blob: 5993c7e2d723a7e42d6022c90cb8e495420a49ad [file] [log] [blame]
/*
* Copyright (c) 2009, Microsoft Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, see <http://www.gnu.org/licenses/>.
*
* Authors:
* Haiyang Zhang <haiyangz@microsoft.com>
* Hank Janssen <hjanssen@microsoft.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/atomic.h>
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <net/arp.h>
#include <net/route.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
#include "hyperv_net.h"
#define RING_SIZE_MIN 64
static int ring_size = 128;
module_param(ring_size, int, S_IRUGO);
MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_LINK | NETIF_MSG_IFUP |
NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
NETIF_MSG_TX_ERR;
static int debug = -1;
module_param(debug, int, S_IRUGO);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static void do_set_multicast(struct work_struct *w)
{
struct net_device_context *ndevctx =
container_of(w, struct net_device_context, work);
struct netvsc_device *nvdev;
struct rndis_device *rdev;
nvdev = hv_get_drvdata(ndevctx->device_ctx);
if (nvdev == NULL || nvdev->ndev == NULL)
return;
rdev = nvdev->extension;
if (rdev == NULL)
return;
if (nvdev->ndev->flags & IFF_PROMISC)
rndis_filter_set_packet_filter(rdev,
NDIS_PACKET_TYPE_PROMISCUOUS);
else
rndis_filter_set_packet_filter(rdev,
NDIS_PACKET_TYPE_BROADCAST |
NDIS_PACKET_TYPE_ALL_MULTICAST |
NDIS_PACKET_TYPE_DIRECTED);
}
static void netvsc_set_multicast_list(struct net_device *net)
{
struct net_device_context *net_device_ctx = netdev_priv(net);
schedule_work(&net_device_ctx->work);
}
static int netvsc_open(struct net_device *net)
{
struct net_device_context *net_device_ctx = netdev_priv(net);
struct hv_device *device_obj = net_device_ctx->device_ctx;
struct netvsc_device *nvdev;
struct rndis_device *rdev;
int ret = 0;
netif_carrier_off(net);
/* Open up the device */
ret = rndis_filter_open(device_obj);
if (ret != 0) {
netdev_err(net, "unable to open device (ret %d).\n", ret);
return ret;
}
netif_tx_start_all_queues(net);
nvdev = hv_get_drvdata(device_obj);
rdev = nvdev->extension;
if (!rdev->link_state)
netif_carrier_on(net);
return ret;
}
static int netvsc_close(struct net_device *net)
{
struct net_device_context *net_device_ctx = netdev_priv(net);
struct hv_device *device_obj = net_device_ctx->device_ctx;
int ret;
netif_tx_disable(net);
/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
cancel_work_sync(&net_device_ctx->work);
ret = rndis_filter_close(device_obj);
if (ret != 0)
netdev_err(net, "unable to close device (ret %d).\n", ret);
return ret;
}
static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
int pkt_type)
{
struct rndis_packet *rndis_pkt;
struct rndis_per_packet_info *ppi;
rndis_pkt = &msg->msg.pkt;
rndis_pkt->data_offset += ppi_size;
ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
ppi->size = ppi_size;
ppi->type = pkt_type;
ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
rndis_pkt->per_pkt_info_len += ppi_size;
return ppi;
}
union sub_key {
u64 k;
struct {
u8 pad[3];
u8 kb;
u32 ka;
};
};
/* Toeplitz hash function
* data: network byte order
* return: host byte order
*/
static u32 comp_hash(u8 *key, int klen, void *data, int dlen)
{
union sub_key subk;
int k_next = 4;
u8 dt;
int i, j;
u32 ret = 0;
subk.k = 0;
subk.ka = ntohl(*(u32 *)key);
for (i = 0; i < dlen; i++) {
subk.kb = key[k_next];
k_next = (k_next + 1) % klen;
dt = ((u8 *)data)[i];
for (j = 0; j < 8; j++) {
if (dt & 0x80)
ret ^= subk.ka;
dt <<= 1;
subk.k <<= 1;
}
}
return ret;
}
static bool netvsc_set_hash(u32 *hash, struct sk_buff *skb)
{
struct flow_keys flow;
int data_len;
if (!skb_flow_dissect(skb, &flow) ||
!(flow.n_proto == htons(ETH_P_IP) ||
flow.n_proto == htons(ETH_P_IPV6)))
return false;
if (flow.ip_proto == IPPROTO_TCP)
data_len = 12;
else
data_len = 8;
*hash = comp_hash(netvsc_hash_key, HASH_KEYLEN, &flow, data_len);
return true;
}
static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
void *accel_priv, select_queue_fallback_t fallback)
{
struct net_device_context *net_device_ctx = netdev_priv(ndev);
struct hv_device *hdev = net_device_ctx->device_ctx;
struct netvsc_device *nvsc_dev = hv_get_drvdata(hdev);
u32 hash;
u16 q_idx = 0;
if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
return 0;
if (netvsc_set_hash(&hash, skb)) {
q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
ndev->real_num_tx_queues;
skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
}
return q_idx;
}
void netvsc_xmit_completion(void *context)
{
struct hv_netvsc_packet *packet = (struct hv_netvsc_packet *)context;
struct sk_buff *skb = (struct sk_buff *)
(unsigned long)packet->send_completion_tid;
if (skb)
dev_kfree_skb_any(skb);
}
static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
struct hv_page_buffer *pb)
{
int j = 0;
/* Deal with compund pages by ignoring unused part
* of the page.
*/
page += (offset >> PAGE_SHIFT);
offset &= ~PAGE_MASK;
while (len > 0) {
unsigned long bytes;
bytes = PAGE_SIZE - offset;
if (bytes > len)
bytes = len;
pb[j].pfn = page_to_pfn(page);
pb[j].offset = offset;
pb[j].len = bytes;
offset += bytes;
len -= bytes;
if (offset == PAGE_SIZE && len) {
page++;
offset = 0;
j++;
}
}
return j + 1;
}
static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
struct hv_netvsc_packet *packet)
{
struct hv_page_buffer *pb = packet->page_buf;
u32 slots_used = 0;
char *data = skb->data;
int frags = skb_shinfo(skb)->nr_frags;
int i;
/* The packet is laid out thus:
* 1. hdr: RNDIS header and PPI
* 2. skb linear data
* 3. skb fragment data
*/
if (hdr != NULL)
slots_used += fill_pg_buf(virt_to_page(hdr),
offset_in_page(hdr),
len, &pb[slots_used]);
packet->rmsg_size = len;
packet->rmsg_pgcnt = slots_used;
slots_used += fill_pg_buf(virt_to_page(data),
offset_in_page(data),
skb_headlen(skb), &pb[slots_used]);
for (i = 0; i < frags; i++) {
skb_frag_t *frag = skb_shinfo(skb)->frags + i;
slots_used += fill_pg_buf(skb_frag_page(frag),
frag->page_offset,
skb_frag_size(frag), &pb[slots_used]);
}
return slots_used;
}
static int count_skb_frag_slots(struct sk_buff *skb)
{
int i, frags = skb_shinfo(skb)->nr_frags;
int pages = 0;
for (i = 0; i < frags; i++) {
skb_frag_t *frag = skb_shinfo(skb)->frags + i;
unsigned long size = skb_frag_size(frag);
unsigned long offset = frag->page_offset;
/* Skip unused frames from start of page */
offset &= ~PAGE_MASK;
pages += PFN_UP(offset + size);
}
return pages;
}
static int netvsc_get_slots(struct sk_buff *skb)
{
char *data = skb->data;
unsigned int offset = offset_in_page(data);
unsigned int len = skb_headlen(skb);
int slots;
int frag_slots;
slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
frag_slots = count_skb_frag_slots(skb);
return slots + frag_slots;
}
static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
{
u32 ret_val = TRANSPORT_INFO_NOT_IP;
if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
goto not_ip;
}
*trans_off = skb_transport_offset(skb);
if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
struct iphdr *iphdr = ip_hdr(skb);
if (iphdr->protocol == IPPROTO_TCP)
ret_val = TRANSPORT_INFO_IPV4_TCP;
else if (iphdr->protocol == IPPROTO_UDP)
ret_val = TRANSPORT_INFO_IPV4_UDP;
} else {
if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
ret_val = TRANSPORT_INFO_IPV6_TCP;
else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
ret_val = TRANSPORT_INFO_IPV6_UDP;
}
not_ip:
return ret_val;
}
static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
{
struct net_device_context *net_device_ctx = netdev_priv(net);
struct hv_netvsc_packet *packet = NULL;
int ret;
unsigned int num_data_pgs;
struct rndis_message *rndis_msg;
struct rndis_packet *rndis_pkt;
u32 rndis_msg_size;
bool isvlan;
bool linear = false;
struct rndis_per_packet_info *ppi;
struct ndis_tcp_ip_checksum_info *csum_info;
struct ndis_tcp_lso_info *lso_info;
int hdr_offset;
u32 net_trans_info;
u32 hash;
u32 skb_length;
u32 pkt_sz;
struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
/* We will atmost need two pages to describe the rndis
* header. We can only transmit MAX_PAGE_BUFFER_COUNT number
* of pages in a single packet. If skb is scattered around
* more pages we try linearizing it.
*/
check_size:
skb_length = skb->len;
num_data_pgs = netvsc_get_slots(skb) + 2;
if (num_data_pgs > MAX_PAGE_BUFFER_COUNT && linear) {
net_alert_ratelimited("packet too big: %u pages (%u bytes)\n",
num_data_pgs, skb->len);
ret = -EFAULT;
goto drop;
} else if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
if (skb_linearize(skb)) {
net_alert_ratelimited("failed to linearize skb\n");
ret = -ENOMEM;
goto drop;
}
linear = true;
goto check_size;
}
pkt_sz = sizeof(struct hv_netvsc_packet) + RNDIS_AND_PPI_SIZE;
ret = skb_cow_head(skb, pkt_sz);
if (ret) {
netdev_err(net, "unable to alloc hv_netvsc_packet\n");
ret = -ENOMEM;
goto drop;
}
/* Use the headroom for building up the packet */
packet = (struct hv_netvsc_packet *)skb->head;
packet->status = 0;
packet->xmit_more = skb->xmit_more;
packet->vlan_tci = skb->vlan_tci;
packet->page_buf = page_buf;
packet->q_idx = skb_get_queue_mapping(skb);
packet->is_data_pkt = true;
packet->total_data_buflen = skb->len;
packet->rndis_msg = (struct rndis_message *)((unsigned long)packet +
sizeof(struct hv_netvsc_packet));
memset(packet->rndis_msg, 0, RNDIS_AND_PPI_SIZE);
/* Set the completion routine */
packet->send_completion = netvsc_xmit_completion;
packet->send_completion_ctx = packet;
packet->send_completion_tid = (unsigned long)skb;
isvlan = packet->vlan_tci & VLAN_TAG_PRESENT;
/* Add the rndis header */
rndis_msg = packet->rndis_msg;
rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
rndis_msg->msg_len = packet->total_data_buflen;
rndis_pkt = &rndis_msg->msg.pkt;
rndis_pkt->data_offset = sizeof(struct rndis_packet);
rndis_pkt->data_len = packet->total_data_buflen;
rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
hash = skb_get_hash_raw(skb);
if (hash != 0 && net->real_num_tx_queues > 1) {
rndis_msg_size += NDIS_HASH_PPI_SIZE;
ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
NBL_HASH_VALUE);
*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
}
if (isvlan) {
struct ndis_pkt_8021q_info *vlan;
rndis_msg_size += NDIS_VLAN_PPI_SIZE;
ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
IEEE_8021Q_INFO);
vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
ppi->ppi_offset);
vlan->vlanid = packet->vlan_tci & VLAN_VID_MASK;
vlan->pri = (packet->vlan_tci & VLAN_PRIO_MASK) >>
VLAN_PRIO_SHIFT;
}
net_trans_info = get_net_transport_info(skb, &hdr_offset);
if (net_trans_info == TRANSPORT_INFO_NOT_IP)
goto do_send;
/*
* Setup the sendside checksum offload only if this is not a
* GSO packet.
*/
if (skb_is_gso(skb))
goto do_lso;
if ((skb->ip_summed == CHECKSUM_NONE) ||
(skb->ip_summed == CHECKSUM_UNNECESSARY))
goto do_send;
rndis_msg_size += NDIS_CSUM_PPI_SIZE;
ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
TCPIP_CHKSUM_PKTINFO);
csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
ppi->ppi_offset);
if (net_trans_info & (INFO_IPV4 << 16))
csum_info->transmit.is_ipv4 = 1;
else
csum_info->transmit.is_ipv6 = 1;
if (net_trans_info & INFO_TCP) {
csum_info->transmit.tcp_checksum = 1;
csum_info->transmit.tcp_header_offset = hdr_offset;
} else if (net_trans_info & INFO_UDP) {
/* UDP checksum offload is not supported on ws2008r2.
* Furthermore, on ws2012 and ws2012r2, there are some
* issues with udp checksum offload from Linux guests.
* (these are host issues).
* For now compute the checksum here.
*/
struct udphdr *uh;
u16 udp_len;
ret = skb_cow_head(skb, 0);
if (ret)
goto drop;
uh = udp_hdr(skb);
udp_len = ntohs(uh->len);
uh->check = 0;
uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr,
udp_len, IPPROTO_UDP,
csum_partial(uh, udp_len, 0));
if (uh->check == 0)
uh->check = CSUM_MANGLED_0;
csum_info->transmit.udp_checksum = 0;
}
goto do_send;
do_lso:
rndis_msg_size += NDIS_LSO_PPI_SIZE;
ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
TCP_LARGESEND_PKTINFO);
lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
ppi->ppi_offset);
lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
if (net_trans_info & (INFO_IPV4 << 16)) {
lso_info->lso_v2_transmit.ip_version =
NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
ip_hdr(skb)->tot_len = 0;
ip_hdr(skb)->check = 0;
tcp_hdr(skb)->check =
~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
} else {
lso_info->lso_v2_transmit.ip_version =
NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check =
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
}
lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
do_send:
/* Start filling in the page buffers with the rndis hdr */
rndis_msg->msg_len += rndis_msg_size;
packet->total_data_buflen = rndis_msg->msg_len;
packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
skb, packet);
ret = netvsc_send(net_device_ctx->device_ctx, packet);
drop:
if (ret == 0) {
net->stats.tx_bytes += skb_length;
net->stats.tx_packets++;
} else {
if (ret != -EAGAIN) {
dev_kfree_skb_any(skb);
net->stats.tx_dropped++;
}
}
return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
}
/*
* netvsc_linkstatus_callback - Link up/down notification
*/
void netvsc_linkstatus_callback(struct hv_device *device_obj,
struct rndis_message *resp)
{
struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
struct net_device *net;
struct net_device_context *ndev_ctx;
struct netvsc_device *net_device;
struct rndis_device *rdev;
net_device = hv_get_drvdata(device_obj);
rdev = net_device->extension;
switch (indicate->status) {
case RNDIS_STATUS_MEDIA_CONNECT:
rdev->link_state = false;
break;
case RNDIS_STATUS_MEDIA_DISCONNECT:
rdev->link_state = true;
break;
case RNDIS_STATUS_NETWORK_CHANGE:
rdev->link_change = true;
break;
default:
return;
}
net = net_device->ndev;
if (!net || net->reg_state != NETREG_REGISTERED)
return;
ndev_ctx = netdev_priv(net);
if (!rdev->link_state) {
schedule_delayed_work(&ndev_ctx->dwork, 0);
schedule_delayed_work(&ndev_ctx->dwork, msecs_to_jiffies(20));
} else {
schedule_delayed_work(&ndev_ctx->dwork, 0);
}
}
/*
* netvsc_recv_callback - Callback when we receive a packet from the
* "wire" on the specified device.
*/
int netvsc_recv_callback(struct hv_device *device_obj,
struct hv_netvsc_packet *packet,
struct ndis_tcp_ip_checksum_info *csum_info)
{
struct net_device *net;
struct sk_buff *skb;
net = ((struct netvsc_device *)hv_get_drvdata(device_obj))->ndev;
if (!net || net->reg_state != NETREG_REGISTERED) {
packet->status = NVSP_STAT_FAIL;
return 0;
}
/* Allocate a skb - TODO direct I/O to pages? */
skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
if (unlikely(!skb)) {
++net->stats.rx_dropped;
packet->status = NVSP_STAT_FAIL;
return 0;
}
/*
* Copy to skb. This copy is needed here since the memory pointed by
* hv_netvsc_packet cannot be deallocated
*/
memcpy(skb_put(skb, packet->total_data_buflen), packet->data,
packet->total_data_buflen);
skb->protocol = eth_type_trans(skb, net);
if (csum_info) {
/* We only look at the IP checksum here.
* Should we be dropping the packet if checksum
* failed? How do we deal with other checksums - TCP/UDP?
*/
if (csum_info->receive.ip_checksum_succeeded)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
}
if (packet->vlan_tci & VLAN_TAG_PRESENT)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
packet->vlan_tci);
skb_record_rx_queue(skb, packet->channel->
offermsg.offer.sub_channel_index);
net->stats.rx_packets++;
net->stats.rx_bytes += packet->total_data_buflen;
/*
* Pass the skb back up. Network stack will deallocate the skb when it
* is done.
* TODO - use NAPI?
*/
netif_rx(skb);
return 0;
}
static void netvsc_get_drvinfo(struct net_device *net,
struct ethtool_drvinfo *info)
{
strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
}
static void netvsc_get_channels(struct net_device *net,
struct ethtool_channels *channel)
{
struct net_device_context *net_device_ctx = netdev_priv(net);
struct hv_device *dev = net_device_ctx->device_ctx;
struct netvsc_device *nvdev = hv_get_drvdata(dev);
if (nvdev) {
channel->max_combined = nvdev->max_chn;
channel->combined_count = nvdev->num_chn;
}
}
static int netvsc_change_mtu(struct net_device *ndev, int mtu)
{
struct net_device_context *ndevctx = netdev_priv(ndev);
struct hv_device *hdev = ndevctx->device_ctx;
struct netvsc_device *nvdev = hv_get_drvdata(hdev);
struct netvsc_device_info device_info;
int limit = ETH_DATA_LEN;
if (nvdev == NULL || nvdev->destroy)
return -ENODEV;
if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
limit = NETVSC_MTU - ETH_HLEN;
/* Hyper-V hosts don't support MTU < ETH_DATA_LEN (1500) */
if (mtu < ETH_DATA_LEN || mtu > limit)
return -EINVAL;
nvdev->start_remove = true;
cancel_work_sync(&ndevctx->work);
netif_tx_disable(ndev);
rndis_filter_device_remove(hdev);
ndev->mtu = mtu;
ndevctx->device_ctx = hdev;
hv_set_drvdata(hdev, ndev);
device_info.ring_size = ring_size;
rndis_filter_device_add(hdev, &device_info);
netif_tx_wake_all_queues(ndev);
return 0;
}
static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
{
struct net_device_context *ndevctx = netdev_priv(ndev);
struct hv_device *hdev = ndevctx->device_ctx;
struct sockaddr *addr = p;
char save_adr[ETH_ALEN];
unsigned char save_aatype;
int err;
memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
save_aatype = ndev->addr_assign_type;
err = eth_mac_addr(ndev, p);
if (err != 0)
return err;
err = rndis_filter_set_device_mac(hdev, addr->sa_data);
if (err != 0) {
/* roll back to saved MAC */
memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
ndev->addr_assign_type = save_aatype;
}
return err;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void netvsc_poll_controller(struct net_device *net)
{
/* As netvsc_start_xmit() works synchronous we don't have to
* trigger anything here.
*/
}
#endif
static const struct ethtool_ops ethtool_ops = {
.get_drvinfo = netvsc_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_channels = netvsc_get_channels,
};
static const struct net_device_ops device_ops = {
.ndo_open = netvsc_open,
.ndo_stop = netvsc_close,
.ndo_start_xmit = netvsc_start_xmit,
.ndo_set_rx_mode = netvsc_set_multicast_list,
.ndo_change_mtu = netvsc_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = netvsc_set_mac_addr,
.ndo_select_queue = netvsc_select_queue,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = netvsc_poll_controller,
#endif
};
/*
* Send GARP packet to network peers after migrations.
* After Quick Migration, the network is not immediately operational in the
* current context when receiving RNDIS_STATUS_MEDIA_CONNECT event. So, add
* another netif_notify_peers() into a delayed work, otherwise GARP packet
* will not be sent after quick migration, and cause network disconnection.
* Also, we update the carrier status here.
*/
static void netvsc_link_change(struct work_struct *w)
{
struct net_device_context *ndev_ctx;
struct net_device *net;
struct netvsc_device *net_device;
struct rndis_device *rdev;
bool notify, refresh = false;
char *argv[] = { "/etc/init.d/network", "restart", NULL };
char *envp[] = { "HOME=/", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
rtnl_lock();
ndev_ctx = container_of(w, struct net_device_context, dwork.work);
net_device = hv_get_drvdata(ndev_ctx->device_ctx);
rdev = net_device->extension;
net = net_device->ndev;
if (rdev->link_state) {
netif_carrier_off(net);
notify = false;
} else {
netif_carrier_on(net);
notify = true;
if (rdev->link_change) {
rdev->link_change = false;
refresh = true;
}
}
rtnl_unlock();
if (refresh)
call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
if (notify)
netdev_notify_peers(net);
}
static int netvsc_probe(struct hv_device *dev,
const struct hv_vmbus_device_id *dev_id)
{
struct net_device *net = NULL;
struct net_device_context *net_device_ctx;
struct netvsc_device_info device_info;
struct netvsc_device *nvdev;
int ret;
u32 max_needed_headroom;
net = alloc_etherdev_mq(sizeof(struct net_device_context),
num_online_cpus());
if (!net)
return -ENOMEM;
max_needed_headroom = sizeof(struct hv_netvsc_packet) +
RNDIS_AND_PPI_SIZE;
netif_carrier_off(net);
net_device_ctx = netdev_priv(net);
net_device_ctx->device_ctx = dev;
net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
if (netif_msg_probe(net_device_ctx))
netdev_dbg(net, "netvsc msg_enable: %d\n",
net_device_ctx->msg_enable);
hv_set_drvdata(dev, net);
INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
INIT_WORK(&net_device_ctx->work, do_set_multicast);
net->netdev_ops = &device_ops;
net->hw_features = NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_IP_CSUM |
NETIF_F_TSO;
net->features = NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_SG | NETIF_F_RXCSUM |
NETIF_F_IP_CSUM | NETIF_F_TSO;
net->ethtool_ops = &ethtool_ops;
SET_NETDEV_DEV(net, &dev->device);
/*
* Request additional head room in the skb.
* We will use this space to build the rndis
* heaser and other state we need to maintain.
*/
net->needed_headroom = max_needed_headroom;
/* Notify the netvsc driver of the new device */
device_info.ring_size = ring_size;
ret = rndis_filter_device_add(dev, &device_info);
if (ret != 0) {
netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
free_netdev(net);
hv_set_drvdata(dev, NULL);
return ret;
}
memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
nvdev = hv_get_drvdata(dev);
netif_set_real_num_tx_queues(net, nvdev->num_chn);
netif_set_real_num_rx_queues(net, nvdev->num_chn);
ret = register_netdev(net);
if (ret != 0) {
pr_err("Unable to register netdev.\n");
rndis_filter_device_remove(dev);
free_netdev(net);
} else {
schedule_delayed_work(&net_device_ctx->dwork, 0);
}
return ret;
}
static int netvsc_remove(struct hv_device *dev)
{
struct net_device *net;
struct net_device_context *ndev_ctx;
struct netvsc_device *net_device;
net_device = hv_get_drvdata(dev);
net = net_device->ndev;
if (net == NULL) {
dev_err(&dev->device, "No net device to remove\n");
return 0;
}
net_device->start_remove = true;
ndev_ctx = netdev_priv(net);
cancel_delayed_work_sync(&ndev_ctx->dwork);
cancel_work_sync(&ndev_ctx->work);
/* Stop outbound asap */
netif_tx_disable(net);
unregister_netdev(net);
/*
* Call to the vsc driver to let it know that the device is being
* removed
*/
rndis_filter_device_remove(dev);
free_netdev(net);
return 0;
}
static const struct hv_vmbus_device_id id_table[] = {
/* Network guid */
{ HV_NIC_GUID, },
{ },
};
MODULE_DEVICE_TABLE(vmbus, id_table);
/* The one and only one */
static struct hv_driver netvsc_drv = {
.name = KBUILD_MODNAME,
.id_table = id_table,
.probe = netvsc_probe,
.remove = netvsc_remove,
};
static void __exit netvsc_drv_exit(void)
{
vmbus_driver_unregister(&netvsc_drv);
}
static int __init netvsc_drv_init(void)
{
if (ring_size < RING_SIZE_MIN) {
ring_size = RING_SIZE_MIN;
pr_info("Increased ring_size to %d (min allowed)\n",
ring_size);
}
return vmbus_driver_register(&netvsc_drv);
}
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
module_init(netvsc_drv_init);
module_exit(netvsc_drv_exit);