blob: 18dca4f533a6a07f4cf119c92a3ab47cf740317c [file] [log] [blame]
/* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/delay.h>
#include <linux/clk/msm-clk-provider.h>
#include <linux/clk/msm-clk.h>
#include <linux/clk/msm-clock-generic.h>
#include <dt-bindings/clock/msm-clocks-8974.h>
#include <dt-bindings/clock/msm-clocks-8916.h>
#include "mdss-pll.h"
#include "mdss-dsi-pll.h"
#define DSI_PHY_PLL_UNIPHY_PLL_REFCLK_CFG (0x0)
#define DSI_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG (0x0004)
#define DSI_PHY_PLL_UNIPHY_PLL_CHGPUMP_CFG (0x0008)
#define DSI_PHY_PLL_UNIPHY_PLL_VCOLPF_CFG (0x000C)
#define DSI_PHY_PLL_UNIPHY_PLL_VREG_CFG (0x0010)
#define DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG (0x0014)
#define DSI_PHY_PLL_UNIPHY_PLL_DMUX_CFG (0x0018)
#define DSI_PHY_PLL_UNIPHY_PLL_AMUX_CFG (0x001C)
#define DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG (0x0020)
#define DSI_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG (0x0024)
#define DSI_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG (0x0028)
#define DSI_PHY_PLL_UNIPHY_PLL_LPFR_CFG (0x002C)
#define DSI_PHY_PLL_UNIPHY_PLL_LPFC1_CFG (0x0030)
#define DSI_PHY_PLL_UNIPHY_PLL_LPFC2_CFG (0x0034)
#define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0 (0x0038)
#define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1 (0x003C)
#define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2 (0x0040)
#define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3 (0x0044)
#define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG4 (0x0048)
#define DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG0 (0x004C)
#define DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG1 (0x0050)
#define DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG2 (0x0054)
#define DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG3 (0x0058)
#define DSI_PHY_PLL_UNIPHY_PLL_LKDET_CFG0 (0x005C)
#define DSI_PHY_PLL_UNIPHY_PLL_LKDET_CFG1 (0x0060)
#define DSI_PHY_PLL_UNIPHY_PLL_LKDET_CFG2 (0x0064)
#define DSI_PHY_PLL_UNIPHY_PLL_TEST_CFG (0x0068)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG0 (0x006C)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG1 (0x0070)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG2 (0x0074)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG3 (0x0078)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG4 (0x007C)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG5 (0x0080)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG6 (0x0084)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG7 (0x0088)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG8 (0x008C)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG9 (0x0090)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG10 (0x0094)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG11 (0x0098)
#define DSI_PHY_PLL_UNIPHY_PLL_EFUSE_CFG (0x009C)
#define DSI_PHY_PLL_UNIPHY_PLL_STATUS (0x00C0)
#define DSI_PLL_POLL_MAX_READS 10
#define DSI_PLL_POLL_TIMEOUT_US 50
#define DSI_PLL_SEQ_M_MAX_COUNTER 7
static struct clk_div_ops fixed_2div_ops;
static const struct clk_ops byte_mux_clk_ops;
static const struct clk_ops pixel_clk_src_ops;
static const struct clk_ops byte_clk_src_ops;
static const struct clk_ops analog_postdiv_clk_ops;
static struct lpfr_cfg lpfr_lut_struct[] = {
{479500000, 8},
{480000000, 11},
{575500000, 8},
{576000000, 12},
{610500000, 8},
{659500000, 9},
{671500000, 10},
{672000000, 14},
{708500000, 10},
{750000000, 11},
};
int set_byte_mux_sel(struct mux_clk *clk, int sel)
{
int rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
pr_debug("byte mux set to %s mode\n", sel ? "indirect" : "direct");
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_VREG_CFG, (sel << 1));
mdss_pll_resource_enable(dsi_pll_res, false);
return 0;
}
int get_byte_mux_sel(struct mux_clk *clk)
{
int mux_mode, rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
mux_mode = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_VREG_CFG) & BIT(1);
pr_debug("byte mux mode = %s", mux_mode ? "indirect" : "direct");
mdss_pll_resource_enable(dsi_pll_res, false);
return !!mux_mode;
}
static inline struct dsi_pll_vco_clk *to_vco_clk(struct clk *clk)
{
return container_of(clk, struct dsi_pll_vco_clk, c);
}
int dsi_pll_div_prepare(struct clk *c)
{
struct div_clk *div = to_div_clk(c);
/* Restore the divider's value */
return div->ops->set_div(div, div->data.div);
}
int dsi_pll_mux_prepare(struct clk *c)
{
struct mux_clk *mux = to_mux_clk(c);
int i, rc, sel = 0;
for (i = 0; i < mux->num_parents; i++)
if (mux->parents[i].src == c->parent) {
sel = mux->parents[i].sel;
break;
}
if (i == mux->num_parents) {
pr_err("Failed to select the parent clock\n");
rc = -EINVAL;
goto error;
}
/* Restore the mux source select value */
rc = mux->ops->set_mux_sel(mux, sel);
error:
return rc;
}
static int fixed_4div_set_div(struct div_clk *clk, int div)
{
int rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG, (div - 1));
mdss_pll_resource_enable(dsi_pll_res, false);
return rc;
}
static int fixed_4div_get_div(struct div_clk *clk)
{
int div = 0, rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
div = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG);
mdss_pll_resource_enable(dsi_pll_res, false);
return div + 1;
}
static int digital_set_div(struct div_clk *clk, int div)
{
int rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG, (div - 1));
mdss_pll_resource_enable(dsi_pll_res, false);
return rc;
}
static int digital_get_div(struct div_clk *clk)
{
int div = 0, rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
div = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG);
mdss_pll_resource_enable(dsi_pll_res, false);
return div + 1;
}
static int analog_set_div(struct div_clk *clk, int div)
{
int rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG, div - 1);
mdss_pll_resource_enable(dsi_pll_res, false);
return rc;
}
static int analog_get_div(struct div_clk *clk)
{
int div = 0, rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
rc = mdss_pll_resource_enable(clk->priv, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
div = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG) + 1;
mdss_pll_resource_enable(dsi_pll_res, false);
return div;
}
static int dsi_pll_lock_status(struct mdss_pll_resources *dsi_pll_res)
{
u32 status;
int pll_locked;
/* poll for PLL ready status */
if (readl_poll_timeout_noirq((dsi_pll_res->pll_base +
DSI_PHY_PLL_UNIPHY_PLL_STATUS),
status,
((status & BIT(0)) == 1),
DSI_PLL_POLL_MAX_READS,
DSI_PLL_POLL_TIMEOUT_US)) {
pr_debug("DSI PLL status=%x failed to Lock\n", status);
pll_locked = 0;
} else {
pll_locked = 1;
}
return pll_locked;
}
static void dsi_pll_software_reset(struct mdss_pll_resources *dsi_pll_res)
{
/*
* Add HW recommended delays after toggling the software
* reset bit off and back on.
*/
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_TEST_CFG, 0x01);
udelay(1);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_TEST_CFG, 0x00);
udelay(1);
}
static void dsi_pll_toggle_lock_detect(struct mdss_pll_resources *dsi_pll_res)
{
MDSS_PLL_REG_W(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_LKDET_CFG2,
0x0d);
MDSS_PLL_REG_W(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_LKDET_CFG2,
0x0c);
udelay(1);
MDSS_PLL_REG_W(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_LKDET_CFG2,
0x0d);
}
static int dsi_pll_enable_seq_8974(struct mdss_pll_resources *dsi_pll_res)
{
int i, rc = 0;
u32 max_reads, timeout_us;
int pll_locked;
dsi_pll_software_reset(dsi_pll_res);
/*
* PLL power up sequence.
* Add necessary delays recommeded by hardware.
*/
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x01);
udelay(1);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x07);
udelay(500);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(500);
for (i = 0; i < 2; i++) {
udelay(100);
/* DSI Uniphy lock detect setting */
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_LKDET_CFG2, 0x0c);
udelay(100);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_LKDET_CFG2, 0x0d);
/* poll for PLL ready status */
max_reads = 5;
timeout_us = 100;
pll_locked = dsi_pll_lock_status(dsi_pll_res);
if (pll_locked)
break;
dsi_pll_software_reset(dsi_pll_res);
/*
* PLL power up sequence.
* Add necessary delays recommeded by hardware.
*/
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x1);
udelay(1);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x5);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x7);
udelay(250);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x5);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x7);
udelay(500);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0xf);
udelay(500);
}
if (!pll_locked) {
pr_err("DSI PLL lock failed\n");
rc = -EINVAL;
} else {
pr_debug("DSI PLL Lock success\n");
}
return rc;
}
static int dsi_pll_enable_seq_m(struct mdss_pll_resources *dsi_pll_res)
{
int i = 0;
int pll_locked = 0;
dsi_pll_software_reset(dsi_pll_res);
/*
* Add hardware recommended delays between register writes for
* the updates to take effect. These delays are necessary for the
* PLL to successfully lock
*/
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG1, 0x34);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x01);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(600);
dsi_pll_toggle_lock_detect(dsi_pll_res);
pll_locked = dsi_pll_lock_status(dsi_pll_res);
for (i = 0; (i < DSI_PLL_SEQ_M_MAX_COUNTER) && !pll_locked; i++) {
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
udelay(50);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(100);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(600);
dsi_pll_toggle_lock_detect(dsi_pll_res);
pll_locked = dsi_pll_lock_status(dsi_pll_res);
}
if (pll_locked)
pr_debug("PLL Locked at attempt #%d\n", i);
else
pr_debug("PLL failed to lock after %d attempt(s)\n", i);
return pll_locked ? 0 : -EINVAL;
}
static int dsi_pll_enable_seq_d(struct mdss_pll_resources *dsi_pll_res)
{
int pll_locked = 0;
dsi_pll_software_reset(dsi_pll_res);
/*
* Add hardware recommended delays between register writes for
* the updates to take effect. These delays are necessary for the
* PLL to successfully lock
*/
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
udelay(50);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x01);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x07);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x07);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(600);
dsi_pll_toggle_lock_detect(dsi_pll_res);
pll_locked = dsi_pll_lock_status(dsi_pll_res);
pr_debug("PLL status = %s\n", pll_locked ? "Locked" : "Unlocked");
return pll_locked ? 0 : -EINVAL;
}
static int dsi_pll_enable_seq_f1(struct mdss_pll_resources *dsi_pll_res)
{
int pll_locked = 0;
dsi_pll_software_reset(dsi_pll_res);
/*
* Add hardware recommended delays between register writes for
* the updates to take effect. These delays are necessary for the
* PLL to successfully lock
*/
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
udelay(50);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x01);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0d);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(600);
dsi_pll_toggle_lock_detect(dsi_pll_res);
pll_locked = dsi_pll_lock_status(dsi_pll_res);
pr_debug("PLL status = %s\n", pll_locked ? "Locked" : "Unlocked");
return pll_locked ? 0 : -EINVAL;
}
static int dsi_pll_enable_seq_c(struct mdss_pll_resources *dsi_pll_res)
{
int pll_locked = 0;
dsi_pll_software_reset(dsi_pll_res);
/*
* Add hardware recommended delays between register writes for
* the updates to take effect. These delays are necessary for the
* PLL to successfully lock
*/
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
udelay(50);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x01);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(600);
dsi_pll_toggle_lock_detect(dsi_pll_res);
pll_locked = dsi_pll_lock_status(dsi_pll_res);
pr_debug("PLL status = %s\n", pll_locked ? "Locked" : "Unlocked");
return pll_locked ? 0 : -EINVAL;
}
static int dsi_pll_enable_seq_e(struct mdss_pll_resources *dsi_pll_res)
{
int pll_locked = 0;
dsi_pll_software_reset(dsi_pll_res);
/*
* Add hardware recommended delays between register writes for
* the updates to take effect. These delays are necessary for the
* PLL to successfully lock
*/
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
udelay(50);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x01);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0d);
udelay(1);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(600);
dsi_pll_toggle_lock_detect(dsi_pll_res);
pll_locked = dsi_pll_lock_status(dsi_pll_res);
pr_debug("PLL status = %s\n", pll_locked ? "Locked" : "Unlocked");
return pll_locked ? 0 : -EINVAL;
}
static int dsi_pll_enable(struct clk *c)
{
int i, rc;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
struct mdss_pll_resources *dsi_pll_res = vco->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
/* Try all enable sequences until one succeeds */
for (i = 0; i < vco->pll_en_seq_cnt; i++) {
rc = vco->pll_enable_seqs[i](dsi_pll_res);
pr_debug("DSI PLL %s after sequence #%d\n",
rc ? "unlocked" : "locked", i + 1);
if (!rc)
break;
}
if (rc) {
mdss_pll_resource_enable(dsi_pll_res, false);
pr_err("DSI PLL failed to lock\n");
}
dsi_pll_res->pll_on = true;
return rc;
}
static void dsi_pll_disable(struct clk *c)
{
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
struct mdss_pll_resources *dsi_pll_res = vco->priv;
if (!dsi_pll_res->pll_on &&
mdss_pll_resource_enable(dsi_pll_res, true)) {
pr_err("Failed to enable mdss dsi pll resources\n");
return;
}
dsi_pll_res->handoff_resources = false;
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x00);
mdss_pll_resource_enable(dsi_pll_res, false);
dsi_pll_res->pll_on = false;
pr_debug("DSI PLL Disabled\n");
}
static int vco_set_rate(struct clk *c, unsigned long rate)
{
s64 vco_clk_rate = rate;
s32 rem;
s64 refclk_cfg, frac_n_mode, ref_doubler_en_b;
s64 ref_clk_to_pll, div_fbx1000, frac_n_value;
s64 sdm_cfg0, sdm_cfg1, sdm_cfg2, sdm_cfg3;
s64 gen_vco_clk, cal_cfg10, cal_cfg11;
u32 res;
int i, rc;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
struct mdss_pll_resources *dsi_pll_res = vco->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
/* Configure the Loop filter resistance */
for (i = 0; i < vco->lpfr_lut_size; i++)
if (vco_clk_rate <= vco->lpfr_lut[i].vco_rate)
break;
if (i == vco->lpfr_lut_size) {
pr_err("unable to get loop filter resistance. vco=%ld\n", rate);
rc = -EINVAL;
goto error;
}
res = vco->lpfr_lut[i].r;
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_LPFR_CFG, res);
/* Loop filter capacitance values : c1 and c2 */
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_LPFC1_CFG, 0x70);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_LPFC2_CFG, 0x15);
div_s64_rem(vco_clk_rate, vco->ref_clk_rate, &rem);
if (rem) {
refclk_cfg = 0x1;
frac_n_mode = 1;
ref_doubler_en_b = 0;
} else {
refclk_cfg = 0x0;
frac_n_mode = 0;
ref_doubler_en_b = 1;
}
pr_debug("refclk_cfg = %lld\n", refclk_cfg);
ref_clk_to_pll = ((vco->ref_clk_rate * 2 * (refclk_cfg))
+ (ref_doubler_en_b * vco->ref_clk_rate));
div_fbx1000 = div_s64((vco_clk_rate * 1000), ref_clk_to_pll);
div_s64_rem(div_fbx1000, 1000, &rem);
frac_n_value = div_s64((rem * (1 << 16)), 1000);
gen_vco_clk = div_s64(div_fbx1000 * ref_clk_to_pll, 1000);
pr_debug("ref_clk_to_pll = %lld\n", ref_clk_to_pll);
pr_debug("div_fb = %lld\n", div_fbx1000);
pr_debug("frac_n_value = %lld\n", frac_n_value);
pr_debug("Generated VCO Clock: %lld\n", gen_vco_clk);
rem = 0;
if (frac_n_mode) {
sdm_cfg0 = (0x0 << 5);
sdm_cfg0 |= (0x0 & 0x3f);
sdm_cfg1 = (div_s64(div_fbx1000, 1000) & 0x3f) - 1;
sdm_cfg3 = div_s64_rem(frac_n_value, 256, &rem);
sdm_cfg2 = rem;
} else {
sdm_cfg0 = (0x1 << 5);
sdm_cfg0 |= (div_s64(div_fbx1000, 1000) & 0x3f) - 1;
sdm_cfg1 = (0x0 & 0x3f);
sdm_cfg2 = 0;
sdm_cfg3 = 0;
}
pr_debug("sdm_cfg0=%lld\n", sdm_cfg0);
pr_debug("sdm_cfg1=%lld\n", sdm_cfg1);
pr_debug("sdm_cfg2=%lld\n", sdm_cfg2);
pr_debug("sdm_cfg3=%lld\n", sdm_cfg3);
cal_cfg11 = div_s64_rem(gen_vco_clk, 256 * 1000000, &rem);
cal_cfg10 = rem / 1000000;
pr_debug("cal_cfg10=%lld, cal_cfg11=%lld\n", cal_cfg10, cal_cfg11);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_CHGPUMP_CFG, 0x02);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG3, 0x2b);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG4, 0x66);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_LKDET_CFG2, 0x0d);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1, (u32)(sdm_cfg1 & 0xff));
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2, (u32)(sdm_cfg2 & 0xff));
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3, (u32)(sdm_cfg3 & 0xff));
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG4, 0x00);
/* Add hardware recommended delay for correct PLL configuration */
udelay(1);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_REFCLK_CFG, (u32)refclk_cfg);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_VCOLPF_CFG, 0x71);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0, (u32)sdm_cfg0);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG0, 0x12);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG6, 0x30);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG7, 0x00);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG8, 0x60);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG9, 0x00);
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG10, (u32)(cal_cfg10 & 0xff));
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG11, (u32)(cal_cfg11 & 0xff));
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_EFUSE_CFG, 0x20);
error:
mdss_pll_resource_enable(dsi_pll_res, false);
return rc;
}
static long vco_round_rate(struct clk *c, unsigned long rate)
{
unsigned long rrate = rate;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
if (rate < vco->min_rate)
rrate = vco->min_rate;
if (rate > vco->max_rate)
rrate = vco->max_rate;
return rrate;
}
static unsigned long vco_get_rate(struct clk *c)
{
u32 sdm0, doubler, sdm_byp_div;
u64 vco_rate;
u32 sdm_dc_off, sdm_freq_seed, sdm2, sdm3;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
u64 ref_clk = vco->ref_clk_rate;
int rc;
struct mdss_pll_resources *dsi_pll_res = vco->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
/* Check to see if the ref clk doubler is enabled */
doubler = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_REFCLK_CFG) & BIT(0);
ref_clk += (doubler * vco->ref_clk_rate);
/* see if it is integer mode or sdm mode */
sdm0 = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0);
if (sdm0 & BIT(6)) {
/* integer mode */
sdm_byp_div = (MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0) & 0x3f) + 1;
vco_rate = ref_clk * sdm_byp_div;
} else {
/* sdm mode */
sdm_dc_off = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1) & 0xFF;
pr_debug("sdm_dc_off = %d\n", sdm_dc_off);
sdm2 = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2) & 0xFF;
sdm3 = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3) & 0xFF;
sdm_freq_seed = (sdm3 << 8) | sdm2;
pr_debug("sdm_freq_seed = %d\n", sdm_freq_seed);
vco_rate = (ref_clk * (sdm_dc_off + 1)) +
mult_frac(ref_clk, sdm_freq_seed, BIT(16));
pr_debug("vco rate = %lld", vco_rate);
}
pr_debug("returning vco rate = %lu\n", (unsigned long)vco_rate);
mdss_pll_resource_enable(dsi_pll_res, false);
return (unsigned long)vco_rate;
}
static enum handoff vco_handoff(struct clk *c)
{
int rc;
enum handoff ret = HANDOFF_DISABLED_CLK;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
struct mdss_pll_resources *dsi_pll_res = vco->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return ret;
}
if (dsi_pll_lock_status(dsi_pll_res)) {
dsi_pll_res->handoff_resources = true;
dsi_pll_res->pll_on = true;
c->rate = vco_get_rate(c);
ret = HANDOFF_ENABLED_CLK;
} else {
mdss_pll_resource_enable(dsi_pll_res, false);
}
return ret;
}
static int vco_prepare(struct clk *c)
{
int rc = 0;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
struct mdss_pll_resources *dsi_pll_res = vco->priv;
if (!dsi_pll_res) {
pr_err("Dsi pll resources are not available\n");
return -EINVAL;
}
if ((dsi_pll_res->vco_cached_rate != 0)
&& (dsi_pll_res->vco_cached_rate == c->rate)) {
rc = vco_set_rate(c, dsi_pll_res->vco_cached_rate);
if (rc) {
pr_err("vco_set_rate failed. rc=%d\n", rc);
goto error;
}
}
rc = dsi_pll_enable(c);
error:
return rc;
}
static void vco_unprepare(struct clk *c)
{
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
struct mdss_pll_resources *dsi_pll_res = vco->priv;
if (!dsi_pll_res) {
pr_err("Dsi pll resources are not available\n");
return;
}
dsi_pll_res->vco_cached_rate = c->rate;
dsi_pll_disable(c);
}
/* Op structures */
static const struct clk_ops clk_ops_dsi_vco = {
.set_rate = vco_set_rate,
.round_rate = vco_round_rate,
.handoff = vco_handoff,
.prepare = vco_prepare,
.unprepare = vco_unprepare,
};
static struct clk_div_ops fixed_4div_ops = {
.set_div = fixed_4div_set_div,
.get_div = fixed_4div_get_div,
};
static struct clk_div_ops analog_postdiv_ops = {
.set_div = analog_set_div,
.get_div = analog_get_div,
};
static struct clk_div_ops digital_postdiv_ops = {
.set_div = digital_set_div,
.get_div = digital_get_div,
};
static struct clk_mux_ops byte_mux_ops = {
.set_mux_sel = set_byte_mux_sel,
.get_mux_sel = get_byte_mux_sel,
};
static struct dsi_pll_vco_clk dsi_vco_clk_8974 = {
.ref_clk_rate = 19200000,
.min_rate = 350000000,
.max_rate = 750000000,
.pll_en_seq_cnt = 3,
.pll_enable_seqs[0] = dsi_pll_enable_seq_8974,
.pll_enable_seqs[1] = dsi_pll_enable_seq_8974,
.pll_enable_seqs[2] = dsi_pll_enable_seq_8974,
.lpfr_lut_size = 10,
.lpfr_lut = lpfr_lut_struct,
.c = {
.dbg_name = "dsi_vco_clk_8974",
.ops = &clk_ops_dsi_vco,
CLK_INIT(dsi_vco_clk_8974.c),
},
};
static struct div_clk analog_postdiv_clk = {
.data = {
.max_div = 255,
.min_div = 1,
},
.ops = &analog_postdiv_ops,
.c = {
.parent = &dsi_vco_clk_8974.c,
.dbg_name = "analog_postdiv_clk",
.ops = &analog_postdiv_clk_ops,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(analog_postdiv_clk.c),
},
};
static struct div_clk indirect_path_div2_clk = {
.ops = &fixed_2div_ops,
.data = {
.div = 2,
.min_div = 2,
.max_div = 2,
},
.c = {
.parent = &analog_postdiv_clk.c,
.dbg_name = "indirect_path_div2_clk",
.ops = &clk_ops_div,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(indirect_path_div2_clk.c),
},
};
struct div_clk pixel_clk_src = {
.data = {
.max_div = 255,
.min_div = 1,
},
.ops = &digital_postdiv_ops,
.c = {
.parent = &dsi_vco_clk_8974.c,
.dbg_name = "pixel_clk_src",
.ops = &pixel_clk_src_ops,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(pixel_clk_src.c),
},
};
struct mux_clk byte_mux = {
.num_parents = 2,
.parents = (struct clk_src[]){
{&dsi_vco_clk_8974.c, 0},
{&indirect_path_div2_clk.c, 1},
},
.ops = &byte_mux_ops,
.c = {
.parent = &dsi_vco_clk_8974.c,
.dbg_name = "byte_mux",
.ops = &byte_mux_clk_ops,
CLK_INIT(byte_mux.c),
},
};
struct div_clk byte_clk_src = {
.ops = &fixed_4div_ops,
.data = {
.min_div = 4,
.max_div = 4,
},
.c = {
.parent = &byte_mux.c,
.dbg_name = "byte_clk_src",
.ops = &byte_clk_src_ops,
CLK_INIT(byte_clk_src.c),
},
};
struct dsi_pll_vco_clk dsi_vco_clk_8916 = {
.ref_clk_rate = 19200000,
.min_rate = 350000000,
.max_rate = 750000000,
.pll_en_seq_cnt = 7,
.pll_enable_seqs[0] = dsi_pll_enable_seq_m,
.pll_enable_seqs[1] = dsi_pll_enable_seq_m,
.pll_enable_seqs[2] = dsi_pll_enable_seq_d,
.pll_enable_seqs[3] = dsi_pll_enable_seq_d,
.pll_enable_seqs[4] = dsi_pll_enable_seq_f1,
.pll_enable_seqs[5] = dsi_pll_enable_seq_c,
.pll_enable_seqs[6] = dsi_pll_enable_seq_e,
.lpfr_lut_size = 10,
.lpfr_lut = lpfr_lut_struct,
.c = {
.dbg_name = "dsi_vco_clk_8916",
.ops = &clk_ops_dsi_vco,
CLK_INIT(dsi_vco_clk_8916.c),
},
};
static struct clk_lookup mdss_dsi_pllcc_8974[] = {
CLK_LOOKUP_OF("pixel_src", pixel_clk_src,
"fd8c0000.qcom,mmsscc-mdss"),
CLK_LOOKUP_OF("byte_src", byte_clk_src,
"fd8c0000.qcom,mmsscc-mdss"),
};
static struct clk_lookup mdss_dsi_pllcc_8916[] = {
CLK_LIST(pixel_clk_src),
CLK_LIST(byte_clk_src),
};
int dsi_pll_clock_register(struct platform_device *pdev,
struct mdss_pll_resources *pll_res)
{
int rc;
const char *compatible_stream = NULL;
int compat_len = 0;
if (!pdev || !pll_res || !pdev->dev.of_node) {
pr_err("Invalid input parameters\n");
return -EINVAL;
}
compatible_stream = of_get_property(pdev->dev.of_node, "compatible",
&compat_len);
if (!compatible_stream || (compat_len <= 0)) {
pr_err("Invalid compatible string\n");
return -EINVAL;
}
if (!pll_res || !pll_res->pll_base) {
pr_err("Invalid input parameters\n");
return -EPROBE_DEFER;
}
/* Set client data to mux, div and vco clocks */
byte_clk_src.priv = pll_res;
pixel_clk_src.priv = pll_res;
byte_mux.priv = pll_res;
indirect_path_div2_clk.priv = pll_res;
analog_postdiv_clk.priv = pll_res;
/* Set clock source operations */
pixel_clk_src_ops = clk_ops_slave_div;
pixel_clk_src_ops.prepare = dsi_pll_div_prepare;
analog_postdiv_clk_ops = clk_ops_div;
analog_postdiv_clk_ops.prepare = dsi_pll_div_prepare;
byte_clk_src_ops = clk_ops_div;
byte_clk_src_ops.prepare = dsi_pll_div_prepare;
byte_mux_clk_ops = clk_ops_gen_mux;
byte_mux_clk_ops.prepare = dsi_pll_mux_prepare;
if (!strcmp(compatible_stream, "qcom,mdss_dsi_pll_8916")) {
dsi_vco_clk_8916.priv = pll_res;
analog_postdiv_clk.c.parent = &dsi_vco_clk_8916.c;
byte_mux.parents[0] = (struct clk_src) {&dsi_vco_clk_8916.c, 0};
byte_mux.c.parent = &dsi_vco_clk_8916.c;
pixel_clk_src.c.parent = &dsi_vco_clk_8916.c;
rc = of_msm_clock_register(pdev->dev.of_node,
mdss_dsi_pllcc_8916, ARRAY_SIZE(mdss_dsi_pllcc_8916));
if (rc) {
pr_err("Clock register failed\n");
rc = -EPROBE_DEFER;
}
} else if (!strcmp(compatible_stream, "qcom,mdss_dsi_pll_8974")) {
dsi_vco_clk_8974.priv = pll_res;
rc = of_msm_clock_register(pdev->dev.of_node,
mdss_dsi_pllcc_8974, ARRAY_SIZE(mdss_dsi_pllcc_8974));
if (rc) {
pr_err("Clock register failed\n");
rc = -EPROBE_DEFER;
}
} else {
pr_err("Invalid compatible string\n");
rc = -EINVAL;
}
if (!rc)
pr_info("Registered DSI PLL clocks successfully\n");
return rc;
}