| /* |
| * Driver for Atmel AT32 and AT91 SPI Controllers |
| * |
| * Copyright (C) 2006 Atmel Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/clk.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/spi/spi.h> |
| |
| #include <asm/io.h> |
| #include <mach/board.h> |
| #include <mach/gpio.h> |
| #include <mach/cpu.h> |
| |
| #include "atmel_spi.h" |
| |
| /* |
| * The core SPI transfer engine just talks to a register bank to set up |
| * DMA transfers; transfer queue progress is driven by IRQs. The clock |
| * framework provides the base clock, subdivided for each spi_device. |
| */ |
| struct atmel_spi { |
| spinlock_t lock; |
| |
| void __iomem *regs; |
| int irq; |
| struct clk *clk; |
| struct platform_device *pdev; |
| struct spi_device *stay; |
| |
| u8 stopping; |
| struct list_head queue; |
| struct spi_transfer *current_transfer; |
| unsigned long current_remaining_bytes; |
| struct spi_transfer *next_transfer; |
| unsigned long next_remaining_bytes; |
| |
| void *buffer; |
| dma_addr_t buffer_dma; |
| }; |
| |
| /* Controller-specific per-slave state */ |
| struct atmel_spi_device { |
| unsigned int npcs_pin; |
| u32 csr; |
| }; |
| |
| #define BUFFER_SIZE PAGE_SIZE |
| #define INVALID_DMA_ADDRESS 0xffffffff |
| |
| /* |
| * Version 2 of the SPI controller has |
| * - CR.LASTXFER |
| * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) |
| * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) |
| * - SPI_CSRx.CSAAT |
| * - SPI_CSRx.SBCR allows faster clocking |
| * |
| * We can determine the controller version by reading the VERSION |
| * register, but I haven't checked that it exists on all chips, and |
| * this is cheaper anyway. |
| */ |
| static bool atmel_spi_is_v2(void) |
| { |
| return !cpu_is_at91rm9200(); |
| } |
| |
| /* |
| * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby |
| * they assume that spi slave device state will not change on deselect, so |
| * that automagic deselection is OK. ("NPCSx rises if no data is to be |
| * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer |
| * controllers have CSAAT and friends. |
| * |
| * Since the CSAAT functionality is a bit weird on newer controllers as |
| * well, we use GPIO to control nCSx pins on all controllers, updating |
| * MR.PCS to avoid confusing the controller. Using GPIOs also lets us |
| * support active-high chipselects despite the controller's belief that |
| * only active-low devices/systems exists. |
| * |
| * However, at91rm9200 has a second erratum whereby nCS0 doesn't work |
| * right when driven with GPIO. ("Mode Fault does not allow more than one |
| * Master on Chip Select 0.") No workaround exists for that ... so for |
| * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, |
| * and (c) will trigger that first erratum in some cases. |
| * |
| * TODO: Test if the atmel_spi_is_v2() branch below works on |
| * AT91RM9200 if we use some other register than CSR0. However, don't |
| * do this unconditionally since AP7000 has an errata where the BITS |
| * field in CSR0 overrides all other CSRs. |
| */ |
| |
| static void cs_activate(struct atmel_spi *as, struct spi_device *spi) |
| { |
| struct atmel_spi_device *asd = spi->controller_state; |
| unsigned active = spi->mode & SPI_CS_HIGH; |
| u32 mr; |
| |
| if (atmel_spi_is_v2()) { |
| /* |
| * Always use CSR0. This ensures that the clock |
| * switches to the correct idle polarity before we |
| * toggle the CS. |
| */ |
| spi_writel(as, CSR0, asd->csr); |
| spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS) |
| | SPI_BIT(MSTR)); |
| mr = spi_readl(as, MR); |
| gpio_set_value(asd->npcs_pin, active); |
| } else { |
| u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; |
| int i; |
| u32 csr; |
| |
| /* Make sure clock polarity is correct */ |
| for (i = 0; i < spi->master->num_chipselect; i++) { |
| csr = spi_readl(as, CSR0 + 4 * i); |
| if ((csr ^ cpol) & SPI_BIT(CPOL)) |
| spi_writel(as, CSR0 + 4 * i, |
| csr ^ SPI_BIT(CPOL)); |
| } |
| |
| mr = spi_readl(as, MR); |
| mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr); |
| if (spi->chip_select != 0) |
| gpio_set_value(asd->npcs_pin, active); |
| spi_writel(as, MR, mr); |
| } |
| |
| dev_dbg(&spi->dev, "activate %u%s, mr %08x\n", |
| asd->npcs_pin, active ? " (high)" : "", |
| mr); |
| } |
| |
| static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) |
| { |
| struct atmel_spi_device *asd = spi->controller_state; |
| unsigned active = spi->mode & SPI_CS_HIGH; |
| u32 mr; |
| |
| /* only deactivate *this* device; sometimes transfers to |
| * another device may be active when this routine is called. |
| */ |
| mr = spi_readl(as, MR); |
| if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) { |
| mr = SPI_BFINS(PCS, 0xf, mr); |
| spi_writel(as, MR, mr); |
| } |
| |
| dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n", |
| asd->npcs_pin, active ? " (low)" : "", |
| mr); |
| |
| if (atmel_spi_is_v2() || spi->chip_select != 0) |
| gpio_set_value(asd->npcs_pin, !active); |
| } |
| |
| static inline int atmel_spi_xfer_is_last(struct spi_message *msg, |
| struct spi_transfer *xfer) |
| { |
| return msg->transfers.prev == &xfer->transfer_list; |
| } |
| |
| static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer) |
| { |
| return xfer->delay_usecs == 0 && !xfer->cs_change; |
| } |
| |
| static void atmel_spi_next_xfer_data(struct spi_master *master, |
| struct spi_transfer *xfer, |
| dma_addr_t *tx_dma, |
| dma_addr_t *rx_dma, |
| u32 *plen) |
| { |
| struct atmel_spi *as = spi_master_get_devdata(master); |
| u32 len = *plen; |
| |
| /* use scratch buffer only when rx or tx data is unspecified */ |
| if (xfer->rx_buf) |
| *rx_dma = xfer->rx_dma + xfer->len - len; |
| else { |
| *rx_dma = as->buffer_dma; |
| if (len > BUFFER_SIZE) |
| len = BUFFER_SIZE; |
| } |
| if (xfer->tx_buf) |
| *tx_dma = xfer->tx_dma + xfer->len - len; |
| else { |
| *tx_dma = as->buffer_dma; |
| if (len > BUFFER_SIZE) |
| len = BUFFER_SIZE; |
| memset(as->buffer, 0, len); |
| dma_sync_single_for_device(&as->pdev->dev, |
| as->buffer_dma, len, DMA_TO_DEVICE); |
| } |
| |
| *plen = len; |
| } |
| |
| /* |
| * Submit next transfer for DMA. |
| * lock is held, spi irq is blocked |
| */ |
| static void atmel_spi_next_xfer(struct spi_master *master, |
| struct spi_message *msg) |
| { |
| struct atmel_spi *as = spi_master_get_devdata(master); |
| struct spi_transfer *xfer; |
| u32 len, remaining; |
| u32 ieval; |
| dma_addr_t tx_dma, rx_dma; |
| |
| if (!as->current_transfer) |
| xfer = list_entry(msg->transfers.next, |
| struct spi_transfer, transfer_list); |
| else if (!as->next_transfer) |
| xfer = list_entry(as->current_transfer->transfer_list.next, |
| struct spi_transfer, transfer_list); |
| else |
| xfer = NULL; |
| |
| if (xfer) { |
| spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); |
| |
| len = xfer->len; |
| atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); |
| remaining = xfer->len - len; |
| |
| spi_writel(as, RPR, rx_dma); |
| spi_writel(as, TPR, tx_dma); |
| |
| if (msg->spi->bits_per_word > 8) |
| len >>= 1; |
| spi_writel(as, RCR, len); |
| spi_writel(as, TCR, len); |
| |
| dev_dbg(&msg->spi->dev, |
| " start xfer %p: len %u tx %p/%08x rx %p/%08x\n", |
| xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, |
| xfer->rx_buf, xfer->rx_dma); |
| } else { |
| xfer = as->next_transfer; |
| remaining = as->next_remaining_bytes; |
| } |
| |
| as->current_transfer = xfer; |
| as->current_remaining_bytes = remaining; |
| |
| if (remaining > 0) |
| len = remaining; |
| else if (!atmel_spi_xfer_is_last(msg, xfer) |
| && atmel_spi_xfer_can_be_chained(xfer)) { |
| xfer = list_entry(xfer->transfer_list.next, |
| struct spi_transfer, transfer_list); |
| len = xfer->len; |
| } else |
| xfer = NULL; |
| |
| as->next_transfer = xfer; |
| |
| if (xfer) { |
| u32 total; |
| |
| total = len; |
| atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); |
| as->next_remaining_bytes = total - len; |
| |
| spi_writel(as, RNPR, rx_dma); |
| spi_writel(as, TNPR, tx_dma); |
| |
| if (msg->spi->bits_per_word > 8) |
| len >>= 1; |
| spi_writel(as, RNCR, len); |
| spi_writel(as, TNCR, len); |
| |
| dev_dbg(&msg->spi->dev, |
| " next xfer %p: len %u tx %p/%08x rx %p/%08x\n", |
| xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, |
| xfer->rx_buf, xfer->rx_dma); |
| ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES); |
| } else { |
| spi_writel(as, RNCR, 0); |
| spi_writel(as, TNCR, 0); |
| ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES); |
| } |
| |
| /* REVISIT: We're waiting for ENDRX before we start the next |
| * transfer because we need to handle some difficult timing |
| * issues otherwise. If we wait for ENDTX in one transfer and |
| * then starts waiting for ENDRX in the next, it's difficult |
| * to tell the difference between the ENDRX interrupt we're |
| * actually waiting for and the ENDRX interrupt of the |
| * previous transfer. |
| * |
| * It should be doable, though. Just not now... |
| */ |
| spi_writel(as, IER, ieval); |
| spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); |
| } |
| |
| static void atmel_spi_next_message(struct spi_master *master) |
| { |
| struct atmel_spi *as = spi_master_get_devdata(master); |
| struct spi_message *msg; |
| struct spi_device *spi; |
| |
| BUG_ON(as->current_transfer); |
| |
| msg = list_entry(as->queue.next, struct spi_message, queue); |
| spi = msg->spi; |
| |
| dev_dbg(master->dev.parent, "start message %p for %s\n", |
| msg, spi->dev.bus_id); |
| |
| /* select chip if it's not still active */ |
| if (as->stay) { |
| if (as->stay != spi) { |
| cs_deactivate(as, as->stay); |
| cs_activate(as, spi); |
| } |
| as->stay = NULL; |
| } else |
| cs_activate(as, spi); |
| |
| atmel_spi_next_xfer(master, msg); |
| } |
| |
| /* |
| * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: |
| * - The buffer is either valid for CPU access, else NULL |
| * - If the buffer is valid, so is its DMA addresss |
| * |
| * This driver manages the dma addresss unless message->is_dma_mapped. |
| */ |
| static int |
| atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) |
| { |
| struct device *dev = &as->pdev->dev; |
| |
| xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; |
| if (xfer->tx_buf) { |
| xfer->tx_dma = dma_map_single(dev, |
| (void *) xfer->tx_buf, xfer->len, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(dev, xfer->tx_dma)) |
| return -ENOMEM; |
| } |
| if (xfer->rx_buf) { |
| xfer->rx_dma = dma_map_single(dev, |
| xfer->rx_buf, xfer->len, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(dev, xfer->rx_dma)) { |
| if (xfer->tx_buf) |
| dma_unmap_single(dev, |
| xfer->tx_dma, xfer->len, |
| DMA_TO_DEVICE); |
| return -ENOMEM; |
| } |
| } |
| return 0; |
| } |
| |
| static void atmel_spi_dma_unmap_xfer(struct spi_master *master, |
| struct spi_transfer *xfer) |
| { |
| if (xfer->tx_dma != INVALID_DMA_ADDRESS) |
| dma_unmap_single(master->dev.parent, xfer->tx_dma, |
| xfer->len, DMA_TO_DEVICE); |
| if (xfer->rx_dma != INVALID_DMA_ADDRESS) |
| dma_unmap_single(master->dev.parent, xfer->rx_dma, |
| xfer->len, DMA_FROM_DEVICE); |
| } |
| |
| static void |
| atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as, |
| struct spi_message *msg, int status, int stay) |
| { |
| if (!stay || status < 0) |
| cs_deactivate(as, msg->spi); |
| else |
| as->stay = msg->spi; |
| |
| list_del(&msg->queue); |
| msg->status = status; |
| |
| dev_dbg(master->dev.parent, |
| "xfer complete: %u bytes transferred\n", |
| msg->actual_length); |
| |
| spin_unlock(&as->lock); |
| msg->complete(msg->context); |
| spin_lock(&as->lock); |
| |
| as->current_transfer = NULL; |
| as->next_transfer = NULL; |
| |
| /* continue if needed */ |
| if (list_empty(&as->queue) || as->stopping) |
| spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); |
| else |
| atmel_spi_next_message(master); |
| } |
| |
| static irqreturn_t |
| atmel_spi_interrupt(int irq, void *dev_id) |
| { |
| struct spi_master *master = dev_id; |
| struct atmel_spi *as = spi_master_get_devdata(master); |
| struct spi_message *msg; |
| struct spi_transfer *xfer; |
| u32 status, pending, imr; |
| int ret = IRQ_NONE; |
| |
| spin_lock(&as->lock); |
| |
| xfer = as->current_transfer; |
| msg = list_entry(as->queue.next, struct spi_message, queue); |
| |
| imr = spi_readl(as, IMR); |
| status = spi_readl(as, SR); |
| pending = status & imr; |
| |
| if (pending & SPI_BIT(OVRES)) { |
| int timeout; |
| |
| ret = IRQ_HANDLED; |
| |
| spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) |
| | SPI_BIT(OVRES))); |
| |
| /* |
| * When we get an overrun, we disregard the current |
| * transfer. Data will not be copied back from any |
| * bounce buffer and msg->actual_len will not be |
| * updated with the last xfer. |
| * |
| * We will also not process any remaning transfers in |
| * the message. |
| * |
| * First, stop the transfer and unmap the DMA buffers. |
| */ |
| spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); |
| if (!msg->is_dma_mapped) |
| atmel_spi_dma_unmap_xfer(master, xfer); |
| |
| /* REVISIT: udelay in irq is unfriendly */ |
| if (xfer->delay_usecs) |
| udelay(xfer->delay_usecs); |
| |
| dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n", |
| spi_readl(as, TCR), spi_readl(as, RCR)); |
| |
| /* |
| * Clean up DMA registers and make sure the data |
| * registers are empty. |
| */ |
| spi_writel(as, RNCR, 0); |
| spi_writel(as, TNCR, 0); |
| spi_writel(as, RCR, 0); |
| spi_writel(as, TCR, 0); |
| for (timeout = 1000; timeout; timeout--) |
| if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) |
| break; |
| if (!timeout) |
| dev_warn(master->dev.parent, |
| "timeout waiting for TXEMPTY"); |
| while (spi_readl(as, SR) & SPI_BIT(RDRF)) |
| spi_readl(as, RDR); |
| |
| /* Clear any overrun happening while cleaning up */ |
| spi_readl(as, SR); |
| |
| atmel_spi_msg_done(master, as, msg, -EIO, 0); |
| } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { |
| ret = IRQ_HANDLED; |
| |
| spi_writel(as, IDR, pending); |
| |
| if (as->current_remaining_bytes == 0) { |
| msg->actual_length += xfer->len; |
| |
| if (!msg->is_dma_mapped) |
| atmel_spi_dma_unmap_xfer(master, xfer); |
| |
| /* REVISIT: udelay in irq is unfriendly */ |
| if (xfer->delay_usecs) |
| udelay(xfer->delay_usecs); |
| |
| if (atmel_spi_xfer_is_last(msg, xfer)) { |
| /* report completed message */ |
| atmel_spi_msg_done(master, as, msg, 0, |
| xfer->cs_change); |
| } else { |
| if (xfer->cs_change) { |
| cs_deactivate(as, msg->spi); |
| udelay(1); |
| cs_activate(as, msg->spi); |
| } |
| |
| /* |
| * Not done yet. Submit the next transfer. |
| * |
| * FIXME handle protocol options for xfer |
| */ |
| atmel_spi_next_xfer(master, msg); |
| } |
| } else { |
| /* |
| * Keep going, we still have data to send in |
| * the current transfer. |
| */ |
| atmel_spi_next_xfer(master, msg); |
| } |
| } |
| |
| spin_unlock(&as->lock); |
| |
| return ret; |
| } |
| |
| /* the spi->mode bits understood by this driver: */ |
| #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH) |
| |
| static int atmel_spi_setup(struct spi_device *spi) |
| { |
| struct atmel_spi *as; |
| struct atmel_spi_device *asd; |
| u32 scbr, csr; |
| unsigned int bits = spi->bits_per_word; |
| unsigned long bus_hz; |
| unsigned int npcs_pin; |
| int ret; |
| |
| as = spi_master_get_devdata(spi->master); |
| |
| if (as->stopping) |
| return -ESHUTDOWN; |
| |
| if (spi->chip_select > spi->master->num_chipselect) { |
| dev_dbg(&spi->dev, |
| "setup: invalid chipselect %u (%u defined)\n", |
| spi->chip_select, spi->master->num_chipselect); |
| return -EINVAL; |
| } |
| |
| if (bits == 0) |
| bits = 8; |
| if (bits < 8 || bits > 16) { |
| dev_dbg(&spi->dev, |
| "setup: invalid bits_per_word %u (8 to 16)\n", |
| bits); |
| return -EINVAL; |
| } |
| |
| if (spi->mode & ~MODEBITS) { |
| dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n", |
| spi->mode & ~MODEBITS); |
| return -EINVAL; |
| } |
| |
| /* see notes above re chipselect */ |
| if (!atmel_spi_is_v2() |
| && spi->chip_select == 0 |
| && (spi->mode & SPI_CS_HIGH)) { |
| dev_dbg(&spi->dev, "setup: can't be active-high\n"); |
| return -EINVAL; |
| } |
| |
| /* v1 chips start out at half the peripheral bus speed. */ |
| bus_hz = clk_get_rate(as->clk); |
| if (!atmel_spi_is_v2()) |
| bus_hz /= 2; |
| |
| if (spi->max_speed_hz) { |
| /* |
| * Calculate the lowest divider that satisfies the |
| * constraint, assuming div32/fdiv/mbz == 0. |
| */ |
| scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz); |
| |
| /* |
| * If the resulting divider doesn't fit into the |
| * register bitfield, we can't satisfy the constraint. |
| */ |
| if (scbr >= (1 << SPI_SCBR_SIZE)) { |
| dev_dbg(&spi->dev, |
| "setup: %d Hz too slow, scbr %u; min %ld Hz\n", |
| spi->max_speed_hz, scbr, bus_hz/255); |
| return -EINVAL; |
| } |
| } else |
| /* speed zero means "as slow as possible" */ |
| scbr = 0xff; |
| |
| csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8); |
| if (spi->mode & SPI_CPOL) |
| csr |= SPI_BIT(CPOL); |
| if (!(spi->mode & SPI_CPHA)) |
| csr |= SPI_BIT(NCPHA); |
| |
| /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs. |
| * |
| * DLYBCT would add delays between words, slowing down transfers. |
| * It could potentially be useful to cope with DMA bottlenecks, but |
| * in those cases it's probably best to just use a lower bitrate. |
| */ |
| csr |= SPI_BF(DLYBS, 0); |
| csr |= SPI_BF(DLYBCT, 0); |
| |
| /* chipselect must have been muxed as GPIO (e.g. in board setup) */ |
| npcs_pin = (unsigned int)spi->controller_data; |
| asd = spi->controller_state; |
| if (!asd) { |
| asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); |
| if (!asd) |
| return -ENOMEM; |
| |
| ret = gpio_request(npcs_pin, spi->dev.bus_id); |
| if (ret) { |
| kfree(asd); |
| return ret; |
| } |
| |
| asd->npcs_pin = npcs_pin; |
| spi->controller_state = asd; |
| gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH)); |
| } else { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&as->lock, flags); |
| if (as->stay == spi) |
| as->stay = NULL; |
| cs_deactivate(as, spi); |
| spin_unlock_irqrestore(&as->lock, flags); |
| } |
| |
| asd->csr = csr; |
| |
| dev_dbg(&spi->dev, |
| "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n", |
| bus_hz / scbr, bits, spi->mode, spi->chip_select, csr); |
| |
| if (!atmel_spi_is_v2()) |
| spi_writel(as, CSR0 + 4 * spi->chip_select, csr); |
| |
| return 0; |
| } |
| |
| static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg) |
| { |
| struct atmel_spi *as; |
| struct spi_transfer *xfer; |
| unsigned long flags; |
| struct device *controller = spi->master->dev.parent; |
| |
| as = spi_master_get_devdata(spi->master); |
| |
| dev_dbg(controller, "new message %p submitted for %s\n", |
| msg, spi->dev.bus_id); |
| |
| if (unlikely(list_empty(&msg->transfers) |
| || !spi->max_speed_hz)) |
| return -EINVAL; |
| |
| if (as->stopping) |
| return -ESHUTDOWN; |
| |
| list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { |
| dev_dbg(&spi->dev, "missing rx or tx buf\n"); |
| return -EINVAL; |
| } |
| |
| /* FIXME implement these protocol options!! */ |
| if (xfer->bits_per_word || xfer->speed_hz) { |
| dev_dbg(&spi->dev, "no protocol options yet\n"); |
| return -ENOPROTOOPT; |
| } |
| |
| /* |
| * DMA map early, for performance (empties dcache ASAP) and |
| * better fault reporting. This is a DMA-only driver. |
| * |
| * NOTE that if dma_unmap_single() ever starts to do work on |
| * platforms supported by this driver, we would need to clean |
| * up mappings for previously-mapped transfers. |
| */ |
| if (!msg->is_dma_mapped) { |
| if (atmel_spi_dma_map_xfer(as, xfer) < 0) |
| return -ENOMEM; |
| } |
| } |
| |
| #ifdef VERBOSE |
| list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| dev_dbg(controller, |
| " xfer %p: len %u tx %p/%08x rx %p/%08x\n", |
| xfer, xfer->len, |
| xfer->tx_buf, xfer->tx_dma, |
| xfer->rx_buf, xfer->rx_dma); |
| } |
| #endif |
| |
| msg->status = -EINPROGRESS; |
| msg->actual_length = 0; |
| |
| spin_lock_irqsave(&as->lock, flags); |
| list_add_tail(&msg->queue, &as->queue); |
| if (!as->current_transfer) |
| atmel_spi_next_message(spi->master); |
| spin_unlock_irqrestore(&as->lock, flags); |
| |
| return 0; |
| } |
| |
| static void atmel_spi_cleanup(struct spi_device *spi) |
| { |
| struct atmel_spi *as = spi_master_get_devdata(spi->master); |
| struct atmel_spi_device *asd = spi->controller_state; |
| unsigned gpio = (unsigned) spi->controller_data; |
| unsigned long flags; |
| |
| if (!asd) |
| return; |
| |
| spin_lock_irqsave(&as->lock, flags); |
| if (as->stay == spi) { |
| as->stay = NULL; |
| cs_deactivate(as, spi); |
| } |
| spin_unlock_irqrestore(&as->lock, flags); |
| |
| spi->controller_state = NULL; |
| gpio_free(gpio); |
| kfree(asd); |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static int __init atmel_spi_probe(struct platform_device *pdev) |
| { |
| struct resource *regs; |
| int irq; |
| struct clk *clk; |
| int ret; |
| struct spi_master *master; |
| struct atmel_spi *as; |
| |
| regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!regs) |
| return -ENXIO; |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| clk = clk_get(&pdev->dev, "spi_clk"); |
| if (IS_ERR(clk)) |
| return PTR_ERR(clk); |
| |
| /* setup spi core then atmel-specific driver state */ |
| ret = -ENOMEM; |
| master = spi_alloc_master(&pdev->dev, sizeof *as); |
| if (!master) |
| goto out_free; |
| |
| master->bus_num = pdev->id; |
| master->num_chipselect = 4; |
| master->setup = atmel_spi_setup; |
| master->transfer = atmel_spi_transfer; |
| master->cleanup = atmel_spi_cleanup; |
| platform_set_drvdata(pdev, master); |
| |
| as = spi_master_get_devdata(master); |
| |
| /* |
| * Scratch buffer is used for throwaway rx and tx data. |
| * It's coherent to minimize dcache pollution. |
| */ |
| as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE, |
| &as->buffer_dma, GFP_KERNEL); |
| if (!as->buffer) |
| goto out_free; |
| |
| spin_lock_init(&as->lock); |
| INIT_LIST_HEAD(&as->queue); |
| as->pdev = pdev; |
| as->regs = ioremap(regs->start, (regs->end - regs->start) + 1); |
| if (!as->regs) |
| goto out_free_buffer; |
| as->irq = irq; |
| as->clk = clk; |
| |
| ret = request_irq(irq, atmel_spi_interrupt, 0, |
| pdev->dev.bus_id, master); |
| if (ret) |
| goto out_unmap_regs; |
| |
| /* Initialize the hardware */ |
| clk_enable(clk); |
| spi_writel(as, CR, SPI_BIT(SWRST)); |
| spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ |
| spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); |
| spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); |
| spi_writel(as, CR, SPI_BIT(SPIEN)); |
| |
| /* go! */ |
| dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n", |
| (unsigned long)regs->start, irq); |
| |
| ret = spi_register_master(master); |
| if (ret) |
| goto out_reset_hw; |
| |
| return 0; |
| |
| out_reset_hw: |
| spi_writel(as, CR, SPI_BIT(SWRST)); |
| spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ |
| clk_disable(clk); |
| free_irq(irq, master); |
| out_unmap_regs: |
| iounmap(as->regs); |
| out_free_buffer: |
| dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, |
| as->buffer_dma); |
| out_free: |
| clk_put(clk); |
| spi_master_put(master); |
| return ret; |
| } |
| |
| static int __exit atmel_spi_remove(struct platform_device *pdev) |
| { |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct atmel_spi *as = spi_master_get_devdata(master); |
| struct spi_message *msg; |
| |
| /* reset the hardware and block queue progress */ |
| spin_lock_irq(&as->lock); |
| as->stopping = 1; |
| spi_writel(as, CR, SPI_BIT(SWRST)); |
| spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ |
| spi_readl(as, SR); |
| spin_unlock_irq(&as->lock); |
| |
| /* Terminate remaining queued transfers */ |
| list_for_each_entry(msg, &as->queue, queue) { |
| /* REVISIT unmapping the dma is a NOP on ARM and AVR32 |
| * but we shouldn't depend on that... |
| */ |
| msg->status = -ESHUTDOWN; |
| msg->complete(msg->context); |
| } |
| |
| dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, |
| as->buffer_dma); |
| |
| clk_disable(as->clk); |
| clk_put(as->clk); |
| free_irq(as->irq, master); |
| iounmap(as->regs); |
| |
| spi_unregister_master(master); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| |
| static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg) |
| { |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct atmel_spi *as = spi_master_get_devdata(master); |
| |
| clk_disable(as->clk); |
| return 0; |
| } |
| |
| static int atmel_spi_resume(struct platform_device *pdev) |
| { |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct atmel_spi *as = spi_master_get_devdata(master); |
| |
| clk_enable(as->clk); |
| return 0; |
| } |
| |
| #else |
| #define atmel_spi_suspend NULL |
| #define atmel_spi_resume NULL |
| #endif |
| |
| |
| static struct platform_driver atmel_spi_driver = { |
| .driver = { |
| .name = "atmel_spi", |
| .owner = THIS_MODULE, |
| }, |
| .suspend = atmel_spi_suspend, |
| .resume = atmel_spi_resume, |
| .remove = __exit_p(atmel_spi_remove), |
| }; |
| |
| static int __init atmel_spi_init(void) |
| { |
| return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe); |
| } |
| module_init(atmel_spi_init); |
| |
| static void __exit atmel_spi_exit(void) |
| { |
| platform_driver_unregister(&atmel_spi_driver); |
| } |
| module_exit(atmel_spi_exit); |
| |
| MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); |
| MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:atmel_spi"); |