } |
| |
| static void *uffd_poll_thread(void *arg) |
| { |
| unsigned long cpu = (unsigned long) arg; |
| struct pollfd pollfd[2]; |
| struct uffd_msg msg; |
| int ret; |
| unsigned long offset; |
| char tmp_chr; |
| unsigned long userfaults = 0; |
| |
| pollfd[0].fd = uffd; |
| pollfd[0].events = POLLIN; |
| pollfd[1].fd = pipefd[cpu*2]; |
| pollfd[1].events = POLLIN; |
| |
| for (;;) { |
| ret = poll(pollfd, 2, -1); |
| if (!ret) |
| fprintf(stderr, "poll error %d\n", ret), exit(1); |
| if (ret < 0) |
| perror("poll"), exit(1); |
| if (pollfd[1].revents & POLLIN) { |
| if (read(pollfd[1].fd, &tmp_chr, 1) != 1) |
| fprintf(stderr, "read pipefd error\n"), |
| exit(1); |
| break; |
| } |
| if (!(pollfd[0].revents & POLLIN)) |
| fprintf(stderr, "pollfd[0].revents %d\n", |
| pollfd[0].revents), exit(1); |
| ret = read(uffd, &msg, sizeof(msg)); |
| if (ret < 0) { |
| if (errno == EAGAIN) |
| continue; |
| perror("nonblocking read error"), exit(1); |
| } |
| if (msg.event != UFFD_EVENT_PAGEFAULT) |
| fprintf(stderr, "unexpected msg event %u\n", |
| msg.event), exit(1); |
| if (msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE) |
| fprintf(stderr, "unexpected write fault\n"), exit(1); |
| offset = (char *)(unsigned long)msg.arg.pagefault.address - |
| area_dst; |
| offset &= ~(page_size-1); |
| if (copy_page(offset)) |
| userfaults++; |
| } |
| return (void *)userfaults; |
| } |
| |
| pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER; |
| |
| static void *uffd_read_thread(void *arg) |
| { |
| unsigned long *this_cpu_userfaults; |
| struct uffd_msg msg; |
| unsigned long offset; |
| int ret; |
| |
| this_cpu_userfaults = (unsigned long *) arg; |
| *this_cpu_userfaults = 0; |
| |
| pthread_mutex_unlock(&uffd_read_mutex); |
| /* from here cancellation is ok */ |
| |
| for (;;) { |
| ret = read(uffd, &msg, sizeof(msg)); |
| if (ret != sizeof(msg)) { |
| if (ret < 0) |
| perror("blocking read error"), exit(1); |
| else |
| fprintf(stderr, "short read\n"), exit(1); |
| } |
| if (msg.event != UFFD_EVENT_PAGEFAULT) |
| fprintf(stderr, "unexpected msg event %u\n", |
| msg.event), exit(1); |
| if (bounces & BOUNCE_VERIFY && |
| msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE) |
| fprintf(stderr, "unexpected write fault\n"), exit(1); |
| offset = (char *)(unsigned long)msg.arg.pagefault.address - |
| area_dst; |
| offset &= ~(page_size-1); |
| if (copy_page(offset)) |
| (*this_cpu_userfaults)++; |
| } |
| return (void *)NULL; |
| } |
| |
| static void *background_thread(void *arg) |
| { |
| unsigned long cpu = (unsigned long) arg; |
| unsigned long page_nr; |
| |
| for (page_nr = cpu * nr_pages_per_cpu; |
| page_nr < (cpu+1) * nr_pages_per_cpu; |
| page_nr++) |
| copy_page(page_nr * page_size); |
| |
| return NULL; |
| } |
| |
| static int stress(unsigned long *userfaults) |
| { |
| unsigned long cpu; |
| pthread_t locking_threads[nr_cpus]; |
| pthread_t uffd_threads[nr_cpus]; |
| pthread_t background_threads[nr_cpus]; |
| void **_userfaults = (void **) userfaults; |
| |
| finished = 0; |
| for (cpu = 0; cpu < nr_cpus; cpu++) { |
| if (pthread_create(&locking_threads[cpu], &attr, |
| locking_thread, (void *)cpu)) |
| return 1; |
| if (bounces & BOUNCE_POLL) { |
| if (pthread_create(&uffd_threads[cpu], &attr, |
| uffd_poll_thread, (void *)cpu)) |
| return 1; |
| } else { |
| if (pthread_create(&uffd_threads[cpu], &attr, |
| uffd_read_thread, |
| &_userfaults[cpu])) |
| return 1; |
| pthread_mutex_lock(&uffd_read_mutex); |
| } |
| if (pthread_create(&background_threads[cpu], &attr, |
| background_thread, (void *)cpu)) |
| return 1; |
| } |
| for (cpu = 0; cpu < nr_cpus; cpu++) |
| if (pthread_join(background_threads[cpu], NULL)) |
| return 1; |
| |
| /* |
| * Be strict and immediately zap area_src, the whole area has |
| * been transferred already by the background treads. The |
| * area_src could then be faulted in in a racy way by still |
| * running uffdio_threads reading zeropages after we zapped |
| * area_src (but they're guaranteed to get -EEXIST from |
| * UFFDIO_COPY without writing zero pages into area_dst |
| * because the background threads already completed). |
| */ |
| if (madvise(area_src, nr_pages * page_size, MADV_DONTNEED)) { |
| perror("madvise"); |
| return 1; |
| } |
| |
| for (cpu = 0; cpu < nr_cpus; cpu++) { |
| char c; |
| if (bounces & BOUNCE_POLL) { |
| if (write(pipefd[cpu*2+1], &c, 1) != 1) { |
| fprintf(stderr, "pipefd write error\n"); |
| return 1; |
| } |
| if (pthread_join(uffd_threads[cpu], &_userfaults[cpu])) |
| return 1; |
| } else { |
| if (pthread_cancel(uffd_threads[cpu])) |
| return 1; |
| if (pthread_join(uffd_threads[cpu], NULL)) |
| return 1; |
| } |
| } |
| |
| finished = 1; |
| for (cpu = 0; cpu < nr_cpus; cpu++) |
| if (pthread_join(locking_threads[cpu], NULL)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int userfaultfd_stress(void) |
| { |
| void *area; |
| char *tmp_area; |
| unsigned long nr; |
| struct uffdio_register uffdio_register; |
| struct uffdio_api uffdio_api; |
| unsigned long cpu; |
| int uffd_flags; |
| unsigned long userfaults[nr_cpus]; |
| |
| if (posix_memalign(&area, page_size, nr_pages * page_size)) { |
| fprintf(stderr, "out of memory\n"); |
| return 1; |
| } |
| area_src = area; |
| if (posix_memalign(&area, page_size, nr_pages * page_size)) { |
| fprintf(stderr, "out of memory\n"); |
| return 1; |
| } |
| area_dst = area; |
| |
| uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); |
| if (uffd < 0) { |
| fprintf(stderr, |
| "userfaultfd syscall not available in this kernel\n"); |
| return 1; |
| } |
| uffd_flags = fcntl(uffd, F_GETFD, NULL); |
| |
| uffdio_api.api = UFFD_API; |
| uffdio_api.features = 0; |
| if (ioctl(uffd, UFFDIO_API, &uffdio_api)) { |
| fprintf(stderr, "UFFDIO_API\n"); |
| return 1; |
| } |
| if (uffdio_api.api != UFFD_API) { |
| fprintf(stderr, "UFFDIO_API error %Lu\n", uffdio_api.api); |
| return 1; |
| } |
| |
| count_verify = malloc(nr_pages * sizeof(unsigned long long)); |
| if (!count_verify) { |
| perror("count_verify"); |
| return 1; |
| } |
| |
| for (nr = 0; nr < nr_pages; nr++) { |
| *area_mutex(area_src, nr) = (pthread_mutex_t) |
| PTHREAD_MUTEX_INITIALIZER; |
| count_verify[nr] = *area_count(area_src, nr) = 1; |
| } |
| |
| pipefd = malloc(sizeof(int) * nr_cpus * 2); |
| if (!pipefd) { |
| perror("pipefd"); |
| return 1; |
| } |
| for (cpu = 0; cpu < nr_cpus; cpu++) { |
| if (pipe2(&pipefd[cpu*2], O_CLOEXEC | O_NONBLOCK)) { |
| perror("pipe"); |
| return 1; |
| } |
| } |
| |
| if (posix_memalign(&area, page_size, page_size)) { |
| fprintf(stderr, "out of memory\n"); |
| return 1; |
| } |
| zeropage = area; |
| bzero(zeropage, page_size); |
| |
| pthread_mutex_lock(&uffd_read_mutex); |
| |
| pthread_attr_init(&attr); |
| pthread_attr_setstacksize(&attr, 16*1024*1024); |
| |
| while (bounces--) { |
| unsigned long expected_ioctls; |
| |
| printf("bounces: %d, mode:", bounces); |
| if (bounces & BOUNCE_RANDOM) |
| printf(" rnd"); |
| if (bounces & BOUNCE_RACINGFAULTS) |
| printf(" racing"); |
| if (bounces & BOUNCE_VERIFY) |
| printf(" ver"); |
| if (bounces & BOUNCE_POLL) |
| printf(" poll"); |
| printf(", "); |
| fflush(stdout); |
| |
| if (bounces & BOUNCE_POLL) |
| fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); |
| else |
| fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK); |
| |
| /* register */ |
| uffdio_register.range.start = (unsigned long) area_dst; |
| uffdio_register.range.len = nr_pages * page_size; |
| uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; |
| if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) { |
| fprintf(stderr, "register failure\n"); |
| return 1; |
| } |
| expected_ioctls = (1 << _UFFDIO_WAKE) | |
| (1 << _UFFDIO_COPY) | |
| (1 << _UFFDIO_ZEROPAGE); |
| if ((uffdio_register.ioctls & expected_ioctls) != |
| expected_ioctls) { |
| fprintf(stderr, |
| "unexpected missing ioctl for anon memory\n"); |
| return 1; |
| } |
| |
| /* |
| * The madvise done previously isn't enough: some |
| * uffd_thread could have read userfaults (one of |
| * those already resolved by the background thread) |
| * and it may be in the process of calling |
| * UFFDIO_COPY. UFFDIO_COPY will read the zapped |
| * area_src and it would map a zero page in it (of |
| * course such a UFFDIO_COPY is perfectly safe as it'd |
| * return -EEXIST). The problem comes at the next |
| * bounce though: that racing UFFDIO_COPY would |
| * generate zeropages in the area_src, so invalidating |
| * the previous MADV_DONTNEED. Without this additional |
| * MADV_DONTNEED those zeropages leftovers in the |
| * area_src would lead to -EEXIST failure during the |
| * next bounce, effectively leaving a zeropage in the |
| * area_dst. |
| * |
| * Try to comment this out madvise to see the memory |
| * corruption being caught pretty quick. |
| * |
| * khugepaged is also inhibited to collapse THP after |
| * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's |
| * required to MADV_DONTNEED here. |
| */ |
| if (madvise(area_dst, nr_pages * page_size, MADV_DONTNEED)) { |
| perror("madvise 2"); |
| return 1; |
| } |
| |
| /* bounce pass */ |
| if (stress(userfaults)) |
| return 1; |
| |
| /* unregister */ |
| if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) { |
| fprintf(stderr, "register failure\n"); |
| return 1; |
| } |
| |
| /* verification */ |
| if (bounces & BOUNCE_VERIFY) { |
| for (nr = 0; nr < nr_pages; nr++) { |
| if (my_bcmp(area_dst, |
| area_dst + nr * page_size, |
| sizeof(pthread_mutex_t))) { |
| fprintf(stderr, |
| "error mutex 2 %lu\n", |
| nr); |
| bounces = 0; |
| } |
| if (*area_count(area_dst, nr) != count_verify[nr]) { |
| fprintf(stderr, |
| "error area_count %Lu %Lu %lu\n", |
| *area_count(area_src, nr), |
| count_verify[nr], |
| nr); |
| bounces = 0; |
| } |
| } |
| } |
| |
| /* prepare next bounce */ |
| tmp_area = area_src; |
| area_src = area_dst; |
| area_dst = tmp_area; |
| |
| printf("userfaults:"); |
| for (cpu = 0; cpu < nr_cpus; cpu++) |
| printf(" %lu", userfaults[cpu]); |
| printf("\n"); |
| } |
| |
| return 0; |
| } |
| |
| int main(int argc, char **argv) |
| { |
| if (argc < 3) |
| fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1); |
| nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); |
| page_size = sysconf(_SC_PAGE_SIZE); |
| if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) > |
| page_size) |
| fprintf(stderr, "Impossible to run this test\n"), exit(2); |
| nr_pages_per_cpu = atol(argv[1]) * 1024*1024 / page_size / |
| nr_cpus; |
| if (!nr_pages_per_cpu) { |
| fprintf(stderr, "invalid MiB\n"); |
| fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1); |
| } |
| bounces = atoi(argv[2]); |
| if (bounces <= 0) { |
| fprintf(stderr, "invalid bounces\n"); |
| fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1); |
| } |
| nr_pages = nr_pages_per_cpu * nr_cpus; |
| printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n", |
| nr_pages, nr_pages_per_cpu); |
| return userfaultfd_stress(); |
| } |