| #ifndef _LINUX_MMU_NOTIFIER_H |
| #define _LINUX_MMU_NOTIFIER_H |
| |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| #include <linux/mm_types.h> |
| #include <linux/srcu.h> |
| |
| struct mmu_notifier; |
| struct mmu_notifier_ops; |
| |
| #ifdef CONFIG_MMU_NOTIFIER |
| |
| /* |
| * The mmu notifier_mm structure is allocated and installed in |
| * mm->mmu_notifier_mm inside the mm_take_all_locks() protected |
| * critical section and it's released only when mm_count reaches zero |
| * in mmdrop(). |
| */ |
| struct mmu_notifier_mm { |
| /* all mmu notifiers registerd in this mm are queued in this list */ |
| struct hlist_head list; |
| /* to serialize the list modifications and hlist_unhashed */ |
| spinlock_t lock; |
| }; |
| |
| struct mmu_notifier_ops { |
| /* |
| * Called either by mmu_notifier_unregister or when the mm is |
| * being destroyed by exit_mmap, always before all pages are |
| * freed. This can run concurrently with other mmu notifier |
| * methods (the ones invoked outside the mm context) and it |
| * should tear down all secondary mmu mappings and freeze the |
| * secondary mmu. If this method isn't implemented you've to |
| * be sure that nothing could possibly write to the pages |
| * through the secondary mmu by the time the last thread with |
| * tsk->mm == mm exits. |
| * |
| * As side note: the pages freed after ->release returns could |
| * be immediately reallocated by the gart at an alias physical |
| * address with a different cache model, so if ->release isn't |
| * implemented because all _software_ driven memory accesses |
| * through the secondary mmu are terminated by the time the |
| * last thread of this mm quits, you've also to be sure that |
| * speculative _hardware_ operations can't allocate dirty |
| * cachelines in the cpu that could not be snooped and made |
| * coherent with the other read and write operations happening |
| * through the gart alias address, so leading to memory |
| * corruption. |
| */ |
| void (*release)(struct mmu_notifier *mn, |
| struct mm_struct *mm); |
| |
| /* |
| * clear_flush_young is called after the VM is |
| * test-and-clearing the young/accessed bitflag in the |
| * pte. This way the VM will provide proper aging to the |
| * accesses to the page through the secondary MMUs and not |
| * only to the ones through the Linux pte. |
| * Start-end is necessary in case the secondary MMU is mapping the page |
| * at a smaller granularity than the primary MMU. |
| */ |
| int (*clear_flush_young)(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end); |
| |
| /* |
| * test_young is called to check the young/accessed bitflag in |
| * the secondary pte. This is used to know if the page is |
| * frequently used without actually clearing the flag or tearing |
| * down the secondary mapping on the page. |
| */ |
| int (*test_young)(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long address); |
| |
| /* |
| * change_pte is called in cases that pte mapping to page is changed: |
| * for example, when ksm remaps pte to point to a new shared page. |
| */ |
| void (*change_pte)(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long address, |
| pte_t pte); |
| |
| /* |
| * Before this is invoked any secondary MMU is still ok to |
| * read/write to the page previously pointed to by the Linux |
| * pte because the page hasn't been freed yet and it won't be |
| * freed until this returns. If required set_page_dirty has to |
| * be called internally to this method. |
| */ |
| void (*invalidate_page)(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long address); |
| |
| /* |
| * invalidate_range_start() and invalidate_range_end() must be |
| * paired and are called only when the mmap_sem and/or the |
| * locks protecting the reverse maps are held. If the subsystem |
| * can't guarantee that no additional references are taken to |
| * the pages in the range, it has to implement the |
| * invalidate_range() notifier to remove any references taken |
| * after invalidate_range_start(). |
| * |
| * Invalidation of multiple concurrent ranges may be |
| * optionally permitted by the driver. Either way the |
| * establishment of sptes is forbidden in the range passed to |
| * invalidate_range_begin/end for the whole duration of the |
| * invalidate_range_begin/end critical section. |
| * |
| * invalidate_range_start() is called when all pages in the |
| * range are still mapped and have at least a refcount of one. |
| * |
| * invalidate_range_end() is called when all pages in the |
| * range have been unmapped and the pages have been freed by |
| * the VM. |
| * |
| * The VM will remove the page table entries and potentially |
| * the page between invalidate_range_start() and |
| * invalidate_range_end(). If the page must not be freed |
| * because of pending I/O or other circumstances then the |
| * invalidate_range_start() callback (or the initial mapping |
| * by the driver) must make sure that the refcount is kept |
| * elevated. |
| * |
| * If the driver increases the refcount when the pages are |
| * initially mapped into an address space then either |
| * invalidate_range_start() or invalidate_range_end() may |
| * decrease the refcount. If the refcount is decreased on |
| * invalidate_range_start() then the VM can free pages as page |
| * table entries are removed. If the refcount is only |
| * droppped on invalidate_range_end() then the driver itself |
| * will drop the last refcount but it must take care to flush |
| * any secondary tlb before doing the final free on the |
| * page. Pages will no longer be referenced by the linux |
| * address space but may still be referenced by sptes until |
| * the last refcount is dropped. |
| */ |
| void (*invalidate_range_start)(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long start, unsigned long end); |
| void (*invalidate_range_end)(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long start, unsigned long end); |
| |
| /* |
| * invalidate_range() is either called between |
| * invalidate_range_start() and invalidate_range_end() when the |
| * VM has to free pages that where unmapped, but before the |
| * pages are actually freed, or outside of _start()/_end() when |
| * a (remote) TLB is necessary. |
| * |
| * If invalidate_range() is used to manage a non-CPU TLB with |
| * shared page-tables, it not necessary to implement the |
| * invalidate_range_start()/end() notifiers, as |
| * invalidate_range() alread catches the points in time when an |
| * external TLB range needs to be flushed. |
| * |
| * The invalidate_range() function is called under the ptl |
| * spin-lock and not allowed to sleep. |
| * |
| * Note that this function might be called with just a sub-range |
| * of what was passed to invalidate_range_start()/end(), if |
| * called between those functions. |
| */ |
| void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm, |
| unsigned long start, unsigned long end); |
| }; |
| |
| /* |
| * The notifier chains are protected by mmap_sem and/or the reverse map |
| * semaphores. Notifier chains are only changed when all reverse maps and |
| * the mmap_sem locks are taken. |
| * |
| * Therefore notifier chains can only be traversed when either |
| * |
| * 1. mmap_sem is held. |
| * 2. One of the reverse map locks is held (i_mmap_mutex or anon_vma->rwsem). |
| * 3. No other concurrent thread can access the list (release) |
| */ |
| struct mmu_notifier { |
| struct hlist_node hlist; |
| const struct mmu_notifier_ops *ops; |
| }; |
| |
| static inline int mm_has_notifiers(struct mm_struct *mm) |
| { |
| return unlikely(mm->mmu_notifier_mm); |
| } |
| |
| extern int mmu_notifier_register(struct mmu_notifier *mn, |
| struct mm_struct *mm); |
| extern int __mmu_notifier_register(struct mmu_notifier *mn, |
| struct mm_struct *mm); |
| extern void mmu_notifier_unregister(struct mmu_notifier *mn, |
| struct mm_struct *mm); |
| extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn, |
| struct mm_struct *mm); |
| extern void __mmu_notifier_mm_destroy(struct mm_struct *mm); |
| extern void __mmu_notifier_release(struct mm_struct *mm); |
| extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end); |
| extern int __mmu_notifier_test_young(struct mm_struct *mm, |
| unsigned long address); |
| extern void __mmu_notifier_change_pte(struct mm_struct *mm, |
| unsigned long address, pte_t pte); |
| extern void __mmu_notifier_invalidate_page(struct mm_struct *mm, |
| unsigned long address); |
| extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm, |
| unsigned long start, unsigned long end); |
| extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm, |
| unsigned long start, unsigned long end); |
| extern void __mmu_notifier_invalidate_range(struct mm_struct *mm, |
| unsigned long start, unsigned long end); |
| |
| static inline void mmu_notifier_release(struct mm_struct *mm) |
| { |
| if (mm_has_notifiers(mm)) |
| __mmu_notifier_release(mm); |
| } |
| |
| static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end) |
| { |
| if (mm_has_notifiers(mm)) |
| return __mmu_notifier_clear_flush_young(mm, start, end); |
| return 0; |
| } |
| |
| static inline int mmu_notifier_test_young(struct mm_struct *mm, |
| unsigned long address) |
| { |
| if (mm_has_notifiers(mm)) |
| return __mmu_notifier_test_young(mm, address); |
| return 0; |
| } |
| |
| static inline void mmu_notifier_change_pte(struct mm_struct *mm, |
| unsigned long address, pte_t pte) |
| { |
| if (mm_has_notifiers(mm)) |
| __mmu_notifier_change_pte(mm, address, pte); |
| } |
| |
| static inline void mmu_notifier_invalidate_page(struct mm_struct *mm, |
| unsigned long address) |
| { |
| if (mm_has_notifiers(mm)) |
| __mmu_notifier_invalidate_page(mm, address); |
| } |
| |
| static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm, |
| unsigned long start, unsigned long end) |
| { |
| if (mm_has_notifiers(mm)) |
| __mmu_notifier_invalidate_range_start(mm, start, end); |
| } |
| |
| static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm, |
| unsigned long start, unsigned long end) |
| { |
| if (mm_has_notifiers(mm)) |
| __mmu_notifier_invalidate_range_end(mm, start, end); |
| } |
| |
| static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, |
| unsigned long start, unsigned long end) |
| { |
| if (mm_has_notifiers(mm)) |
| __mmu_notifier_invalidate_range(mm, start, end); |
| } |
| |
| static inline void mmu_notifier_mm_init(struct mm_struct *mm) |
| { |
| mm->mmu_notifier_mm = NULL; |
| } |
| |
| static inline void mmu_notifier_mm_destroy(struct mm_struct *mm) |
| { |
| if (mm_has_notifiers(mm)) |
| __mmu_notifier_mm_destroy(mm); |
| } |
| |
| #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ |
| ({ \ |
| int __young; \ |
| struct vm_area_struct *___vma = __vma; \ |
| unsigned long ___address = __address; \ |
| __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ |
| __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ |
| ___address, \ |
| ___address + \ |
| PAGE_SIZE); \ |
| __young; \ |
| }) |
| |
| #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ |
| ({ \ |
| int __young; \ |
| struct vm_area_struct *___vma = __vma; \ |
| unsigned long ___address = __address; \ |
| __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ |
| __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ |
| ___address, \ |
| ___address + \ |
| PMD_SIZE); \ |
| __young; \ |
| }) |
| |
| #define ptep_clear_flush_notify(__vma, __address, __ptep) \ |
| ({ \ |
| unsigned long ___addr = __address & PAGE_MASK; \ |
| struct mm_struct *___mm = (__vma)->vm_mm; \ |
| pte_t ___pte; \ |
| \ |
| ___pte = ptep_clear_flush(__vma, __address, __ptep); \ |
| mmu_notifier_invalidate_range(___mm, ___addr, \ |
| ___addr + PAGE_SIZE); \ |
| \ |
| ___pte; \ |
| }) |
| |
| #define pmdp_clear_flush_notify(__vma, __haddr, __pmd) \ |
| ({ \ |
| unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ |
| struct mm_struct *___mm = (__vma)->vm_mm; \ |
| pmd_t ___pmd; \ |
| \ |
| ___pmd = pmdp_clear_flush(__vma, __haddr, __pmd); \ |
| mmu_notifier_invalidate_range(___mm, ___haddr, \ |
| ___haddr + HPAGE_PMD_SIZE); \ |
| \ |
| ___pmd; \ |
| }) |
| |
| #define pmdp_get_and_clear_notify(__mm, __haddr, __pmd) \ |
| ({ \ |
| unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ |
| pmd_t ___pmd; \ |
| \ |
| ___pmd = pmdp_get_and_clear(__mm, __haddr, __pmd); \ |
| mmu_notifier_invalidate_range(__mm, ___haddr, \ |
| ___haddr + HPAGE_PMD_SIZE); \ |
| \ |
| ___pmd; \ |
| }) |
| |
| /* |
| * set_pte_at_notify() sets the pte _after_ running the notifier. |
| * This is safe to start by updating the secondary MMUs, because the primary MMU |
| * pte invalidate must have already happened with a ptep_clear_flush() before |
| * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is |
| * required when we change both the protection of the mapping from read-only to |
| * read-write and the pfn (like during copy on write page faults). Otherwise the |
| * old page would remain mapped readonly in the secondary MMUs after the new |
| * page is already writable by some CPU through the primary MMU. |
| */ |
| #define set_pte_at_notify(__mm, __address, __ptep, __pte) \ |
| ({ \ |
| struct mm_struct *___mm = __mm; \ |
| unsigned long ___address = __address; \ |
| pte_t ___pte = __pte; \ |
| \ |
| mmu_notifier_change_pte(___mm, ___address, ___pte); \ |
| set_pte_at(___mm, ___address, __ptep, ___pte); \ |
| }) |
| |
| extern void mmu_notifier_call_srcu(struct rcu_head *rcu, |
| void (*func)(struct rcu_head *rcu)); |
| extern void mmu_notifier_synchronize(void); |
| |
| #else /* CONFIG_MMU_NOTIFIER */ |
| |
| static inline void mmu_notifier_release(struct mm_struct *mm) |
| { |
| } |
| |
| static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end) |
| { |
| return 0; |
| } |
| |
| static inline int mmu_notifier_test_young(struct mm_struct *mm, |
| unsigned long address) |
| { |
| return 0; |
| } |
| |
| static inline void mmu_notifier_change_pte(struct mm_struct *mm, |
| unsigned long address, pte_t pte) |
| { |
| } |
| |
| static inline void mmu_notifier_invalidate_page(struct mm_struct *mm, |
| unsigned long address) |
| { |
| } |
| |
| static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm, |
| unsigned long start, unsigned long end) |
| { |
| } |
| |
| static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm, |
| unsigned long start, unsigned long end) |
| { |
| } |
| |
| static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, |
| unsigned long start, unsigned long end) |
| { |
| } |
| |
| static inline void mmu_notifier_mm_init(struct mm_struct *mm) |
| { |
| } |
| |
| static inline void mmu_notifier_mm_destroy(struct mm_struct *mm) |
| { |
| } |
| |
| #define ptep_clear_flush_young_notify ptep_clear_flush_young |
| #define pmdp_clear_flush_young_notify pmdp_clear_flush_young |
| #define ptep_clear_flush_notify ptep_clear_flush |
| #define pmdp_clear_flush_notify pmdp_clear_flush |
| #define pmdp_get_and_clear_notify pmdp_get_and_clear |
| #define set_pte_at_notify set_pte_at |
| |
| #endif /* CONFIG_MMU_NOTIFIER */ |
| |
| #endif /* _LINUX_MMU_NOTIFIER_H */ |