| #define _FP_DECL(wc, X) \ |
| _FP_I_TYPE X##_c, X##_s, X##_e; \ |
| _FP_FRAC_DECL_##wc(X) |
| |
| /* |
| * Finish truely unpacking a native fp value by classifying the kind |
| * of fp value and normalizing both the exponent and the fraction. |
| */ |
| |
| #define _FP_UNPACK_CANONICAL(fs, wc, X) \ |
| do { \ |
| switch (X##_e) \ |
| { \ |
| default: \ |
| _FP_FRAC_HIGH_##wc(X) |= _FP_IMPLBIT_##fs; \ |
| _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \ |
| X##_e -= _FP_EXPBIAS_##fs; \ |
| X##_c = FP_CLS_NORMAL; \ |
| break; \ |
| \ |
| case 0: \ |
| if (_FP_FRAC_ZEROP_##wc(X)) \ |
| X##_c = FP_CLS_ZERO; \ |
| else \ |
| { \ |
| /* a denormalized number */ \ |
| _FP_I_TYPE _shift; \ |
| _FP_FRAC_CLZ_##wc(_shift, X); \ |
| _shift -= _FP_FRACXBITS_##fs; \ |
| _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \ |
| X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \ |
| X##_c = FP_CLS_NORMAL; \ |
| } \ |
| break; \ |
| \ |
| case _FP_EXPMAX_##fs: \ |
| if (_FP_FRAC_ZEROP_##wc(X)) \ |
| X##_c = FP_CLS_INF; \ |
| else \ |
| /* we don't differentiate between signaling and quiet nans */ \ |
| X##_c = FP_CLS_NAN; \ |
| break; \ |
| } \ |
| } while (0) |
| |
| |
| /* |
| * Before packing the bits back into the native fp result, take care |
| * of such mundane things as rounding and overflow. Also, for some |
| * kinds of fp values, the original parts may not have been fully |
| * extracted -- but that is ok, we can regenerate them now. |
| */ |
| |
| #define _FP_PACK_CANONICAL(fs, wc, X) \ |
| ({int __ret = 0; \ |
| switch (X##_c) \ |
| { \ |
| case FP_CLS_NORMAL: \ |
| X##_e += _FP_EXPBIAS_##fs; \ |
| if (X##_e > 0) \ |
| { \ |
| __ret |= _FP_ROUND(wc, X); \ |
| if (_FP_FRAC_OVERP_##wc(fs, X)) \ |
| { \ |
| _FP_FRAC_SRL_##wc(X, (_FP_WORKBITS+1)); \ |
| X##_e++; \ |
| } \ |
| else \ |
| _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \ |
| if (X##_e >= _FP_EXPMAX_##fs) \ |
| { \ |
| /* overflow to infinity */ \ |
| X##_e = _FP_EXPMAX_##fs; \ |
| _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| __ret |= EFLAG_OVERFLOW; \ |
| } \ |
| } \ |
| else \ |
| { \ |
| /* we've got a denormalized number */ \ |
| X##_e = -X##_e + 1; \ |
| if (X##_e <= _FP_WFRACBITS_##fs) \ |
| { \ |
| _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \ |
| _FP_FRAC_SLL_##wc(X, 1); \ |
| if (_FP_FRAC_OVERP_##wc(fs, X)) \ |
| { \ |
| X##_e = 1; \ |
| _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| } \ |
| else \ |
| { \ |
| X##_e = 0; \ |
| _FP_FRAC_SRL_##wc(X, _FP_WORKBITS+1); \ |
| __ret |= EFLAG_UNDERFLOW; \ |
| } \ |
| } \ |
| else \ |
| { \ |
| /* underflow to zero */ \ |
| X##_e = 0; \ |
| _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| __ret |= EFLAG_UNDERFLOW; \ |
| } \ |
| } \ |
| break; \ |
| \ |
| case FP_CLS_ZERO: \ |
| X##_e = 0; \ |
| _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| break; \ |
| \ |
| case FP_CLS_INF: \ |
| X##_e = _FP_EXPMAX_##fs; \ |
| _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| break; \ |
| \ |
| case FP_CLS_NAN: \ |
| X##_e = _FP_EXPMAX_##fs; \ |
| if (!_FP_KEEPNANFRACP) \ |
| { \ |
| _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \ |
| X##_s = 0; \ |
| } \ |
| else \ |
| _FP_FRAC_HIGH_##wc(X) |= _FP_QNANBIT_##fs; \ |
| break; \ |
| } \ |
| __ret; \ |
| }) |
| |
| |
| /* |
| * Main addition routine. The input values should be cooked. |
| */ |
| |
| #define _FP_ADD(fs, wc, R, X, Y) \ |
| do { \ |
| switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ |
| { \ |
| case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ |
| { \ |
| /* shift the smaller number so that its exponent matches the larger */ \ |
| _FP_I_TYPE diff = X##_e - Y##_e; \ |
| \ |
| if (diff < 0) \ |
| { \ |
| diff = -diff; \ |
| if (diff <= _FP_WFRACBITS_##fs) \ |
| _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \ |
| else if (!_FP_FRAC_ZEROP_##wc(X)) \ |
| _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \ |
| else \ |
| _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| R##_e = Y##_e; \ |
| } \ |
| else \ |
| { \ |
| if (diff > 0) \ |
| { \ |
| if (diff <= _FP_WFRACBITS_##fs) \ |
| _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \ |
| else if (!_FP_FRAC_ZEROP_##wc(Y)) \ |
| _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \ |
| else \ |
| _FP_FRAC_SET_##wc(Y, _FP_ZEROFRAC_##wc); \ |
| } \ |
| R##_e = X##_e; \ |
| } \ |
| \ |
| R##_c = FP_CLS_NORMAL; \ |
| \ |
| if (X##_s == Y##_s) \ |
| { \ |
| R##_s = X##_s; \ |
| _FP_FRAC_ADD_##wc(R, X, Y); \ |
| if (_FP_FRAC_OVERP_##wc(fs, R)) \ |
| { \ |
| _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ |
| R##_e++; \ |
| } \ |
| } \ |
| else \ |
| { \ |
| R##_s = X##_s; \ |
| _FP_FRAC_SUB_##wc(R, X, Y); \ |
| if (_FP_FRAC_ZEROP_##wc(R)) \ |
| { \ |
| /* return an exact zero */ \ |
| if (FP_ROUNDMODE == FP_RND_MINF) \ |
| R##_s |= Y##_s; \ |
| else \ |
| R##_s &= Y##_s; \ |
| R##_c = FP_CLS_ZERO; \ |
| } \ |
| else \ |
| { \ |
| if (_FP_FRAC_NEGP_##wc(R)) \ |
| { \ |
| _FP_FRAC_SUB_##wc(R, Y, X); \ |
| R##_s = Y##_s; \ |
| } \ |
| \ |
| /* renormalize after subtraction */ \ |
| _FP_FRAC_CLZ_##wc(diff, R); \ |
| diff -= _FP_WFRACXBITS_##fs; \ |
| if (diff) \ |
| { \ |
| R##_e -= diff; \ |
| _FP_FRAC_SLL_##wc(R, diff); \ |
| } \ |
| } \ |
| } \ |
| break; \ |
| } \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ |
| _FP_CHOOSENAN(fs, wc, R, X, Y); \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ |
| R##_e = X##_e; \ |
| case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ |
| case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ |
| case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ |
| _FP_FRAC_COPY_##wc(R, X); \ |
| R##_s = X##_s; \ |
| R##_c = X##_c; \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ |
| R##_e = Y##_e; \ |
| case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ |
| case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ |
| case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ |
| _FP_FRAC_COPY_##wc(R, Y); \ |
| R##_s = Y##_s; \ |
| R##_c = Y##_c; \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ |
| if (X##_s != Y##_s) \ |
| { \ |
| /* +INF + -INF => NAN */ \ |
| _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ |
| R##_s = X##_s ^ Y##_s; \ |
| R##_c = FP_CLS_NAN; \ |
| break; \ |
| } \ |
| /* FALLTHRU */ \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ |
| case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ |
| R##_s = X##_s; \ |
| R##_c = FP_CLS_INF; \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ |
| case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ |
| R##_s = Y##_s; \ |
| R##_c = FP_CLS_INF; \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ |
| /* make sure the sign is correct */ \ |
| if (FP_ROUNDMODE == FP_RND_MINF) \ |
| R##_s = X##_s | Y##_s; \ |
| else \ |
| R##_s = X##_s & Y##_s; \ |
| R##_c = FP_CLS_ZERO; \ |
| break; \ |
| \ |
| default: \ |
| abort(); \ |
| } \ |
| } while (0) |
| |
| |
| /* |
| * Main negation routine. FIXME -- when we care about setting exception |
| * bits reliably, this will not do. We should examine all of the fp classes. |
| */ |
| |
| #define _FP_NEG(fs, wc, R, X) \ |
| do { \ |
| _FP_FRAC_COPY_##wc(R, X); \ |
| R##_c = X##_c; \ |
| R##_e = X##_e; \ |
| R##_s = 1 ^ X##_s; \ |
| } while (0) |
| |
| |
| /* |
| * Main multiplication routine. The input values should be cooked. |
| */ |
| |
| #define _FP_MUL(fs, wc, R, X, Y) \ |
| do { \ |
| R##_s = X##_s ^ Y##_s; \ |
| switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ |
| { \ |
| case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ |
| R##_c = FP_CLS_NORMAL; \ |
| R##_e = X##_e + Y##_e + 1; \ |
| \ |
| _FP_MUL_MEAT_##fs(R,X,Y); \ |
| \ |
| if (_FP_FRAC_OVERP_##wc(fs, R)) \ |
| _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ |
| else \ |
| R##_e--; \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ |
| _FP_CHOOSENAN(fs, wc, R, X, Y); \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ |
| case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ |
| case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ |
| R##_s = X##_s; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ |
| case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ |
| case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ |
| case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ |
| _FP_FRAC_COPY_##wc(R, X); \ |
| R##_c = X##_c; \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ |
| case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ |
| case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ |
| R##_s = Y##_s; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ |
| case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ |
| _FP_FRAC_COPY_##wc(R, Y); \ |
| R##_c = Y##_c; \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ |
| case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ |
| R##_c = FP_CLS_NAN; \ |
| _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ |
| break; \ |
| \ |
| default: \ |
| abort(); \ |
| } \ |
| } while (0) |
| |
| |
| /* |
| * Main division routine. The input values should be cooked. |
| */ |
| |
| #define _FP_DIV(fs, wc, R, X, Y) \ |
| do { \ |
| R##_s = X##_s ^ Y##_s; \ |
| switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ |
| { \ |
| case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ |
| R##_c = FP_CLS_NORMAL; \ |
| R##_e = X##_e - Y##_e; \ |
| \ |
| _FP_DIV_MEAT_##fs(R,X,Y); \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ |
| _FP_CHOOSENAN(fs, wc, R, X, Y); \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ |
| case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ |
| case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ |
| R##_s = X##_s; \ |
| _FP_FRAC_COPY_##wc(R, X); \ |
| R##_c = X##_c; \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ |
| case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ |
| case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ |
| R##_s = Y##_s; \ |
| _FP_FRAC_COPY_##wc(R, Y); \ |
| R##_c = Y##_c; \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ |
| case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ |
| case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ |
| R##_c = FP_CLS_ZERO; \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ |
| case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ |
| case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ |
| R##_c = FP_CLS_INF; \ |
| break; \ |
| \ |
| case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ |
| case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ |
| R##_c = FP_CLS_NAN; \ |
| _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ |
| break; \ |
| \ |
| default: \ |
| abort(); \ |
| } \ |
| } while (0) |
| |
| |
| /* |
| * Main differential comparison routine. The inputs should be raw not |
| * cooked. The return is -1,0,1 for normal values, 2 otherwise. |
| */ |
| |
| #define _FP_CMP(fs, wc, ret, X, Y, un) \ |
| do { \ |
| /* NANs are unordered */ \ |
| if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ |
| || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ |
| { \ |
| ret = un; \ |
| } \ |
| else \ |
| { \ |
| int __x_zero = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \ |
| int __y_zero = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \ |
| \ |
| if (__x_zero && __y_zero) \ |
| ret = 0; \ |
| else if (__x_zero) \ |
| ret = Y##_s ? 1 : -1; \ |
| else if (__y_zero) \ |
| ret = X##_s ? -1 : 1; \ |
| else if (X##_s != Y##_s) \ |
| ret = X##_s ? -1 : 1; \ |
| else if (X##_e > Y##_e) \ |
| ret = X##_s ? -1 : 1; \ |
| else if (X##_e < Y##_e) \ |
| ret = X##_s ? 1 : -1; \ |
| else if (_FP_FRAC_GT_##wc(X, Y)) \ |
| ret = X##_s ? -1 : 1; \ |
| else if (_FP_FRAC_GT_##wc(Y, X)) \ |
| ret = X##_s ? 1 : -1; \ |
| else \ |
| ret = 0; \ |
| } \ |
| } while (0) |
| |
| |
| /* Simplification for strict equality. */ |
| |
| #define _FP_CMP_EQ(fs, wc, ret, X, Y) \ |
| do { \ |
| /* NANs are unordered */ \ |
| if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ |
| || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ |
| { \ |
| ret = 1; \ |
| } \ |
| else \ |
| { \ |
| ret = !(X##_e == Y##_e \ |
| && _FP_FRAC_EQ_##wc(X, Y) \ |
| && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \ |
| } \ |
| } while (0) |
| |
| /* |
| * Main square root routine. The input value should be cooked. |
| */ |
| |
| #define _FP_SQRT(fs, wc, R, X) \ |
| do { \ |
| _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \ |
| _FP_W_TYPE q; \ |
| switch (X##_c) \ |
| { \ |
| case FP_CLS_NAN: \ |
| R##_s = 0; \ |
| R##_c = FP_CLS_NAN; \ |
| _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| break; \ |
| case FP_CLS_INF: \ |
| if (X##_s) \ |
| { \ |
| R##_s = 0; \ |
| R##_c = FP_CLS_NAN; /* sNAN */ \ |
| } \ |
| else \ |
| { \ |
| R##_s = 0; \ |
| R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \ |
| } \ |
| break; \ |
| case FP_CLS_ZERO: \ |
| R##_s = X##_s; \ |
| R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \ |
| break; \ |
| case FP_CLS_NORMAL: \ |
| R##_s = 0; \ |
| if (X##_s) \ |
| { \ |
| R##_c = FP_CLS_NAN; /* sNAN */ \ |
| break; \ |
| } \ |
| R##_c = FP_CLS_NORMAL; \ |
| if (X##_e & 1) \ |
| _FP_FRAC_SLL_##wc(X, 1); \ |
| R##_e = X##_e >> 1; \ |
| _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \ |
| _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \ |
| q = _FP_OVERFLOW_##fs; \ |
| _FP_FRAC_SLL_##wc(X, 1); \ |
| _FP_SQRT_MEAT_##wc(R, S, T, X, q); \ |
| _FP_FRAC_SRL_##wc(R, 1); \ |
| } \ |
| } while (0) |
| |
| /* |
| * Convert from FP to integer |
| */ |
| |
| /* "When a NaN, infinity, large positive argument >= 2147483648.0, or |
| * large negative argument <= -2147483649.0 is converted to an integer, |
| * the invalid_current bit...should be set and fp_exception_IEEE_754 should |
| * be raised. If the floating point invalid trap is disabled, no trap occurs |
| * and a numerical result is generated: if the sign bit of the operand |
| * is 0, the result is 2147483647; if the sign bit of the operand is 1, |
| * the result is -2147483648." |
| * Similarly for conversion to extended ints, except that the boundaries |
| * are >= 2^63, <= -(2^63 + 1), and the results are 2^63 + 1 for s=0 and |
| * -2^63 for s=1. |
| * -- SPARC Architecture Manual V9, Appendix B, which specifies how |
| * SPARCs resolve implementation dependencies in the IEEE-754 spec. |
| * I don't believe that the code below follows this. I'm not even sure |
| * it's right! |
| * It doesn't cope with needing to convert to an n bit integer when there |
| * is no n bit integer type. Fortunately gcc provides long long so this |
| * isn't a problem for sparc32. |
| * I have, however, fixed its NaN handling to conform as above. |
| * -- PMM 02/1998 |
| * NB: rsigned is not 'is r declared signed?' but 'should the value stored |
| * in r be signed or unsigned?'. r is always(?) declared unsigned. |
| * Comments below are mine, BTW -- PMM |
| */ |
| #define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \ |
| do { \ |
| switch (X##_c) \ |
| { \ |
| case FP_CLS_NORMAL: \ |
| if (X##_e < 0) \ |
| { \ |
| /* case FP_CLS_NAN: see above! */ \ |
| case FP_CLS_ZERO: \ |
| r = 0; \ |
| } \ |
| else if (X##_e >= rsize - (rsigned != 0)) \ |
| { /* overflow */ \ |
| case FP_CLS_NAN: \ |
| case FP_CLS_INF: \ |
| if (rsigned) \ |
| { \ |
| r = 1; \ |
| r <<= rsize - 1; \ |
| r -= 1 - X##_s; \ |
| } \ |
| else \ |
| { \ |
| r = 0; \ |
| if (!X##_s) \ |
| r = ~r; \ |
| } \ |
| } \ |
| else \ |
| { \ |
| if (_FP_W_TYPE_SIZE*wc < rsize) \ |
| { \ |
| _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ |
| r <<= X##_e - _FP_WFRACBITS_##fs; \ |
| } \ |
| else \ |
| { \ |
| if (X##_e >= _FP_WFRACBITS_##fs) \ |
| _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));\ |
| else \ |
| _FP_FRAC_SRL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));\ |
| _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ |
| } \ |
| if (rsigned && X##_s) \ |
| r = -r; \ |
| } \ |
| break; \ |
| } \ |
| } while (0) |
| |
| #define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \ |
| do { \ |
| if (r) \ |
| { \ |
| X##_c = FP_CLS_NORMAL; \ |
| \ |
| if ((X##_s = (r < 0))) \ |
| r = -r; \ |
| /* Note that `r' is now considered unsigned, so we don't have \ |
| to worry about the single signed overflow case. */ \ |
| \ |
| if (rsize <= _FP_W_TYPE_SIZE) \ |
| __FP_CLZ(X##_e, r); \ |
| else \ |
| __FP_CLZ_2(X##_e, (_FP_W_TYPE)(r >> _FP_W_TYPE_SIZE), \ |
| (_FP_W_TYPE)r); \ |
| if (rsize < _FP_W_TYPE_SIZE) \ |
| X##_e -= (_FP_W_TYPE_SIZE - rsize); \ |
| X##_e = rsize - X##_e - 1; \ |
| \ |
| if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e) \ |
| __FP_FRAC_SRS_1(r, (X##_e - _FP_WFRACBITS_##fs), rsize); \ |
| r &= ~((_FP_W_TYPE)1 << X##_e); \ |
| _FP_FRAC_DISASSEMBLE_##wc(X, ((unsigned rtype)r), rsize); \ |
| _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \ |
| } \ |
| else \ |
| { \ |
| X##_c = FP_CLS_ZERO, X##_s = 0; \ |
| } \ |
| } while (0) |
| |
| |
| #define FP_CONV(dfs,sfs,dwc,swc,D,S) \ |
| do { \ |
| _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \ |
| D##_e = S##_e; \ |
| D##_c = S##_c; \ |
| D##_s = S##_s; \ |
| } while (0) |
| |
| /* |
| * Helper primitives. |
| */ |
| |
| /* Count leading zeros in a word. */ |
| |
| #ifndef __FP_CLZ |
| #if _FP_W_TYPE_SIZE < 64 |
| /* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */ |
| #define __FP_CLZ(r, x) \ |
| do { \ |
| _FP_W_TYPE _t = (x); \ |
| r = _FP_W_TYPE_SIZE - 1; \ |
| if (_t > 0xffff) r -= 16; \ |
| if (_t > 0xffff) _t >>= 16; \ |
| if (_t > 0xff) r -= 8; \ |
| if (_t > 0xff) _t >>= 8; \ |
| if (_t & 0xf0) r -= 4; \ |
| if (_t & 0xf0) _t >>= 4; \ |
| if (_t & 0xc) r -= 2; \ |
| if (_t & 0xc) _t >>= 2; \ |
| if (_t & 0x2) r -= 1; \ |
| } while (0) |
| #else /* not _FP_W_TYPE_SIZE < 64 */ |
| #define __FP_CLZ(r, x) \ |
| do { \ |
| _FP_W_TYPE _t = (x); \ |
| r = _FP_W_TYPE_SIZE - 1; \ |
| if (_t > 0xffffffff) r -= 32; \ |
| if (_t > 0xffffffff) _t >>= 32; \ |
| if (_t > 0xffff) r -= 16; \ |
| if (_t > 0xffff) _t >>= 16; \ |
| if (_t > 0xff) r -= 8; \ |
| if (_t > 0xff) _t >>= 8; \ |
| if (_t & 0xf0) r -= 4; \ |
| if (_t & 0xf0) _t >>= 4; \ |
| if (_t & 0xc) r -= 2; \ |
| if (_t & 0xc) _t >>= 2; \ |
| if (_t & 0x2) r -= 1; \ |
| } while (0) |
| #endif /* not _FP_W_TYPE_SIZE < 64 */ |
| #endif /* ndef __FP_CLZ */ |
| |
| #define _FP_DIV_HELP_imm(q, r, n, d) \ |
| do { \ |
| q = n / d, r = n % d; \ |
| } while (0) |
| |