blob: be91397f4e927de9e88f9e72f5559d8eae2e4d1a [file] [log] [blame]
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#ifndef __BTRFS_CTREE__
#define __BTRFS_CTREE__
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/fs.h>
#include <linux/rwsem.h>
#include <linux/semaphore.h>
#include <linux/completion.h>
#include <linux/backing-dev.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <linux/kobject.h>
#include <trace/events/btrfs.h>
#include <asm/kmap_types.h>
#include <linux/pagemap.h>
#include <linux/btrfs.h>
#include <linux/workqueue.h>
#include "extent_io.h"
#include "extent_map.h"
#include "async-thread.h"
struct btrfs_trans_handle;
struct btrfs_transaction;
struct btrfs_pending_snapshot;
extern struct kmem_cache *btrfs_trans_handle_cachep;
extern struct kmem_cache *btrfs_transaction_cachep;
extern struct kmem_cache *btrfs_bit_radix_cachep;
extern struct kmem_cache *btrfs_path_cachep;
extern struct kmem_cache *btrfs_free_space_cachep;
struct btrfs_ordered_sum;
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
#define STATIC noinline
#else
#define STATIC static noinline
#endif
#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
#define BTRFS_MAX_MIRRORS 3
#define BTRFS_MAX_LEVEL 8
#define BTRFS_COMPAT_EXTENT_TREE_V0
/*
* files bigger than this get some pre-flushing when they are added
* to the ordered operations list. That way we limit the total
* work done by the commit
*/
#define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024)
/* holds pointers to all of the tree roots */
#define BTRFS_ROOT_TREE_OBJECTID 1ULL
/* stores information about which extents are in use, and reference counts */
#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
/*
* chunk tree stores translations from logical -> physical block numbering
* the super block points to the chunk tree
*/
#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
/*
* stores information about which areas of a given device are in use.
* one per device. The tree of tree roots points to the device tree
*/
#define BTRFS_DEV_TREE_OBJECTID 4ULL
/* one per subvolume, storing files and directories */
#define BTRFS_FS_TREE_OBJECTID 5ULL
/* directory objectid inside the root tree */
#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
/* holds checksums of all the data extents */
#define BTRFS_CSUM_TREE_OBJECTID 7ULL
/* holds quota configuration and tracking */
#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
/* for storing items that use the BTRFS_UUID_KEY* types */
#define BTRFS_UUID_TREE_OBJECTID 9ULL
/* for storing balance parameters in the root tree */
#define BTRFS_BALANCE_OBJECTID -4ULL
/* orhpan objectid for tracking unlinked/truncated files */
#define BTRFS_ORPHAN_OBJECTID -5ULL
/* does write ahead logging to speed up fsyncs */
#define BTRFS_TREE_LOG_OBJECTID -6ULL
#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
/* for space balancing */
#define BTRFS_TREE_RELOC_OBJECTID -8ULL
#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
/*
* extent checksums all have this objectid
* this allows them to share the logging tree
* for fsyncs
*/
#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
/* For storing free space cache */
#define BTRFS_FREE_SPACE_OBJECTID -11ULL
/*
* The inode number assigned to the special inode for storing
* free ino cache
*/
#define BTRFS_FREE_INO_OBJECTID -12ULL
/* dummy objectid represents multiple objectids */
#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
/*
* All files have objectids in this range.
*/
#define BTRFS_FIRST_FREE_OBJECTID 256ULL
#define BTRFS_LAST_FREE_OBJECTID -256ULL
#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
/*
* the device items go into the chunk tree. The key is in the form
* [ 1 BTRFS_DEV_ITEM_KEY device_id ]
*/
#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
#define BTRFS_BTREE_INODE_OBJECTID 1
#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
#define BTRFS_DEV_REPLACE_DEVID 0ULL
/*
* the max metadata block size. This limit is somewhat artificial,
* but the memmove costs go through the roof for larger blocks.
*/
#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
/*
* we can actually store much bigger names, but lets not confuse the rest
* of linux
*/
#define BTRFS_NAME_LEN 255
/*
* Theoretical limit is larger, but we keep this down to a sane
* value. That should limit greatly the possibility of collisions on
* inode ref items.
*/
#define BTRFS_LINK_MAX 65535U
/* 32 bytes in various csum fields */
#define BTRFS_CSUM_SIZE 32
/* csum types */
#define BTRFS_CSUM_TYPE_CRC32 0
static int btrfs_csum_sizes[] = { 4, 0 };
/* four bytes for CRC32 */
#define BTRFS_EMPTY_DIR_SIZE 0
/* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
#define REQ_GET_READ_MIRRORS (1 << 30)
#define BTRFS_FT_UNKNOWN 0
#define BTRFS_FT_REG_FILE 1
#define BTRFS_FT_DIR 2
#define BTRFS_FT_CHRDEV 3
#define BTRFS_FT_BLKDEV 4
#define BTRFS_FT_FIFO 5
#define BTRFS_FT_SOCK 6
#define BTRFS_FT_SYMLINK 7
#define BTRFS_FT_XATTR 8
#define BTRFS_FT_MAX 9
/* ioprio of readahead is set to idle */
#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
#define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024)
/*
* The key defines the order in the tree, and so it also defines (optimal)
* block layout.
*
* objectid corresponds to the inode number.
*
* type tells us things about the object, and is a kind of stream selector.
* so for a given inode, keys with type of 1 might refer to the inode data,
* type of 2 may point to file data in the btree and type == 3 may point to
* extents.
*
* offset is the starting byte offset for this key in the stream.
*
* btrfs_disk_key is in disk byte order. struct btrfs_key is always
* in cpu native order. Otherwise they are identical and their sizes
* should be the same (ie both packed)
*/
struct btrfs_disk_key {
__le64 objectid;
u8 type;
__le64 offset;
} __attribute__ ((__packed__));
struct btrfs_key {
u64 objectid;
u8 type;
u64 offset;
} __attribute__ ((__packed__));
struct btrfs_mapping_tree {
struct extent_map_tree map_tree;
};
struct btrfs_dev_item {
/* the internal btrfs device id */
__le64 devid;
/* size of the device */
__le64 total_bytes;
/* bytes used */
__le64 bytes_used;
/* optimal io alignment for this device */
__le32 io_align;
/* optimal io width for this device */
__le32 io_width;
/* minimal io size for this device */
__le32 sector_size;
/* type and info about this device */
__le64 type;
/* expected generation for this device */
__le64 generation;
/*
* starting byte of this partition on the device,
* to allow for stripe alignment in the future
*/
__le64 start_offset;
/* grouping information for allocation decisions */
__le32 dev_group;
/* seek speed 0-100 where 100 is fastest */
u8 seek_speed;
/* bandwidth 0-100 where 100 is fastest */
u8 bandwidth;
/* btrfs generated uuid for this device */
u8 uuid[BTRFS_UUID_SIZE];
/* uuid of FS who owns this device */
u8 fsid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));
struct btrfs_stripe {
__le64 devid;
__le64 offset;
u8 dev_uuid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));
struct btrfs_chunk {
/* size of this chunk in bytes */
__le64 length;
/* objectid of the root referencing this chunk */
__le64 owner;
__le64 stripe_len;
__le64 type;
/* optimal io alignment for this chunk */
__le32 io_align;
/* optimal io width for this chunk */
__le32 io_width;
/* minimal io size for this chunk */
__le32 sector_size;
/* 2^16 stripes is quite a lot, a second limit is the size of a single
* item in the btree
*/
__le16 num_stripes;
/* sub stripes only matter for raid10 */
__le16 sub_stripes;
struct btrfs_stripe stripe;
/* additional stripes go here */
} __attribute__ ((__packed__));
#define BTRFS_FREE_SPACE_EXTENT 1
#define BTRFS_FREE_SPACE_BITMAP 2
struct btrfs_free_space_entry {
__le64 offset;
__le64 bytes;
u8 type;
} __attribute__ ((__packed__));
struct btrfs_free_space_header {
struct btrfs_disk_key location;
__le64 generation;
__le64 num_entries;
__le64 num_bitmaps;
} __attribute__ ((__packed__));
static inline unsigned long btrfs_chunk_item_size(int num_stripes)
{
BUG_ON(num_stripes == 0);
return sizeof(struct btrfs_chunk) +
sizeof(struct btrfs_stripe) * (num_stripes - 1);
}
#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
/*
* File system states
*/
#define BTRFS_FS_STATE_ERROR 0
#define BTRFS_FS_STATE_REMOUNTING 1
#define BTRFS_FS_STATE_TRANS_ABORTED 2
#define BTRFS_FS_STATE_DEV_REPLACING 3
/* Super block flags */
/* Errors detected */
#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
#define BTRFS_BACKREF_REV_MAX 256
#define BTRFS_BACKREF_REV_SHIFT 56
#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
BTRFS_BACKREF_REV_SHIFT)
#define BTRFS_OLD_BACKREF_REV 0
#define BTRFS_MIXED_BACKREF_REV 1
/*
* every tree block (leaf or node) starts with this header.
*/
struct btrfs_header {
/* these first four must match the super block */
u8 csum[BTRFS_CSUM_SIZE];
u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
__le64 bytenr; /* which block this node is supposed to live in */
__le64 flags;
/* allowed to be different from the super from here on down */
u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
__le64 generation;
__le64 owner;
__le32 nritems;
u8 level;
} __attribute__ ((__packed__));
#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
sizeof(struct btrfs_header)) / \
sizeof(struct btrfs_key_ptr))
#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize))
#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
sizeof(struct btrfs_item) - \
sizeof(struct btrfs_file_extent_item))
#define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
sizeof(struct btrfs_item) -\
sizeof(struct btrfs_dir_item))
/*
* this is a very generous portion of the super block, giving us
* room to translate 14 chunks with 3 stripes each.
*/
#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
#define BTRFS_LABEL_SIZE 256
/*
* just in case we somehow lose the roots and are not able to mount,
* we store an array of the roots from previous transactions
* in the super.
*/
#define BTRFS_NUM_BACKUP_ROOTS 4
struct btrfs_root_backup {
__le64 tree_root;
__le64 tree_root_gen;
__le64 chunk_root;
__le64 chunk_root_gen;
__le64 extent_root;
__le64 extent_root_gen;
__le64 fs_root;
__le64 fs_root_gen;
__le64 dev_root;
__le64 dev_root_gen;
__le64 csum_root;
__le64 csum_root_gen;
__le64 total_bytes;
__le64 bytes_used;
__le64 num_devices;
/* future */
__le64 unused_64[4];
u8 tree_root_level;
u8 chunk_root_level;
u8 extent_root_level;
u8 fs_root_level;
u8 dev_root_level;
u8 csum_root_level;
/* future and to align */
u8 unused_8[10];
} __attribute__ ((__packed__));
/*
* the super block basically lists the main trees of the FS
* it currently lacks any block count etc etc
*/
struct btrfs_super_block {
u8 csum[BTRFS_CSUM_SIZE];
/* the first 4 fields must match struct btrfs_header */
u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
__le64 bytenr; /* this block number */
__le64 flags;
/* allowed to be different from the btrfs_header from here own down */
__le64 magic;
__le64 generation;
__le64 root;
__le64 chunk_root;
__le64 log_root;
/* this will help find the new super based on the log root */
__le64 log_root_transid;
__le64 total_bytes;
__le64 bytes_used;
__le64 root_dir_objectid;
__le64 num_devices;
__le32 sectorsize;
__le32 nodesize;
__le32 leafsize;
__le32 stripesize;
__le32 sys_chunk_array_size;
__le64 chunk_root_generation;
__le64 compat_flags;
__le64 compat_ro_flags;
__le64 incompat_flags;
__le16 csum_type;
u8 root_level;
u8 chunk_root_level;
u8 log_root_level;
struct btrfs_dev_item dev_item;
char label[BTRFS_LABEL_SIZE];
__le64 cache_generation;
__le64 uuid_tree_generation;
/* future expansion */
__le64 reserved[30];
u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
} __attribute__ ((__packed__));
/*
* Compat flags that we support. If any incompat flags are set other than the
* ones specified below then we will fail to mount
*/
#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
/*
* some patches floated around with a second compression method
* lets save that incompat here for when they do get in
* Note we don't actually support it, we're just reserving the
* number
*/
#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
/*
* older kernels tried to do bigger metadata blocks, but the
* code was pretty buggy. Lets not let them try anymore.
*/
#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
#define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
#define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
#define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
#define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
#define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
#define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
#define BTRFS_FEATURE_INCOMPAT_SUPP \
(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
BTRFS_FEATURE_INCOMPAT_RAID56 | \
BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
BTRFS_FEATURE_INCOMPAT_NO_HOLES)
#define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
/*
* A leaf is full of items. offset and size tell us where to find
* the item in the leaf (relative to the start of the data area)
*/
struct btrfs_item {
struct btrfs_disk_key key;
__le32 offset;
__le32 size;
} __attribute__ ((__packed__));
/*
* leaves have an item area and a data area:
* [item0, item1....itemN] [free space] [dataN...data1, data0]
*
* The data is separate from the items to get the keys closer together
* during searches.
*/
struct btrfs_leaf {
struct btrfs_header header;
struct btrfs_item items[];
} __attribute__ ((__packed__));
/*
* all non-leaf blocks are nodes, they hold only keys and pointers to
* other blocks
*/
struct btrfs_key_ptr {
struct btrfs_disk_key key;
__le64 blockptr;
__le64 generation;
} __attribute__ ((__packed__));
struct btrfs_node {
struct btrfs_header header;
struct btrfs_key_ptr ptrs[];
} __attribute__ ((__packed__));
/*
* btrfs_paths remember the path taken from the root down to the leaf.
* level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
* to any other levels that are present.
*
* The slots array records the index of the item or block pointer
* used while walking the tree.
*/
struct btrfs_path {
struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
int slots[BTRFS_MAX_LEVEL];
/* if there is real range locking, this locks field will change */
int locks[BTRFS_MAX_LEVEL];
int reada;
/* keep some upper locks as we walk down */
int lowest_level;
/*
* set by btrfs_split_item, tells search_slot to keep all locks
* and to force calls to keep space in the nodes
*/
unsigned int search_for_split:1;
unsigned int keep_locks:1;
unsigned int skip_locking:1;
unsigned int leave_spinning:1;
unsigned int search_commit_root:1;
unsigned int need_commit_sem:1;
};
/*
* items in the extent btree are used to record the objectid of the
* owner of the block and the number of references
*/
struct btrfs_extent_item {
__le64 refs;
__le64 generation;
__le64 flags;
} __attribute__ ((__packed__));
struct btrfs_extent_item_v0 {
__le32 refs;
} __attribute__ ((__packed__));
#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
sizeof(struct btrfs_item))
#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
/* following flags only apply to tree blocks */
/* use full backrefs for extent pointers in the block */
#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
/*
* this flag is only used internally by scrub and may be changed at any time
* it is only declared here to avoid collisions
*/
#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
struct btrfs_tree_block_info {
struct btrfs_disk_key key;
u8 level;
} __attribute__ ((__packed__));
struct btrfs_extent_data_ref {
__le64 root;
__le64 objectid;
__le64 offset;
__le32 count;
} __attribute__ ((__packed__));
struct btrfs_shared_data_ref {
__le32 count;
} __attribute__ ((__packed__));
struct btrfs_extent_inline_ref {
u8 type;
__le64 offset;
} __attribute__ ((__packed__));
/* old style backrefs item */
struct btrfs_extent_ref_v0 {
__le64 root;
__le64 generation;
__le64 objectid;
__le32 count;
} __attribute__ ((__packed__));
/* dev extents record free space on individual devices. The owner
* field points back to the chunk allocation mapping tree that allocated
* the extent. The chunk tree uuid field is a way to double check the owner
*/
struct btrfs_dev_extent {
__le64 chunk_tree;
__le64 chunk_objectid;
__le64 chunk_offset;
__le64 length;
u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));
struct btrfs_inode_ref {
__le64 index;
__le16 name_len;
/* name goes here */
} __attribute__ ((__packed__));
struct btrfs_inode_extref {
__le64 parent_objectid;
__le64 index;
__le16 name_len;
__u8 name[0];
/* name goes here */
} __attribute__ ((__packed__));
struct btrfs_timespec {
__le64 sec;
__le32 nsec;
} __attribute__ ((__packed__));
enum btrfs_compression_type {
BTRFS_COMPRESS_NONE = 0,
BTRFS_COMPRESS_ZLIB = 1,
BTRFS_COMPRESS_LZO = 2,
BTRFS_COMPRESS_TYPES = 2,
BTRFS_COMPRESS_LAST = 3,
};
struct btrfs_inode_item {
/* nfs style generation number */
__le64 generation;
/* transid that last touched this inode */
__le64 transid;
__le64 size;
__le64 nbytes;
__le64 block_group;
__le32 nlink;
__le32 uid;
__le32 gid;
__le32 mode;
__le64 rdev;
__le64 flags;
/* modification sequence number for NFS */
__le64 sequence;
/*
* a little future expansion, for more than this we can
* just grow the inode item and version it
*/
__le64 reserved[4];
struct btrfs_timespec atime;
struct btrfs_timespec ctime;
struct btrfs_timespec mtime;
struct btrfs_timespec otime;
} __attribute__ ((__packed__));
struct btrfs_dir_log_item {
__le64 end;
} __attribute__ ((__packed__));
struct btrfs_dir_item {
struct btrfs_disk_key location;
__le64 transid;
__le16 data_len;
__le16 name_len;
u8 type;
} __attribute__ ((__packed__));
#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
/*
* Internal in-memory flag that a subvolume has been marked for deletion but
* still visible as a directory
*/
#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
struct btrfs_root_item {
struct btrfs_inode_item inode;
__le64 generation;
__le64 root_dirid;
__le64 bytenr;
__le64 byte_limit;
__le64 bytes_used;
__le64 last_snapshot;
__le64 flags;
__le32 refs;
struct btrfs_disk_key drop_progress;
u8 drop_level;
u8 level;
/*
* The following fields appear after subvol_uuids+subvol_times
* were introduced.
*/
/*
* This generation number is used to test if the new fields are valid
* and up to date while reading the root item. Everytime the root item
* is written out, the "generation" field is copied into this field. If
* anyone ever mounted the fs with an older kernel, we will have
* mismatching generation values here and thus must invalidate the
* new fields. See btrfs_update_root and btrfs_find_last_root for
* details.
* the offset of generation_v2 is also used as the start for the memset
* when invalidating the fields.
*/
__le64 generation_v2;
u8 uuid[BTRFS_UUID_SIZE];
u8 parent_uuid[BTRFS_UUID_SIZE];
u8 received_uuid[BTRFS_UUID_SIZE];
__le64 ctransid; /* updated when an inode changes */
__le64 otransid; /* trans when created */
__le64 stransid; /* trans when sent. non-zero for received subvol */
__le64 rtransid; /* trans when received. non-zero for received subvol */
struct btrfs_timespec ctime;
struct btrfs_timespec otime;
struct btrfs_timespec stime;
struct btrfs_timespec rtime;
__le64 reserved[8]; /* for future */
} __attribute__ ((__packed__));
/*
* this is used for both forward and backward root refs
*/
struct btrfs_root_ref {
__le64 dirid;
__le64 sequence;
__le16 name_len;
} __attribute__ ((__packed__));
struct btrfs_disk_balance_args {
/*
* profiles to operate on, single is denoted by
* BTRFS_AVAIL_ALLOC_BIT_SINGLE
*/
__le64 profiles;
/* usage filter */
__le64 usage;
/* devid filter */
__le64 devid;
/* devid subset filter [pstart..pend) */
__le64 pstart;
__le64 pend;
/* btrfs virtual address space subset filter [vstart..vend) */
__le64 vstart;
__le64 vend;
/*
* profile to convert to, single is denoted by
* BTRFS_AVAIL_ALLOC_BIT_SINGLE
*/
__le64 target;
/* BTRFS_BALANCE_ARGS_* */
__le64 flags;
/* BTRFS_BALANCE_ARGS_LIMIT value */
__le64 limit;
__le64 unused[7];
} __attribute__ ((__packed__));
/*
* store balance parameters to disk so that balance can be properly
* resumed after crash or unmount
*/
struct btrfs_balance_item {
/* BTRFS_BALANCE_* */
__le64 flags;
struct btrfs_disk_balance_args data;
struct btrfs_disk_balance_args meta;
struct btrfs_disk_balance_args sys;
__le64 unused[4];
} __attribute__ ((__packed__));
#define BTRFS_FILE_EXTENT_INLINE 0
#define BTRFS_FILE_EXTENT_REG 1
#define BTRFS_FILE_EXTENT_PREALLOC 2
struct btrfs_file_extent_item {
/*
* transaction id that created this extent
*/
__le64 generation;
/*
* max number of bytes to hold this extent in ram
* when we split a compressed extent we can't know how big
* each of the resulting pieces will be. So, this is
* an upper limit on the size of the extent in ram instead of
* an exact limit.
*/
__le64 ram_bytes;
/*
* 32 bits for the various ways we might encode the data,
* including compression and encryption. If any of these
* are set to something a given disk format doesn't understand
* it is treated like an incompat flag for reading and writing,
* but not for stat.
*/
u8 compression;
u8 encryption;
__le16 other_encoding; /* spare for later use */
/* are we inline data or a real extent? */
u8 type;
/*
* disk space consumed by the extent, checksum blocks are included
* in these numbers
*/
__le64 disk_bytenr;
__le64 disk_num_bytes;
/*
* the logical offset in file blocks (no csums)
* this extent record is for. This allows a file extent to point
* into the middle of an existing extent on disk, sharing it
* between two snapshots (useful if some bytes in the middle of the
* extent have changed
*/
__le64 offset;
/*
* the logical number of file blocks (no csums included). This
* always reflects the size uncompressed and without encoding.
*/
__le64 num_bytes;
} __attribute__ ((__packed__));
struct btrfs_csum_item {
u8 csum;
} __attribute__ ((__packed__));
struct btrfs_dev_stats_item {
/*
* grow this item struct at the end for future enhancements and keep
* the existing values unchanged
*/
__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
} __attribute__ ((__packed__));
#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
struct btrfs_dev_replace {
u64 replace_state; /* see #define above */
u64 time_started; /* seconds since 1-Jan-1970 */
u64 time_stopped; /* seconds since 1-Jan-1970 */
atomic64_t num_write_errors;
atomic64_t num_uncorrectable_read_errors;
u64 cursor_left;
u64 committed_cursor_left;
u64 cursor_left_last_write_of_item;
u64 cursor_right;
u64 cont_reading_from_srcdev_mode; /* see #define above */
int is_valid;
int item_needs_writeback;
struct btrfs_device *srcdev;
struct btrfs_device *tgtdev;
pid_t lock_owner;
atomic_t nesting_level;
struct mutex lock_finishing_cancel_unmount;
struct mutex lock_management_lock;
struct mutex lock;
struct btrfs_scrub_progress scrub_progress;
};
struct btrfs_dev_replace_item {
/*
* grow this item struct at the end for future enhancements and keep
* the existing values unchanged
*/
__le64 src_devid;
__le64 cursor_left;
__le64 cursor_right;
__le64 cont_reading_from_srcdev_mode;
__le64 replace_state;
__le64 time_started;
__le64 time_stopped;
__le64 num_write_errors;
__le64 num_uncorrectable_read_errors;
} __attribute__ ((__packed__));
/* different types of block groups (and chunks) */
#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
BTRFS_SPACE_INFO_GLOBAL_RSV)
enum btrfs_raid_types {
BTRFS_RAID_RAID10,
BTRFS_RAID_RAID1,
BTRFS_RAID_DUP,
BTRFS_RAID_RAID0,
BTRFS_RAID_SINGLE,
BTRFS_RAID_RAID5,
BTRFS_RAID_RAID6,
BTRFS_NR_RAID_TYPES
};
#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
BTRFS_BLOCK_GROUP_SYSTEM | \
BTRFS_BLOCK_GROUP_METADATA)
#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
BTRFS_BLOCK_GROUP_RAID1 | \
BTRFS_BLOCK_GROUP_RAID5 | \
BTRFS_BLOCK_GROUP_RAID6 | \
BTRFS_BLOCK_GROUP_DUP | \
BTRFS_BLOCK_GROUP_RAID10)
/*
* We need a bit for restriper to be able to tell when chunks of type
* SINGLE are available. This "extended" profile format is used in
* fs_info->avail_*_alloc_bits (in-memory) and balance item fields
* (on-disk). The corresponding on-disk bit in chunk.type is reserved
* to avoid remappings between two formats in future.
*/
#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
/*
* A fake block group type that is used to communicate global block reserve
* size to userspace via the SPACE_INFO ioctl.
*/
#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
BTRFS_AVAIL_ALLOC_BIT_SINGLE)
static inline u64 chunk_to_extended(u64 flags)
{
if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
return flags;
}
static inline u64 extended_to_chunk(u64 flags)
{
return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
}
struct btrfs_block_group_item {
__le64 used;
__le64 chunk_objectid;
__le64 flags;
} __attribute__ ((__packed__));
/*
* is subvolume quota turned on?
*/
#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
/*
* RESCAN is set during the initialization phase
*/
#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
/*
* Some qgroup entries are known to be out of date,
* either because the configuration has changed in a way that
* makes a rescan necessary, or because the fs has been mounted
* with a non-qgroup-aware version.
* Turning qouta off and on again makes it inconsistent, too.
*/
#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
#define BTRFS_QGROUP_STATUS_VERSION 1
struct btrfs_qgroup_status_item {
__le64 version;
/*
* the generation is updated during every commit. As older
* versions of btrfs are not aware of qgroups, it will be
* possible to detect inconsistencies by checking the
* generation on mount time
*/
__le64 generation;
/* flag definitions see above */
__le64 flags;
/*
* only used during scanning to record the progress
* of the scan. It contains a logical address
*/
__le64 rescan;
} __attribute__ ((__packed__));
struct btrfs_qgroup_info_item {
__le64 generation;
__le64 rfer;
__le64 rfer_cmpr;
__le64 excl;
__le64 excl_cmpr;
} __attribute__ ((__packed__));
/* flags definition for qgroup limits */
#define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
#define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
#define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
#define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
#define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
#define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
struct btrfs_qgroup_limit_item {
/*
* only updated when any of the other values change
*/
__le64 flags;
__le64 max_rfer;
__le64 max_excl;
__le64 rsv_rfer;
__le64 rsv_excl;
} __attribute__ ((__packed__));
/* For raid type sysfs entries */
struct raid_kobject {
int raid_type;
struct kobject kobj;
};
struct btrfs_space_info {
spinlock_t lock;
u64 total_bytes; /* total bytes in the space,
this doesn't take mirrors into account */
u64 bytes_used; /* total bytes used,
this doesn't take mirrors into account */
u64 bytes_pinned; /* total bytes pinned, will be freed when the
transaction finishes */
u64 bytes_reserved; /* total bytes the allocator has reserved for
current allocations */
u64 bytes_may_use; /* number of bytes that may be used for
delalloc/allocations */
u64 bytes_readonly; /* total bytes that are read only */
unsigned int full:1; /* indicates that we cannot allocate any more
chunks for this space */
unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
unsigned int flush:1; /* set if we are trying to make space */
unsigned int force_alloc; /* set if we need to force a chunk
alloc for this space */
u64 disk_used; /* total bytes used on disk */
u64 disk_total; /* total bytes on disk, takes mirrors into
account */
u64 flags;
/*
* bytes_pinned is kept in line with what is actually pinned, as in
* we've called update_block_group and dropped the bytes_used counter
* and increased the bytes_pinned counter. However this means that
* bytes_pinned does not reflect the bytes that will be pinned once the
* delayed refs are flushed, so this counter is inc'ed everytime we call
* btrfs_free_extent so it is a realtime count of what will be freed
* once the transaction is committed. It will be zero'ed everytime the
* transaction commits.
*/
struct percpu_counter total_bytes_pinned;
struct list_head list;
struct rw_semaphore groups_sem;
/* for block groups in our same type */
struct list_head block_groups[BTRFS_NR_RAID_TYPES];
wait_queue_head_t wait;
struct kobject kobj;
struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES];
};
#define BTRFS_BLOCK_RSV_GLOBAL 1
#define BTRFS_BLOCK_RSV_DELALLOC 2
#define BTRFS_BLOCK_RSV_TRANS 3
#define BTRFS_BLOCK_RSV_CHUNK 4
#define BTRFS_BLOCK_RSV_DELOPS 5
#define BTRFS_BLOCK_RSV_EMPTY 6
#define BTRFS_BLOCK_RSV_TEMP 7
struct btrfs_block_rsv {
u64 size;
u64 reserved;
struct btrfs_space_info *space_info;
spinlock_t lock;
unsigned short full;
unsigned short type;
unsigned short failfast;
};
/*
* free clusters are used to claim free space in relatively large chunks,
* allowing us to do less seeky writes. They are used for all metadata
* allocations and data allocations in ssd mode.
*/
struct btrfs_free_cluster {
spinlock_t lock;
spinlock_t refill_lock;
struct rb_root root;
/* largest extent in this cluster */
u64 max_size;
/* first extent starting offset */
u64 window_start;
struct btrfs_block_group_cache *block_group;
/*
* when a cluster is allocated from a block group, we put the
* cluster onto a list in the block group so that it can
* be freed before the block group is freed.
*/
struct list_head block_group_list;
};
enum btrfs_caching_type {
BTRFS_CACHE_NO = 0,
BTRFS_CACHE_STARTED = 1,
BTRFS_CACHE_FAST = 2,
BTRFS_CACHE_FINISHED = 3,
BTRFS_CACHE_ERROR = 4,
};
enum btrfs_disk_cache_state {
BTRFS_DC_WRITTEN = 0,
BTRFS_DC_ERROR = 1,
BTRFS_DC_CLEAR = 2,
BTRFS_DC_SETUP = 3,
BTRFS_DC_NEED_WRITE = 4,
};
struct btrfs_caching_control {
struct list_head list;
struct mutex mutex;
wait_queue_head_t wait;
struct btrfs_work work;
struct btrfs_block_group_cache *block_group;
u64 progress;
atomic_t count;
};
struct btrfs_block_group_cache {
struct btrfs_key key;
struct btrfs_block_group_item item;
struct btrfs_fs_info *fs_info;
struct inode *inode;
spinlock_t lock;
u64 pinned;
u64 reserved;
u64 delalloc_bytes;
u64 bytes_super;
u64 flags;
u64 sectorsize;
u64 cache_generation;
/*
* It is just used for the delayed data space allocation because
* only the data space allocation and the relative metadata update
* can be done cross the transaction.
*/
struct rw_semaphore data_rwsem;
/* for raid56, this is a full stripe, without parity */
unsigned long full_stripe_len;
unsigned int ro:1;
unsigned int dirty:1;
unsigned int iref:1;
int disk_cache_state;
/* cache tracking stuff */
int cached;
struct btrfs_caching_control *caching_ctl;
u64 last_byte_to_unpin;
struct btrfs_space_info *space_info;
/* free space cache stuff */
struct btrfs_free_space_ctl *free_space_ctl;
/* block group cache stuff */
struct rb_node cache_node;
/* for block groups in the same raid type */
struct list_head list;
/* usage count */
atomic_t count;
/* List of struct btrfs_free_clusters for this block group.
* Today it will only have one thing on it, but that may change
*/
struct list_head cluster_list;
/* For delayed block group creation */
struct list_head new_bg_list;
};
/* delayed seq elem */
struct seq_list {
struct list_head list;
u64 seq;
};
enum btrfs_orphan_cleanup_state {
ORPHAN_CLEANUP_STARTED = 1,
ORPHAN_CLEANUP_DONE = 2,
};
/* used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash {
struct list_head hash_list;
wait_queue_head_t wait;
spinlock_t lock;
};
/* used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash_table {
struct list_head stripe_cache;
spinlock_t cache_lock;
int cache_size;
struct btrfs_stripe_hash table[];
};
#define BTRFS_STRIPE_HASH_TABLE_BITS 11
void btrfs_init_async_reclaim_work(struct work_struct *work);
/* fs_info */
struct reloc_control;
struct btrfs_device;
struct btrfs_fs_devices;
struct btrfs_balance_control;
struct btrfs_delayed_root;
struct btrfs_fs_info {
u8 fsid[BTRFS_FSID_SIZE];
u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
struct btrfs_root *extent_root;
struct btrfs_root *tree_root;
struct btrfs_root *chunk_root;
struct btrfs_root *dev_root;
struct btrfs_root *fs_root;
struct btrfs_root *csum_root;
struct btrfs_root *quota_root;
struct btrfs_root *uuid_root;
/* the log root tree is a directory of all the other log roots */
struct btrfs_root *log_root_tree;
spinlock_t fs_roots_radix_lock;
struct radix_tree_root fs_roots_radix;
/* block group cache stuff */
spinlock_t block_group_cache_lock;
u64 first_logical_byte;
struct rb_root block_group_cache_tree;
/* keep track of unallocated space */
spinlock_t free_chunk_lock;
u64 free_chunk_space;
struct extent_io_tree freed_extents[2];
struct extent_io_tree *pinned_extents;
/* logical->physical extent mapping */
struct btrfs_mapping_tree mapping_tree;
/*
* block reservation for extent, checksum, root tree and
* delayed dir index item
*/
struct btrfs_block_rsv global_block_rsv;
/* block reservation for delay allocation */
struct btrfs_block_rsv delalloc_block_rsv;
/* block reservation for metadata operations */
struct btrfs_block_rsv trans_block_rsv;
/* block reservation for chunk tree */
struct btrfs_block_rsv chunk_block_rsv;
/* block reservation for delayed operations */
struct btrfs_block_rsv delayed_block_rsv;
struct btrfs_block_rsv empty_block_rsv;
u64 generation;
u64 last_trans_committed;
u64 avg_delayed_ref_runtime;
/*
* this is updated to the current trans every time a full commit
* is required instead of the faster short fsync log commits
*/
u64 last_trans_log_full_commit;
unsigned long mount_opt;
unsigned long compress_type:4;
int commit_interval;
/*
* It is a suggestive number, the read side is safe even it gets a
* wrong number because we will write out the data into a regular
* extent. The write side(mount/remount) is under ->s_umount lock,
* so it is also safe.
*/
u64 max_inline;
/*
* Protected by ->chunk_mutex and sb->s_umount.
*
* The reason that we use two lock to protect it is because only
* remount and mount operations can change it and these two operations
* are under sb->s_umount, but the read side (chunk allocation) can not
* acquire sb->s_umount or the deadlock would happen. So we use two
* locks to protect it. On the write side, we must acquire two locks,
* and on the read side, we just need acquire one of them.
*/
u64 alloc_start;
struct btrfs_transaction *running_transaction;
wait_queue_head_t transaction_throttle;
wait_queue_head_t transaction_wait;
wait_queue_head_t transaction_blocked_wait;
wait_queue_head_t async_submit_wait;
/*
* Used to protect the incompat_flags, compat_flags, compat_ro_flags
* when they are updated.
*
* Because we do not clear the flags for ever, so we needn't use
* the lock on the read side.
*
* We also needn't use the lock when we mount the fs, because
* there is no other task which will update the flag.
*/
spinlock_t super_lock;
struct btrfs_super_block *super_copy;
struct btrfs_super_block *super_for_commit;
struct block_device *__bdev;
struct super_block *sb;
struct inode *btree_inode;
struct backing_dev_info bdi;
struct mutex tree_log_mutex;
struct mutex transaction_kthread_mutex;
struct mutex cleaner_mutex;
struct mutex chunk_mutex;
struct mutex volume_mutex;
/* this is used during read/modify/write to make sure
* no two ios are trying to mod the same stripe at the same
* time
*/
struct btrfs_stripe_hash_table *stripe_hash_table;
/*
* this protects the ordered operations list only while we are
* processing all of the entries on it. This way we make
* sure the commit code doesn't find the list temporarily empty
* because another function happens to be doing non-waiting preflush
* before jumping into the main commit.
*/
struct mutex ordered_operations_mutex;
/*
* Same as ordered_operations_mutex except this is for ordered extents
* and not the operations.
*/
struct mutex ordered_extent_flush_mutex;
struct rw_semaphore commit_root_sem;
struct rw_semaphore cleanup_work_sem;
struct rw_semaphore subvol_sem;
struct srcu_struct subvol_srcu;
spinlock_t trans_lock;
/*
* the reloc mutex goes with the trans lock, it is taken
* during commit to protect us from the relocation code
*/
struct mutex reloc_mutex;
struct list_head trans_list;
struct list_head dead_roots;
struct list_head caching_block_groups;
spinlock_t delayed_iput_lock;
struct list_head delayed_iputs;
/* this protects tree_mod_seq_list */
spinlock_t tree_mod_seq_lock;
atomic64_t tree_mod_seq;
struct list_head tree_mod_seq_list;
/* this protects tree_mod_log */
rwlock_t tree_mod_log_lock;
struct rb_root tree_mod_log;
atomic_t nr_async_submits;
atomic_t async_submit_draining;
atomic_t nr_async_bios;
atomic_t async_delalloc_pages;
atomic_t open_ioctl_trans;
/*
* this is used to protect the following list -- ordered_roots.
*/
spinlock_t ordered_root_lock;
/*
* all fs/file tree roots in which there are data=ordered extents
* pending writeback are added into this list.
*
* these can span multiple transactions and basically include
* every dirty data page that isn't from nodatacow
*/
struct list_head ordered_roots;
struct mutex delalloc_root_mutex;
spinlock_t delalloc_root_lock;
/* all fs/file tree roots that have delalloc inodes. */
struct list_head delalloc_roots;
/*
* there is a pool of worker threads for checksumming during writes
* and a pool for checksumming after reads. This is because readers
* can run with FS locks held, and the writers may be waiting for
* those locks. We don't want ordering in the pending list to cause
* deadlocks, and so the two are serviced separately.
*
* A third pool does submit_bio to avoid deadlocking with the other
* two
*/
struct btrfs_workqueue *workers;
struct btrfs_workqueue *delalloc_workers;
struct btrfs_workqueue *flush_workers;
struct btrfs_workqueue *endio_workers;
struct btrfs_workqueue *endio_meta_workers;
struct btrfs_workqueue *endio_raid56_workers;
struct btrfs_workqueue *rmw_workers;
struct btrfs_workqueue *endio_meta_write_workers;
struct btrfs_workqueue *endio_write_workers;
struct btrfs_workqueue *endio_freespace_worker;
struct btrfs_workqueue *submit_workers;
struct btrfs_workqueue *caching_workers;
struct btrfs_workqueue *readahead_workers;
/*
* fixup workers take dirty pages that didn't properly go through
* the cow mechanism and make them safe to write. It happens
* for the sys_munmap function call path
*/
struct btrfs_workqueue *fixup_workers;
struct btrfs_workqueue *delayed_workers;
/* the extent workers do delayed refs on the extent allocation tree */
struct btrfs_workqueue *extent_workers;
struct task_struct *transaction_kthread;
struct task_struct *cleaner_kthread;
int thread_pool_size;
struct kobject super_kobj;
struct kobject *space_info_kobj;
struct kobject *device_dir_kobj;
struct completion kobj_unregister;
int do_barriers;
int closing;
int log_root_recovering;
u64 total_pinned;
/* used to keep from writing metadata until there is a nice batch */
struct percpu_counter dirty_metadata_bytes;
struct percpu_counter delalloc_bytes;
s32 dirty_metadata_batch;
s32 delalloc_batch;
struct list_head dirty_cowonly_roots;
struct btrfs_fs_devices *fs_devices;
/*
* the space_info list is almost entirely read only. It only changes
* when we add a new raid type to the FS, and that happens
* very rarely. RCU is used to protect it.
*/
struct list_head space_info;
struct btrfs_space_info *data_sinfo;
struct reloc_control *reloc_ctl;
/* data_alloc_cluster is only used in ssd mode */
struct btrfs_free_cluster data_alloc_cluster;
/* all metadata allocations go through this cluster */
struct btrfs_free_cluster meta_alloc_cluster;
/* auto defrag inodes go here */
spinlock_t defrag_inodes_lock;
struct rb_root defrag_inodes;
atomic_t defrag_running;
/* Used to protect avail_{data, metadata, system}_alloc_bits */
seqlock_t profiles_lock;
/*
* these three are in extended format (availability of single
* chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
* types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
*/
u64 avail_data_alloc_bits;
u64 avail_metadata_alloc_bits;
u64 avail_system_alloc_bits;
/* restriper state */
spinlock_t balance_lock;
struct mutex balance_mutex;
atomic_t balance_running;
atomic_t balance_pause_req;
atomic_t balance_cancel_req;
struct btrfs_balance_control *balance_ctl;
wait_queue_head_t balance_wait_q;
unsigned data_chunk_allocations;
unsigned metadata_ratio;
void *bdev_holder;
/* private scrub information */
struct mutex scrub_lock;
atomic_t scrubs_running;
atomic_t scrub_pause_req;
atomic_t scrubs_paused;
atomic_t scrub_cancel_req;
wait_queue_head_t scrub_pause_wait;
int scrub_workers_refcnt;
struct btrfs_workqueue *scrub_workers;
struct btrfs_workqueue *scrub_wr_completion_workers;
struct btrfs_workqueue *scrub_nocow_workers;
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
u32 check_integrity_print_mask;
#endif
/*
* quota information
*/
unsigned int quota_enabled:1;
/*
* quota_enabled only changes state after a commit. This holds the
* next state.
*/
unsigned int pending_quota_state:1;
/* is qgroup tracking in a consistent state? */
u64 qgroup_flags;
/* holds configuration and tracking. Protected by qgroup_lock */
struct rb_root qgroup_tree;
struct rb_root qgroup_op_tree;
spinlock_t qgroup_lock;
spinlock_t qgroup_op_lock;
atomic_t qgroup_op_seq;
/*
* used to avoid frequently calling ulist_alloc()/ulist_free()
* when doing qgroup accounting, it must be protected by qgroup_lock.
*/
struct ulist *qgroup_ulist;
/* protect user change for quota operations */
struct mutex qgroup_ioctl_lock;
/* list of dirty qgroups to be written at next commit */
struct list_head dirty_qgroups;
/* used by btrfs_qgroup_record_ref for an efficient tree traversal */
u64 qgroup_seq;
/* qgroup rescan items */
struct mutex qgroup_rescan_lock; /* protects the progress item */
struct btrfs_key qgroup_rescan_progress;
struct btrfs_workqueue *qgroup_rescan_workers;
struct completion qgroup_rescan_completion;
struct btrfs_work qgroup_rescan_work;
/* filesystem state */
unsigned long fs_state;
struct btrfs_delayed_root *delayed_root;
/* readahead tree */
spinlock_t reada_lock;
struct radix_tree_root reada_tree;
/* Extent buffer radix tree */
spinlock_t buffer_lock;
struct radix_tree_root buffer_radix;
/* next backup root to be overwritten */
int backup_root_index;
int num_tolerated_disk_barrier_failures;
/* device replace state */
struct btrfs_dev_replace dev_replace;
atomic_t mutually_exclusive_operation_running;
struct percpu_counter bio_counter;
wait_queue_head_t replace_wait;
struct semaphore uuid_tree_rescan_sem;
unsigned int update_uuid_tree_gen:1;
/* Used to reclaim the metadata space in the background. */
struct work_struct async_reclaim_work;
};
struct btrfs_subvolume_writers {
struct percpu_counter counter;
wait_queue_head_t wait;
};
/*
* The state of btrfs root
*/
/*
* btrfs_record_root_in_trans is a multi-step process,
* and it can race with the balancing code. But the
* race is very small, and only the first time the root
* is added to each transaction. So IN_TRANS_SETUP
* is used to tell us when more checks are required
*/
#define BTRFS_ROOT_IN_TRANS_SETUP 0
#define BTRFS_ROOT_REF_COWS 1
#define BTRFS_ROOT_TRACK_DIRTY 2
#define BTRFS_ROOT_IN_RADIX 3
#define BTRFS_ROOT_DUMMY_ROOT 4
#define BTRFS_ROOT_ORPHAN_ITEM_INSERTED 5
#define BTRFS_ROOT_DEFRAG_RUNNING 6
#define BTRFS_ROOT_FORCE_COW 7
#define BTRFS_ROOT_MULTI_LOG_TASKS 8
/*
* in ram representation of the tree. extent_root is used for all allocations
* and for the extent tree extent_root root.
*/
struct btrfs_root {
struct extent_buffer *node;
struct extent_buffer *commit_root;
struct btrfs_root *log_root;
struct btrfs_root *reloc_root;
unsigned long state;
struct btrfs_root_item root_item;
struct btrfs_key root_key;
struct btrfs_fs_info *fs_info;
struct extent_io_tree dirty_log_pages;
struct kobject root_kobj;
struct completion kobj_unregister;
struct mutex objectid_mutex;
spinlock_t accounting_lock;
struct btrfs_block_rsv *block_rsv;
/* free ino cache stuff */
struct btrfs_free_space_ctl *free_ino_ctl;
enum btrfs_caching_type cached;
spinlock_t cache_lock;
wait_queue_head_t cache_wait;
struct btrfs_free_space_ctl *free_ino_pinned;
u64 cache_progress;
struct inode *cache_inode;
struct mutex log_mutex;
wait_queue_head_t log_writer_wait;
wait_queue_head_t log_commit_wait[2];
struct list_head log_ctxs[2];
atomic_t log_writers;
atomic_t log_commit[2];
atomic_t log_batch;
int log_transid;
/* No matter the commit succeeds or not*/
int log_transid_committed;
/* Just be updated when the commit succeeds. */
int last_log_commit;
pid_t log_start_pid;
u64 objectid;
u64 last_trans;
/* data allocations are done in sectorsize units */
u32 sectorsize;
/* node allocations are done in nodesize units */
u32 nodesize;
/* leaf allocations are done in leafsize units */
u32 leafsize;
u32 stripesize;
u32 type;
u64 highest_objectid;
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
u64 alloc_bytenr;
#endif
u64 defrag_trans_start;
struct btrfs_key defrag_progress;
struct btrfs_key defrag_max;
char *name;
/* the dirty list is only used by non-reference counted roots */
struct list_head dirty_list;
struct list_head root_list;
spinlock_t log_extents_lock[2];
struct list_head logged_list[2];
spinlock_t orphan_lock;
atomic_t orphan_inodes;
struct btrfs_block_rsv *orphan_block_rsv;
int orphan_cleanup_state;
spinlock_t inode_lock;
/* red-black tree that keeps track of in-memory inodes */
struct rb_root inode_tree;
/*
* radix tree that keeps track of delayed nodes of every inode,
* protected by inode_lock
*/
struct radix_tree_root delayed_nodes_tree;
/*
* right now this just gets used so that a root has its own devid
* for stat. It may be used for more later
*/
dev_t anon_dev;
spinlock_t root_item_lock;
atomic_t refs;
struct mutex delalloc_mutex;
spinlock_t delalloc_lock;
/*
* all of the inodes that have delalloc bytes. It is possible for
* this list to be empty even when there is still dirty data=ordered
* extents waiting to finish IO.
*/
struct list_head delalloc_inodes;
struct list_head delalloc_root;
u64 nr_delalloc_inodes;
struct mutex ordered_extent_mutex;
/*
* this is used by the balancing code to wait for all the pending
* ordered extents
*/
spinlock_t ordered_extent_lock;
/*
* all of the data=ordered extents pending writeback
* these can span multiple transactions and basically include
* every dirty data page that isn't from nodatacow
*/
struct list_head ordered_extents;
struct list_head ordered_root;
u64 nr_ordered_extents;
/*
* Number of currently running SEND ioctls to prevent
* manipulation with the read-only status via SUBVOL_SETFLAGS
*/
int send_in_progress;
struct btrfs_subvolume_writers *subv_writers;
atomic_t will_be_snapshoted;
};
struct btrfs_ioctl_defrag_range_args {
/* start of the defrag operation */
__u64 start;
/* number of bytes to defrag, use (u64)-1 to say all */
__u64 len;
/*
* flags for the operation, which can include turning
* on compression for this one defrag
*/
__u64 flags;
/*
* any extent bigger than this will be considered
* already defragged. Use 0 to take the kernel default
* Use 1 to say every single extent must be rewritten
*/
__u32 extent_thresh;
/*
* which compression method to use if turning on compression
* for this defrag operation. If unspecified, zlib will
* be used
*/
__u32 compress_type;
/* spare for later */
__u32 unused[4];
};
/*
* inode items have the data typically returned from stat and store other
* info about object characteristics. There is one for every file and dir in
* the FS
*/
#define BTRFS_INODE_ITEM_KEY 1
#define BTRFS_INODE_REF_KEY 12
#define BTRFS_INODE_EXTREF_KEY 13
#define BTRFS_XATTR_ITEM_KEY 24
#define BTRFS_ORPHAN_ITEM_KEY 48
/* reserve 2-15 close to the inode for later flexibility */
/*
* dir items are the name -> inode pointers in a directory. There is one
* for every name in a directory.
*/
#define BTRFS_DIR_LOG_ITEM_KEY 60
#define BTRFS_DIR_LOG_INDEX_KEY 72
#define BTRFS_DIR_ITEM_KEY 84
#define BTRFS_DIR_INDEX_KEY 96
/*
* extent data is for file data
*/
#define BTRFS_EXTENT_DATA_KEY 108
/*
* extent csums are stored in a separate tree and hold csums for
* an entire extent on disk.
*/
#define BTRFS_EXTENT_CSUM_KEY 128
/*
* root items point to tree roots. They are typically in the root
* tree used by the super block to find all the other trees
*/
#define BTRFS_ROOT_ITEM_KEY 132
/*
* root backrefs tie subvols and snapshots to the directory entries that
* reference them
*/
#define BTRFS_ROOT_BACKREF_KEY 144
/*
* root refs make a fast index for listing all of the snapshots and
* subvolumes referenced by a given root. They point directly to the
* directory item in the root that references the subvol
*/
#define BTRFS_ROOT_REF_KEY 156
/*
* extent items are in the extent map tree. These record which blocks
* are used, and how many references there are to each block
*/
#define BTRFS_EXTENT_ITEM_KEY 168
/*
* The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
* the length, so we save the level in key->offset instead of the length.
*/
#define BTRFS_METADATA_ITEM_KEY 169
#define BTRFS_TREE_BLOCK_REF_KEY 176
#define BTRFS_EXTENT_DATA_REF_KEY 178
#define BTRFS_EXTENT_REF_V0_KEY 180
#define BTRFS_SHARED_BLOCK_REF_KEY 182
#define BTRFS_SHARED_DATA_REF_KEY 184
/*
* block groups give us hints into the extent allocation trees. Which
* blocks are free etc etc
*/
#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
#define BTRFS_DEV_EXTENT_KEY 204
#define BTRFS_DEV_ITEM_KEY 216
#define BTRFS_CHUNK_ITEM_KEY 228
/*
* Records the overall state of the qgroups.
* There's only one instance of this key present,
* (0, BTRFS_QGROUP_STATUS_KEY, 0)
*/
#define BTRFS_QGROUP_STATUS_KEY 240
/*
* Records the currently used space of the qgroup.
* One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
*/
#define BTRFS_QGROUP_INFO_KEY 242
/*
* Contains the user configured limits for the qgroup.
* One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
*/
#define BTRFS_QGROUP_LIMIT_KEY 244
/*
* Records the child-parent relationship of qgroups. For
* each relation, 2 keys are present:
* (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
* (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
*/
#define BTRFS_QGROUP_RELATION_KEY 246
#define BTRFS_BALANCE_ITEM_KEY 248
/*
* Persistantly stores the io stats in the device tree.
* One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
*/
#define BTRFS_DEV_STATS_KEY 249
/*
* Persistantly stores the device replace state in the device tree.
* The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
*/
#define BTRFS_DEV_REPLACE_KEY 250
/*
* Stores items that allow to quickly map UUIDs to something else.
* These items are part of the filesystem UUID tree.
* The key is built like this:
* (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
*/
#if BTRFS_UUID_SIZE != 16
#error "UUID items require BTRFS_UUID_SIZE == 16!"
#endif
#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
* received subvols */
/*
* string items are for debugging. They just store a short string of
* data in the FS
*/
#define BTRFS_STRING_ITEM_KEY 253
/*
* Flags for mount options.
*
* Note: don't forget to add new options to btrfs_show_options()
*/
#define BTRFS_MOUNT_NODATASUM (1 << 0)
#define BTRFS_MOUNT_NODATACOW (1 << 1)
#define BTRFS_MOUNT_NOBARRIER (1 << 2)
#define BTRFS_MOUNT_SSD (1 << 3)
#define BTRFS_MOUNT_DEGRADED (1 << 4)
#define BTRFS_MOUNT_COMPRESS (1 << 5)
#define BTRFS_MOUNT_NOTREELOG (1 << 6)
#define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
#define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
#define BTRFS_MOUNT_NOSSD (1 << 9)
#define BTRFS_MOUNT_DISCARD (1 << 10)
#define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
#define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
#define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
#define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
#define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
#define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
#define BTRFS_MOUNT_RECOVERY (1 << 18)
#define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
#define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
#define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
#define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
#define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
#define BTRFS_MOUNT_CHANGE_INODE_CACHE (1 << 24)
#define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
#define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
#define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
BTRFS_MOUNT_##opt)
#define btrfs_set_and_info(root, opt, fmt, args...) \
{ \
if (!btrfs_test_opt(root, opt)) \
btrfs_info(root->fs_info, fmt, ##args); \
btrfs_set_opt(root->fs_info->mount_opt, opt); \
}
#define btrfs_clear_and_info(root, opt, fmt, args...) \
{ \
if (btrfs_test_opt(root, opt)) \
btrfs_info(root->fs_info, fmt, ##args); \
btrfs_clear_opt(root->fs_info->mount_opt, opt); \
}
/*
* Inode flags
*/
#define BTRFS_INODE_NODATASUM (1 << 0)
#define BTRFS_INODE_NODATACOW (1 << 1)
#define BTRFS_INODE_READONLY (1 << 2)
#define BTRFS_INODE_NOCOMPRESS (1 << 3)
#define BTRFS_INODE_PREALLOC (1 << 4)
#define BTRFS_INODE_SYNC (1 << 5)
#define BTRFS_INODE_IMMUTABLE (1 << 6)
#define BTRFS_INODE_APPEND (1 << 7)
#define BTRFS_INODE_NODUMP (1 << 8)
#define BTRFS_INODE_NOATIME (1 << 9)
#define BTRFS_INODE_DIRSYNC (1 << 10)
#define BTRFS_INODE_COMPRESS (1 << 11)
#define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
struct btrfs_map_token {
struct extent_buffer *eb;
char *kaddr;
unsigned long offset;
};
static inline void btrfs_init_map_token (struct btrfs_map_token *token)
{
token->kaddr = NULL;
}
/* some macros to generate set/get funcs for the struct fields. This
* assumes there is a lefoo_to_cpu for every type, so lets make a simple
* one for u8:
*/
#define le8_to_cpu(v) (v)
#define cpu_to_le8(v) (v)
#define __le8 u8
#define read_eb_member(eb, ptr, type, member, result) ( \
read_extent_buffer(eb, (char *)(result), \
((unsigned long)(ptr)) + \
offsetof(type, member), \
sizeof(((type *)0)->member)))
#define write_eb_member(eb, ptr, type, member, result) ( \
write_extent_buffer(eb, (char *)(result), \
((unsigned long)(ptr)) + \
offsetof(type, member), \
sizeof(((type *)0)->member)))
#define DECLARE_BTRFS_SETGET_BITS(bits) \
u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \
unsigned long off, \
struct btrfs_map_token *token); \
void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \
unsigned long off, u##bits val, \
struct btrfs_map_token *token); \
static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
unsigned long off) \
{ \
return btrfs_get_token_##bits(eb, ptr, off, NULL); \
} \
static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
unsigned long off, u##bits val) \
{ \
btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
}
DECLARE_BTRFS_SETGET_BITS(8)
DECLARE_BTRFS_SETGET_BITS(16)
DECLARE_BTRFS_SETGET_BITS(32)
DECLARE_BTRFS_SETGET_BITS(64)
#define BTRFS_SETGET_FUNCS(name, type, member, bits) \
static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \
{ \
BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
return btrfs_get_##bits(eb, s, offsetof(type, member)); \
} \
static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
u##bits val) \
{ \
BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
btrfs_set_##bits(eb, s, offsetof(type, member), val); \
} \
static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
struct btrfs_map_token *token) \
{ \
BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
} \
static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
type *s, u##bits val, \
struct btrfs_map_token *token) \
{ \
BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
}
#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
static inline u##bits btrfs_##name(struct extent_buffer *eb) \
{ \
type *p = page_address(eb->pages[0]); \
u##bits res = le##bits##_to_cpu(p->member); \
return res; \
} \
static inline void btrfs_set_##name(struct extent_buffer *eb, \
u##bits val) \
{ \
type *p = page_address(eb->pages[0]); \
p->member = cpu_to_le##bits(val); \
}
#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
static inline u##bits btrfs_##name(type *s) \
{ \
return le##bits##_to_cpu(s->member); \
} \
static inline void btrfs_set_##name(type *s, u##bits val) \
{ \
s->member = cpu_to_le##bits(val); \
}
BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
start_offset, 64);
BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
total_bytes, 64);
BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
bytes_used, 64);
BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
io_align, 32);
BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
io_width, 32);
BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
sector_size, 32);
BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
dev_group, 32);
BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
seek_speed, 8);
BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
bandwidth, 8);
BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
generation, 64);
static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
{
return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
}
static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
{
return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
}
BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
{
return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
}
BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
stripe_len, 64);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
io_align, 32);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
io_width, 32);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
sector_size, 32);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
num_stripes, 16);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
sub_stripes, 16);
BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
int nr)
{
unsigned long offset = (unsigned long)c;
offset += offsetof(struct btrfs_chunk, stripe);
offset += nr * sizeof(struct btrfs_stripe);
return (struct btrfs_stripe *)offset;
}
static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
{
return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
}
static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
struct btrfs_chunk *c, int nr)
{
return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
}
static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
struct btrfs_chunk *c, int nr)
{
return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
}
/* struct btrfs_block_group_item */
BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
used, 64);
BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
used, 64);
BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
struct btrfs_block_group_item, chunk_objectid, 64);
BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
struct btrfs_block_group_item, chunk_objectid, 64);
BTRFS_SETGET_FUNCS(disk_block_group_flags,
struct btrfs_block_group_item, flags, 64);
BTRFS_SETGET_STACK_FUNCS(block_group_flags,
struct btrfs_block_group_item, flags, 64);
/* struct btrfs_inode_ref */
BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
/* struct btrfs_inode_extref */
BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
parent_objectid, 64);
BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
name_len, 16);
BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
/* struct btrfs_inode_item */
BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
generation, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
sequence, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
transid, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
nbytes, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
block_group, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
static inline struct btrfs_timespec *
btrfs_inode_atime(struct btrfs_inode_item *inode_item)
{
unsigned long ptr = (unsigned long)inode_item;
ptr += offsetof(struct btrfs_inode_item, atime);
return (struct btrfs_timespec *)ptr;
}
static inline struct btrfs_timespec *
btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
{
unsigned long ptr = (unsigned long)inode_item;
ptr += offsetof(struct btrfs_inode_item, mtime);
return (struct btrfs_timespec *)ptr;
}
static inline struct btrfs_timespec *
btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
{
unsigned long ptr = (unsigned long)inode_item;
ptr += offsetof(struct btrfs_inode_item, ctime);
return (struct btrfs_timespec *)ptr;
}
BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
/* struct btrfs_dev_extent */
BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
chunk_tree, 64);
BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
chunk_objectid, 64);
BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
chunk_offset, 64);
BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
{
unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
return (unsigned long)dev + ptr;
}
BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
generation, 64);
BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
static inline void btrfs_tree_block_key(struct extent_buffer *eb,
struct btrfs_tree_block_info *item,
struct btrfs_disk_key *key)
{
read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
}
static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
struct btrfs_tree_block_info *item,
struct btrfs_disk_key *key)
{
write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
}
BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
root, 64);
BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
objectid, 64);
BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
offset, 64);
BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
count, 32);
BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
count, 32);
BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
type, 8);
BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
offset, 64);
static inline u32 btrfs_extent_inline_ref_size(int type)
{
if (type == BTRFS_TREE_BLOCK_REF_KEY ||
type == BTRFS_SHARED_BLOCK_REF_KEY)
return sizeof(struct btrfs_extent_inline_ref);
if (type == BTRFS_SHARED_DATA_REF_KEY)
return sizeof(struct btrfs_shared_data_ref) +
sizeof(struct btrfs_extent_inline_ref);
if (type == BTRFS_EXTENT_DATA_REF_KEY)
return sizeof(struct btrfs_extent_data_ref) +
offsetof(struct btrfs_extent_inline_ref, offset);
BUG();
return 0;
}
BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
generation, 64);
BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
/* struct btrfs_node */
BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
blockptr, 64);
BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
generation, 64);
static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
{
unsigned long ptr;
ptr = offsetof(struct btrfs_node, ptrs) +
sizeof(struct btrfs_key_ptr) * nr;
return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
}
static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
int nr, u64 val)
{
unsigned long ptr;
ptr = offsetof(struct btrfs_node, ptrs) +
sizeof(struct btrfs_key_ptr) * nr;
btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
}
static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
{
unsigned long ptr;
ptr = offsetof(struct btrfs_node, ptrs) +
sizeof(struct btrfs_key_ptr) * nr;
return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
}
static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
int nr, u64 val)
{
unsigned long ptr;
ptr = offsetof(struct btrfs_node, ptrs) +
sizeof(struct btrfs_key_ptr) * nr;
btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
}
static inline unsigned long btrfs_node_key_ptr_offset(int nr)
{
return offsetof(struct btrfs_node, ptrs) +
sizeof(struct btrfs_key_ptr) * nr;
}
void btrfs_node_key(struct extent_buffer *eb,
struct btrfs_disk_key *disk_key, int nr);
static inline void btrfs_set_node_key(struct extent_buffer *eb,
struct btrfs_disk_key *disk_key, int nr)
{
unsigned long ptr;
ptr = btrfs_node_key_ptr_offset(nr);
write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
struct btrfs_key_ptr, key, disk_key);
}
/* struct btrfs_item */
BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
static inline unsigned long btrfs_item_nr_offset(int nr)
{
return offsetof(struct btrfs_leaf, items) +
sizeof(struct btrfs_item) * nr;
}
static inline struct btrfs_item *btrfs_item_nr(int nr)
{
return (struct btrfs_item *)btrfs_item_nr_offset(nr);
}
static inline u32 btrfs_item_end(struct extent_buffer *eb,
struct btrfs_item *item)
{
return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
}
static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
{
return btrfs_item_end(eb, btrfs_item_nr(nr));
}
static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
{
return btrfs_item_offset(eb, btrfs_item_nr(nr));
}
static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
{
return btrfs_item_size(eb, btrfs_item_nr(nr));
}
static inline void btrfs_item_key(struct extent_buffer *eb,
struct btrfs_disk_key *disk_key, int nr)
{
struct btrfs_item *item = btrfs_item_nr(nr);
read_eb_member(eb, item, struct btrfs_item, key, disk_key);
}
static inline void btrfs_set_item_key(struct extent_buffer *eb,
struct btrfs_disk_key *disk_key, int nr)
{
struct btrfs_item *item = btrfs_item_nr(nr);
write_eb_member(eb, item, struct btrfs_item, key, disk_key);
}
BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
/*
* struct btrfs_root_ref
*/
BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
/* struct btrfs_dir_item */
BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
data_len, 16);
BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
name_len, 16);
BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
transid, 64);
static inline void btrfs_dir_item_key(struct extent_buffer *eb,
struct btrfs_dir_item *item,
struct btrfs_disk_key *key)
{
read_eb_member(eb, item, struct btrfs_dir_item, location, key);
}
static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
struct btrfs_dir_item *item,
struct btrfs_disk_key *key)
{
write_eb_member(eb, item, struct btrfs_dir_item, location, key);
}
BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
num_entries, 64);
BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
num_bitmaps, 64);
BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
generation, 64);
static inline void btrfs_free_space_key(struct extent_buffer *eb,
struct btrfs_free_space_header *h,
struct btrfs_disk_key *key)
{
read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
}
static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
struct btrfs_free_space_header *h,
struct btrfs_disk_key *key)
{
write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
}
/* struct btrfs_disk_key */
BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
objectid, 64);
BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
struct btrfs_disk_key *disk)
{
cpu->offset = le64_to_cpu(disk->offset);
cpu->type = disk->type;
cpu->objectid = le64_to_cpu(disk->objectid);
}
static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
struct btrfs_key *cpu)
{
disk->offset = cpu_to_le64(cpu->offset);
disk->type = cpu->type;
disk->objectid = cpu_to_le64(cpu->objectid);
}
static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
struct btrfs_key *key, int nr)
{
struct btrfs_disk_key disk_key;
btrfs_node_key(eb, &disk_key, nr);
btrfs_disk_key_to_cpu(key, &disk_key);
}
static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
struct btrfs_key *key, int nr)
{
struct btrfs_disk_key disk_key;
btrfs_item_key(eb, &disk_key, nr);
btrfs_disk_key_to_cpu(key, &disk_key);
}
static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
struct btrfs_dir_item *item,
struct btrfs_key *key)
{
struct btrfs_disk_key disk_key;
btrfs_dir_item_key(eb, item, &disk_key);
btrfs_disk_key_to_cpu(key, &disk_key);
}
static inline u8 btrfs_key_type(struct btrfs_key *key)
{
return key->type;
}
static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
{
key->type = val;
}
/* struct btrfs_header */
BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
generation, 64);
BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
generation, 64);
BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
nritems, 32);
BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
{
return (btrfs_header_flags(eb) & flag) == flag;
}
static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
{
u64 flags = btrfs_header_flags(eb);
btrfs_set_header_flags(eb, flags | flag);
return (flags & flag) == flag;
}
static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
{
u64 flags = btrfs_header_flags(eb);
btrfs_set_header_flags(eb, flags & ~flag);
return (flags & flag) == flag;
}
static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
{
u64 flags = btrfs_header_flags(eb);
return flags >> BTRFS_BACKREF_REV_SHIFT;
}
static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
int rev)
{
u64 flags = btrfs_header_flags(eb);
flags &= ~BTRFS_BACKREF_REV_MASK;
flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
btrfs_set_header_flags(eb, flags);
}
static inline unsigned long btrfs_header_fsid(void)
{
return offsetof(struct btrfs_header, fsid);
}
static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
{
return offsetof(struct btrfs_header, chunk_tree_uuid);
}
static inline int btrfs_is_leaf(struct extent_buffer *eb)
{
return btrfs_header_level(eb) == 0;
}
/* struct btrfs_root_item */
BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
generation, 64);
BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
generation, 64);
BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
last_snapshot, 64);
BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
generation_v2, 64);
BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
ctransid, 64);
BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
otransid, 64);
BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
stransid, 64);
BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
rtransid, 64);
static inline bool btrfs_root_readonly(struct btrfs_root *root)
{
return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
}
static inline bool btrfs_root_dead(struct btrfs_root *root)
{
return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
}
/* struct btrfs_root_backup */
BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
tree_root, 64);
BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
tree_root_gen, 64);
BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
tree_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
chunk_root, 64);
BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
chunk_root_gen, 64);
BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
chunk_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
extent_root, 64);
BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
extent_root_gen, 64);
BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
extent_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
fs_root, 64);
BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
fs_root_gen, 64);
BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
fs_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
dev_root, 64);
BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
dev_root_gen, 64);
BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
dev_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
csum_root, 64);
BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
csum_root_gen, 64);
BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
csum_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
total_bytes, 64);
BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
bytes_used, 64);
BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
num_devices, 64);
/* struct btrfs_balance_item */
BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
static inline void btrfs_balance_data(struct extent_buffer *eb,
struct btrfs_balance_item *bi,
struct btrfs_disk_balance_args *ba)
{
read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
}
static inline void btrfs_set_balance_data(struct extent_buffer *eb,
struct btrfs_balance_item *bi,
struct btrfs_disk_balance_args *ba)
{
write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
}
static inline void btrfs_balance_meta(struct extent_buffer *eb,
struct btrfs_balance_item *bi,
struct btrfs_disk_balance_args *ba)
{
read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
}
static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
struct btrfs_balance_item *bi,
struct btrfs_disk_balance_args *ba)
{
write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
}
static inline void btrfs_balance_sys(struct extent_buffer *eb,
struct btrfs_balance_item *bi,
struct btrfs_disk_balance_args *ba)
{
read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
}
static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
struct btrfs_balance_item *bi,
struct btrfs_disk_balance_args *ba)
{
write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
}
static inline void
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
struct btrfs_disk_balance_args *disk)
{
memset(cpu, 0, sizeof(*cpu));
cpu->profiles = le64_to_cpu(disk->profiles);
cpu->usage = le64_to_cpu(disk->usage);
cpu->devid = le64_to_cpu(disk->devid);
cpu->pstart = le64_to_cpu(disk->pstart);
cpu->pend = le64_to_cpu(disk->pend);
cpu->vstart = le64_to_cpu(disk->vstart);
cpu->vend = le64_to_cpu(disk->vend);
cpu->target = le64_to_cpu(disk->target);
cpu->flags = le64_to_cpu(disk->flags);
cpu->limit = le64_to_cpu(disk->limit);
}
static inline void
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
struct btrfs_balance_args *cpu)
{
memset(disk, 0, sizeof(*disk));
disk->profiles = cpu_to_le64(cpu->profiles);
disk->usage = cpu_to_le64(cpu->usage);
disk->devid = cpu_to_le64(cpu->devid);
disk->pstart = cpu_to_le64(cpu->pstart);
disk->pend = cpu_to_le64(cpu->pend);
disk->vstart = cpu_to_le64(cpu->vstart);
disk->vend = cpu_to_le64(cpu->vend);
disk->target = cpu_to_le64(cpu->target);
disk->flags = cpu_to_le64(cpu->flags);
disk->limit = cpu_to_le64(cpu->limit);
}
/* struct btrfs_super_block */
BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
generation, 64);
BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
struct btrfs_super_block, sys_chunk_array_size, 32);
BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
struct btrfs_super_block, chunk_root_generation, 64);
BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
root_level, 8);
BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
chunk_root, 64);
BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
chunk_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
log_root, 64);
BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
log_root_transid, 64);
BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
log_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
total_bytes, 64);
BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
bytes_used, 64);
BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
sectorsize, 32);
BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
nodesize, 32);
BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block,
leafsize, 32);
BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
stripesize, 32);
BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
root_dir_objectid, 64);
BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
num_devices, 64);
BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
compat_flags, 64);
BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
compat_ro_flags, 64);
BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
incompat_flags, 64);
BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
csum_type, 16);
BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
cache_generation, 64);
BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
uuid_tree_generation, 64);
static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
{
u16 t = btrfs_super_csum_type(s);
/*
* csum type is validated at mount time
*/
return btrfs_csum_sizes[t];
}
static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
{
return offsetof(struct btrfs_leaf, items);
}
/* struct btrfs_file_extent_item */
BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
struct btrfs_file_extent_item, disk_bytenr, 64);
BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
struct btrfs_file_extent_item, offset, 64);
BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
struct btrfs_file_extent_item, generation, 64);
BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
struct btrfs_file_extent_item, num_bytes, 64);
BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
struct btrfs_file_extent_item, disk_num_bytes, 64);
BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
struct btrfs_file_extent_item, compression, 8);
static inline unsigned long
btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
{
unsigned long offset = (unsigned long)e;
offset += offsetof(struct btrfs_file_extent_item, disk_bytenr);
return offset;
}
static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
{
return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize;
}
BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
disk_bytenr, 64);
BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
generation, 64);
BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
disk_num_bytes, 64);
BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
offset, 64);
BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
num_bytes, 64);
BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
ram_bytes, 64);
BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
compression, 8);
BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
encryption, 8);
BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
other_encoding, 16);
/*
* this returns the number of bytes used by the item on disk, minus the
* size of any extent headers. If a file is compressed on disk, this is
* the compressed size
*/
static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
struct btrfs_item *e)
{
unsigned long offset;
offset = offsetof(struct btrfs_file_extent_item, disk_bytenr);
return btrfs_item_size(eb, e) - offset;
}
/* this returns the number of file bytes represented by the inline item.
* If an item is compressed, this is the uncompressed size
*/
static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
int slot,
struct btrfs_file_extent_item *fi)
{
struct btrfs_map_token token;
btrfs_init_map_token(&token);
/*
* return the space used on disk if this item isn't
* compressed or encoded
*/
if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
return btrfs_file_extent_inline_item_len(eb,
btrfs_item_nr(slot));
}
/* otherwise use the ram bytes field */
return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
}
/* btrfs_dev_stats_item */
static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
struct btrfs_dev_stats_item *ptr,
int index)
{
u64 val;
read_extent_buffer(eb, &val,
offsetof(struct btrfs_dev_stats_item, values) +
((unsigned long)ptr) + (index * sizeof(u64)),
sizeof(val));
return val;
}
static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
struct btrfs_dev_stats_item *ptr,
int index, u64 val)
{
write_extent_buffer(eb, &val,
offsetof(struct btrfs_dev_stats_item, values) +
((unsigned long)ptr) + (index * sizeof(u64)),
sizeof(val));
}
/* btrfs_qgroup_status_item */
BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
generation, 64);
BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
version, 64);
BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
flags, 64);
BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
rescan, 64);
/* btrfs_qgroup_info_item */
BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
generation, 64);
BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
rfer_cmpr, 64);
BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
excl_cmpr, 64);
BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
struct btrfs_qgroup_info_item, generation, 64);
BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
rfer, 64);
BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
struct btrfs_qgroup_info_item, rfer_cmpr, 64);
BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
excl, 64);
BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
struct btrfs_qgroup_info_item, excl_cmpr, 64);
/* btrfs_qgroup_limit_item */
BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
flags, 64);
BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
max_rfer, 64);
BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
max_excl, 64);
BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
rsv_rfer, 64);
BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
rsv_excl, 64);
/* btrfs_dev_replace_item */
BTRFS_SETGET_FUNCS(dev_replace_src_devid,
struct btrfs_dev_replace_item, src_devid, 64);
BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
64);
BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
replace_state, 64);
BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
time_started, 64);
BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
time_stopped, 64);
BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
num_write_errors, 64);
BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
64);
BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
cursor_left, 64);
BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
cursor_right, 64);
BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
struct btrfs_dev_replace_item, src_devid, 64);
BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
struct btrfs_dev_replace_item,
cont_reading_from_srcdev_mode, 64);
BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
struct btrfs_dev_replace_item, replace_state, 64);
BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
struct btrfs_dev_replace_item, time_started, 64);
BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
struct btrfs_dev_replace_item, time_stopped, 64);
BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
struct btrfs_dev_replace_item, num_write_errors, 64);
BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
struct btrfs_dev_replace_item,
num_uncorrectable_read_errors, 64);
BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
struct btrfs_dev_replace_item, cursor_left, 64);
BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
struct btrfs_dev_replace_item, cursor_right, 64);
static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
{
return sb->s_fs_info;
}
static inline u32 btrfs_level_size(struct btrfs_root *root, int level)
{
if (level == 0)
return root->leafsize;
return root->nodesize;
}
/* helper function to cast into the data area of the leaf. */
#define btrfs_item_ptr(leaf, slot, type) \
((type *)(btrfs_leaf_data(leaf) + \
btrfs_item_offset_nr(leaf, slot)))
#define btrfs_item_ptr_offset(leaf, slot) \
((unsigned long)(btrfs_leaf_data(leaf) + \
btrfs_item_offset_nr(leaf, slot)))
static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
{
return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
(space_info->flags & BTRFS_BLOCK_GROUP_DATA));
}
static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
{
return mapping_gfp_mask(mapping) & ~__GFP_FS;
}
/* extent-tree.c */
static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
unsigned num_items)
{
return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
2 * num_items;
}
/*
* Doing a truncate won't result in new nodes or leaves, just what we need for
* COW.
*/
static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
unsigned num_items)
{
return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
num_items;
}
int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root, unsigned long count);
int btrfs_async_run_delayed_refs(struct btrfs_root *root,
unsigned long count, int wait);
int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr,
u64 offset, int metadata, u64 *refs, u64 *flags);
int btrfs_pin_extent(struct btrfs_root *root,
u64 bytenr, u64 num, int reserved);
int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
u64 bytenr, u64 num_bytes);
int btrfs_exclude_logged_extents(struct btrfs_root *root,
struct extent_buffer *eb);
int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 objectid, u64 offset, u64 bytenr);
struct btrfs_block_group_cache *btrfs_lookup_block_group(
struct btrfs_fs_info *info,
u64 bytenr);
void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
int get_block_group_index(struct btrfs_block_group_cache *cache);
struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u32 blocksize,
u64 parent, u64 root_objectid,
struct btrfs_disk_key *key, int level,
u64 hint, u64 empty_size);
void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
u64 parent, int last_ref);
int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 root_objectid, u64 owner,
u64 offset, struct btrfs_key *ins);
int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 root_objectid, u64 owner, u64 offset,
struct btrfs_key *ins);
int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
u64 min_alloc_size, u64 empty_size, u64 hint_byte,
struct btrfs_key *ins, int is_data, int delalloc);
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf, int full_backref, int no_quota);
int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf, int full_backref, int no_quota);
int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 flags,
int level, int is_data);
int btrfs_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
u64 owner, u64 offset, int no_quota);
int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len,
int delalloc);
int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
u64 start, u64 len);
void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner, u64 offset, int no_quota);
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
int btrfs_free_block_groups(struct btrfs_fs_info *info);
int btrfs_read_block_groups(struct btrfs_root *root);
int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
int btrfs_make_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytes_used,
u64 type, u64 chunk_objectid, u64 chunk_offset,
u64 size);
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 group_start);
void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
enum btrfs_reserve_flush_enum {
/* If we are in the transaction, we can't flush anything.*/
BTRFS_RESERVE_NO_FLUSH,
/*
* Flushing delalloc may cause deadlock somewhere, in this
* case, use FLUSH LIMIT
*/
BTRFS_RESERVE_FLUSH_LIMIT,
BTRFS_RESERVE_FLUSH_ALL,
};
int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
struct inode *inode);
void btrfs_orphan_release_metadata(struct inode *inode);
int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
struct btrfs_block_rsv *rsv,
int nitems,
u64 *qgroup_reserved, bool use_global_rsv);
void btrfs_subvolume_release_metadata(struct btrfs_root *root,
struct btrfs_block_rsv *rsv,
u64 qgroup_reserved);
int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
unsigned short type);
void btrfs_free_block_rsv(struct btrfs_root *root,
struct btrfs_block_rsv *rsv);
int btrfs_block_rsv_add(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv, u64 num_bytes,
enum btrfs_reserve_flush_enum flush);
int btrfs_block_rsv_check(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv, int min_factor);
int btrfs_block_rsv_refill(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv, u64 min_reserved,
enum btrfs_reserve_flush_enum flush);
int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
struct btrfs_block_rsv *dst_rsv,
u64 num_bytes);
int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
struct btrfs_block_rsv *dest, u64 num_bytes,
int min_factor);
void btrfs_block_rsv_release(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv,
u64 num_bytes);
int btrfs_set_block_group_ro(struct btrfs_root *root,
struct btrfs_block_group_cache *cache);
void btrfs_set_block_group_rw(struct btrfs_root *root,
struct btrfs_block_group_cache *cache);
void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
int btrfs_error_unpin_extent_range(struct btrfs_root *root,
u64 start, u64 end);
int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
u64 num_bytes, u64 *actual_bytes);
int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 type);
int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info);
int __get_raid_index(u64 flags);
int btrfs_start_nocow_write(struct btrfs_root *root);
void btrfs_end_nocow_write(struct btrfs_root *root);
/* ctree.c */
int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
int level, int *slot);
int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
int btrfs_previous_item(struct btrfs_root *root,
struct btrfs_path *path, u64 min_objectid,
int type);
int btrfs_previous_extent_item(struct btrfs_root *root,
struct btrfs_path *path, u64 min_objectid);
void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
struct btrfs_key *new_key);
struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
struct btrfs_key *key, int lowest_level,
u64 min_trans);
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
struct btrfs_path *path,
u64 min_trans);
enum btrfs_compare_tree_result {
BTRFS_COMPARE_TREE_NEW,
BTRFS_COMPARE_TREE_DELETED,
BTRFS_COMPARE_TREE_CHANGED,
BTRFS_COMPARE_TREE_SAME,
};
typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
struct btrfs_root *right_root,
struct btrfs_path *left_path,
struct btrfs_path *right_path,
struct btrfs_key *key,
enum btrfs_compare_tree_result result,
void *ctx);
int btrfs_compare_trees(struct btrfs_root *left_root,
struct btrfs_root *right_root,
btrfs_changed_cb_t cb, void *ctx);
int btrfs_cow_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *buf,
struct extent_buffer *parent, int parent_slot,
struct extent_buffer **cow_ret);
int btrfs_copy_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
struct extent_buffer **cow_ret, u64 new_root_objectid);
int btrfs_block_can_be_shared(struct btrfs_root *root,
struct extent_buffer *buf);
void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
u32 data_size);
void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
u32 new_size, int from_end);
int btrfs_split_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *new_key,
unsigned long split_offset);
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *new_key);
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, struct btrfs_path *p, int
ins_len, int cow);
int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
struct btrfs_path *p, u64 time_seq);
int btrfs_search_slot_for_read(struct btrfs_root *root,
struct btrfs_key *key, struct btrfs_path *p,
int find_higher, int return_any);
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *parent,
int start_slot, u64 *last_ret,
struct btrfs_key *progress);
void btrfs_release_path(struct btrfs_path *p);
struct btrfs_path *btrfs_alloc_path(void);
void btrfs_free_path(struct btrfs_path *p);
void btrfs_set_path_blocking(struct btrfs_path *p);
void btrfs_clear_path_blocking(struct btrfs_path *p,
struct extent_buffer *held, int held_rw);
void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct btrfs_path *path, int slot, int nr);
static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path)
{
return btrfs_del_items(trans, root, path, path->slots[0], 1);
}
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
struct btrfs_key *cpu_key, u32 *data_size,
u32 total_data, u32 total_size, int nr);
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, void *data, u32 data_size);
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *cpu_key, u32 *data_size, int nr);
static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *key,
u32 data_size)
{
return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
}
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
u64 time_seq);
static inline int btrfs_next_old_item(struct btrfs_root *root,
struct btrfs_path *p, u64 time_seq)
{
++p->slots[0];
if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
return btrfs_next_old_leaf(root, p, time_seq);
return 0;
}
static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
{
return btrfs_next_old_item(root, p, 0);
}
int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv,
int update_ref, int for_reloc);
int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *node,
struct extent_buffer *parent);
static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
{
/*
* Get synced with close_ctree()
*/
smp_mb();
return fs_info->closing;
}
/*
* If we remount the fs to be R/O or umount the fs, the cleaner needn't do
* anything except sleeping. This function is used to check the status of
* the fs.
*/
static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
{
return (root->fs_info->sb->s_flags & MS_RDONLY ||
btrfs_fs_closing(root->fs_info));
}
static inline void free_fs_info(struct btrfs_fs_info *fs_info)
{
kfree(fs_info->balance_ctl);
kfree(fs_info->delayed_root);
kfree(fs_info->extent_root);
kfree(fs_info->tree_root);
kfree(fs_info->chunk_root);
kfree(fs_info->dev_root);
kfree(fs_info->csum_root);
kfree(fs_info->quota_root);
kfree(fs_info->uuid_root);
kfree(fs_info->super_copy);
kfree(fs_info->super_for_commit);
kfree(fs_info);
}
/* tree mod log functions from ctree.c */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
struct seq_list *elem);
void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
struct seq_list *elem);
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
/* root-item.c */
int btrfs_find_root_ref(struct btrfs_root *tree_root,
struct btrfs_path *path,
u64 root_id, u64 ref_id);
int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *tree_root,
u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
const char *name, int name_len);
int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *tree_root,
u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
const char *name, int name_len);
int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct btrfs_key *key);
int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, struct btrfs_root_item
*item);
int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_key *key,
struct btrfs_root_item *item);
int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
struct btrfs_path *path, struct btrfs_root_item *root_item,
struct btrfs_key *root_key);
int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
void btrfs_set_root_node(struct btrfs_root_item *item,
struct extent_buffer *node);
void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
void btrfs_update_root_times(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
/* uuid-tree.c */
int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
struct btrfs_root *uuid_root, u8 *uuid, u8 type,
u64 subid);
int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
struct btrfs_root *uuid_root, u8 *uuid, u8 type,
u64 subid);
int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
u64));
/* dir-item.c */
int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
const char *name, int name_len);
int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, const char *name,
int name_len, struct inode *dir,
struct btrfs_key *location, u8 type, u64 index);
struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 dir,
const char *name, int name_len,
int mod);
struct btrfs_dir_item *
btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 dir,
u64 objectid, const char *name, int name_len,
int mod);
struct btrfs_dir_item *
btrfs_search_dir_index_item(struct btrfs_root *root,
struct btrfs_path *path, u64 dirid,
const char *name, int name_len);
int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_dir_item *di);
int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 objectid,
const char *name, u16 name_len,
const void *data, u16 data_len);
struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 dir,
const char *name, u16 name_len,
int mod);
int verify_dir_item(struct btrfs_root *root,
struct extent_buffer *leaf,
struct btrfs_dir_item *dir_item);
/* orphan.c */
int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 offset);
int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 offset);
int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
/* inode-item.c */
int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const char *name, int name_len,
u64 inode_objectid, u64 ref_objectid, u64 index);
int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const char *name, int name_len,
u64 inode_objectid, u64 ref_objectid, u64 *index);
int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 objectid);
int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path,
struct btrfs_key *location, int mod);
struct btrfs_inode_extref *
btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
const char *name, int name_len,
u64 inode_objectid, u64 ref_objectid, int ins_len,
int cow);
int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
u64 ref_objectid, const char *name,
int name_len,
struct btrfs_inode_extref **extref_ret);
/* file-item.c */
struct btrfs_dio_private;
int btrfs_del_csums(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr, u64 len);
int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
struct bio *bio, u32 *dst);
int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
struct btrfs_dio_private *dip, struct bio *bio,
u64 logical_offset);
int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 objectid, u64 pos,
u64 disk_offset, u64 disk_num_bytes,
u64 num_bytes, u64 offset, u64 ram_bytes,
u8 compression, u8 encryption, u16 other_encoding);
int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 objectid,
u64 bytenr, int mod);
int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_ordered_sum *sums);
int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
struct bio *bio, u64 file_start, int contig);
int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
struct list_head *list, int search_commit);
void btrfs_extent_item_to_extent_map(struct inode *inode,
const struct btrfs_path *path,
struct btrfs_file_extent_item *fi,
const bool new_inline,
struct extent_map *em);
/* inode.c */
struct btrfs_delalloc_work {
struct inode *inode;
int wait;
int delay_iput;
struct completion completion;
struct list_head list;
struct btrfs_work work;
};
struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
int wait, int delay_iput);
void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
size_t pg_offset, u64 start, u64 len,
int create);
noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
u64 *orig_start, u64 *orig_block_len,
u64 *ram_bytes);
/* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
#if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
#define ClearPageChecked ClearPageFsMisc
#define SetPageChecked SetPageFsMisc
#define PageChecked PageFsMisc
#endif
/* This forces readahead on a given range of bytes in an inode */
static inline void btrfs_force_ra(struct address_space *mapping,
struct file_ra_state *ra, struct file *file,
pgoff_t offset, unsigned long req_size)
{
page_cache_sync_readahead(mapping, ra, file, offset, req_size);
}
struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
int btrfs_set_inode_index(struct inode *dir, u64 *index);
int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *dir, struct inode *inode,
const char *name, int name_len);
int btrfs_add_link(struct btrfs_trans_handle *trans,
struct inode *parent_inode, struct inode *inode,
const char *name, int name_len, int add_backref, u64 index);
int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *dir, u64 objectid,
const char *name, int name_len);
int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
int front);
int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode, u64 new_size,
u32 min_type);
int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
int nr);
int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
struct extent_state **cached_state);
int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
struct btrfs_root *new_root,
struct btrfs_root *parent_root,
u64 new_dirid);
int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
size_t size, struct bio *bio,
unsigned long bio_flags);
int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
int btrfs_readpage(struct file *file, struct page *page);
void btrfs_evict_inode(struct inode *inode);
int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
struct inode *btrfs_alloc_inode(struct super_block *sb);
void btrfs_destroy_inode(struct inode *inode);
int btrfs_drop_inode(struct inode *inode);
int btrfs_init_cachep(void);
void btrfs_destroy_cachep(void);
long btrfs_ioctl_trans_end(struct file *file);
struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
struct btrfs_root *root, int *was_new);
struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
size_t pg_offset, u64 start, u64 end,
int create);
int btrfs_update_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode);
int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode);
int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
int btrfs_orphan_cleanup(struct btrfs_root *root);
void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
void btrfs_invalidate_inodes(struct btrfs_root *root);
void btrfs_add_delayed_iput(struct inode *inode);
void btrfs_run_delayed_iputs(struct btrfs_root *root);
int btrfs_prealloc_file_range(struct inode *inode, int mode,
u64 start, u64 num_bytes, u64 min_size,
loff_t actual_len, u64 *alloc_hint);
int btrfs_prealloc_file_range_trans(struct inode *inode,
struct btrfs_trans_handle *trans, int mode,
u64 start, u64 num_bytes, u64 min_size,
loff_t actual_len, u64 *alloc_hint);
extern const struct dentry_operations btrfs_dentry_operations;
/* ioctl.c */
long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
void btrfs_update_iflags(struct inode *inode);
void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
int btrfs_is_empty_uuid(u8 *uuid);
int btrfs_defrag_file(struct inode *inode, struct file *file,
struct btrfs_ioctl_defrag_range_args *range,
u64 newer_than, unsigned long max_pages);
void btrfs_get_block_group_info(struct list_head *groups_list,
struct btrfs_ioctl_space_info *space);
void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
struct btrfs_ioctl_balance_args *bargs);
/* file.c */
int btrfs_auto_defrag_init(void);
void btrfs_auto_defrag_exit(void);
int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
struct inode *inode);
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
int skip_pinned);
extern const struct file_operations btrfs_file_operations;
int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
struct btrfs_path *path, u64 start, u64 end,
u64 *drop_end, int drop_cache,
int replace_extent,
u32 extent_item_size,
int *key_inserted);
int btrfs_drop_extents(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode, u64 start,
u64 end, int drop_cache);
int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
struct inode *inode, u64 start, u64 end);
int btrfs_release_file(struct inode *inode, struct file *file);
int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
struct page **pages, size_t num_pages,
loff_t pos, size_t write_bytes,
struct extent_state **cached);
/* tree-defrag.c */
int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
/* sysfs.c */
int btrfs_init_sysfs(void);
void btrfs_exit_sysfs(void);
int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info);
void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info);
/* xattr.c */
ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
/* super.c */
int btrfs_parse_options(struct btrfs_root *root, char *options);
int btrfs_sync_fs(struct super_block *sb, int wait);
#ifdef CONFIG_PRINTK
__printf(2, 3)
void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
#else
static inline __printf(2, 3)
void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
{
}
#endif
#define btrfs_emerg(fs_info, fmt, args...) \
btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
#define btrfs_alert(fs_info, fmt, args...) \
btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
#define btrfs_crit(fs_info, fmt, args...) \
btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
#define btrfs_err(fs_info, fmt, args...) \
btrfs_printk(fs_info, KERN_ERR fmt, ##args)
#define btrfs_warn(fs_info, fmt, args...) \
btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
#define btrfs_notice(fs_info, fmt, args...) \
btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
#define btrfs_info(fs_info, fmt, args...) \
btrfs_printk(fs_info, KERN_INFO fmt, ##args)
#ifdef DEBUG
#define btrfs_debug(fs_info, fmt, args...) \
btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
#else
#define btrfs_debug(fs_info, fmt, args...) \
no_printk(KERN_DEBUG fmt, ##args)
#endif
#ifdef CONFIG_BTRFS_ASSERT
static inline void assfail(char *expr, char *file, int line)
{
pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
expr, file, line);
BUG();
}
#define ASSERT(expr) \
(likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
#else
#define ASSERT(expr) ((void)0)
#endif
#define btrfs_assert()
__printf(5, 6)
void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
unsigned int line, int errno, const char *fmt, ...);
void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
struct btrfs_root *root, const char *function,
unsigned int line, int errno);
#define btrfs_set_fs_incompat(__fs_info, opt) \
__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
u64 flag)
{
struct btrfs_super_block *disk_super;
u64 features;
disk_super = fs_info->super_copy;
features = btrfs_super_incompat_flags(disk_super);
if (!(features & flag)) {
spin_lock(&fs_info->super_lock);
features = btrfs_super_incompat_flags(disk_super);
if (!(features & flag)) {
features |= flag;
btrfs_set_super_incompat_flags(disk_super, features);
btrfs_info(fs_info, "setting %llu feature flag",
flag);
}
spin_unlock(&fs_info->super_lock);
}
}
#define btrfs_fs_incompat(fs_info, opt) \
__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
{
struct btrfs_super_block *disk_super;
disk_super = fs_info->super_copy;
return !!(btrfs_super_incompat_flags(disk_super) & flag);
}
/*
* Call btrfs_abort_transaction as early as possible when an error condition is
* detected, that way the exact line number is reported.
*/
#define btrfs_abort_transaction(trans, root, errno) \
do { \
__btrfs_abort_transaction(trans, root, __func__, \
__LINE__, errno); \
} while (0)
#define btrfs_std_error(fs_info, errno) \
do { \
if ((errno)) \
__btrfs_std_error((fs_info), __func__, \
__LINE__, (errno), NULL); \
} while (0)
#define btrfs_error(fs_info, errno, fmt, args...) \
do { \
__btrfs_std_error((fs_info), __func__, __LINE__, \
(errno), fmt, ##args); \
} while (0)
__printf(5, 6)
void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
unsigned int line, int errno, const char *fmt, ...);
/*
* If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
* will panic(). Otherwise we BUG() here.
*/
#define btrfs_panic(fs_info, errno, fmt, args...) \
do { \
__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
BUG(); \
} while (0)
/* acl.c */
#ifdef CONFIG_BTRFS_FS_POSIX_ACL
struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
int btrfs_init_acl(struct btrfs_trans_handle *trans,
struct inode *inode, struct inode *dir);
#else
#define btrfs_get_acl NULL
#define btrfs_set_acl NULL
static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
struct inode *inode, struct inode *dir)
{
return 0;
}
#endif
/* relocation.c */
int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_recover_relocation(struct btrfs_root *root);
int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *buf,
struct extent_buffer *cow);
void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
struct btrfs_pending_snapshot *pending,
u64 *bytes_to_reserve);
int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
struct btrfs_pending_snapshot *pending);
/* scrub.c */
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
u64 end, struct btrfs_scrub_progress *progress,
int readonly, int is_dev_replace);
void btrfs_scrub_pause(struct btrfs_root *root);
void btrfs_scrub_continue(struct btrfs_root *root);
int btrfs_scrub_cancel(struct btrfs_fs_info *info);
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
struct btrfs_device *dev);
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
struct btrfs_scrub_progress *progress);
/* dev-replace.c */
void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info);
/* reada.c */
struct reada_control {
struct btrfs_root *root; /* tree to prefetch */
struct btrfs_key key_start;
struct btrfs_key key_end; /* exclusive */
atomic_t elems;
struct kref refcnt;
wait_queue_head_t wait;
};
struct reada_control *btrfs_reada_add(struct btrfs_root *root,
struct btrfs_key *start, struct btrfs_key *end);
int btrfs_reada_wait(void *handle);
void btrfs_reada_detach(void *handle);
int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
u64 start, int err);
static inline int is_fstree(u64 rootid)
{
if (rootid == BTRFS_FS_TREE_OBJECTID ||
(s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
return 1;
return 0;
}
static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
{
return signal_pending(current);
}
/* Sanity test specific functions */
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
void btrfs_test_destroy_inode(struct inode *inode);
int btrfs_verify_qgroup_counts(struct btrfs_fs_info *fs_info, u64 qgroupid,
u64 rfer, u64 excl);
#endif
#endif