| /* |
| * Kernel Probes (KProbes) |
| * kernel/kprobes.c |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) IBM Corporation, 2002, 2004 |
| * |
| * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel |
| * Probes initial implementation (includes suggestions from |
| * Rusty Russell). |
| * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with |
| * hlists and exceptions notifier as suggested by Andi Kleen. |
| * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes |
| * interface to access function arguments. |
| * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes |
| * exceptions notifier to be first on the priority list. |
| * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston |
| * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi |
| * <prasanna@in.ibm.com> added function-return probes. |
| */ |
| #include <linux/kprobes.h> |
| #include <linux/hash.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/stddef.h> |
| #include <linux/module.h> |
| #include <linux/moduleloader.h> |
| #include <linux/kallsyms.h> |
| #include <linux/freezer.h> |
| #include <linux/seq_file.h> |
| #include <linux/debugfs.h> |
| #include <linux/kdebug.h> |
| |
| #include <asm-generic/sections.h> |
| #include <asm/cacheflush.h> |
| #include <asm/errno.h> |
| #include <asm/uaccess.h> |
| |
| #define KPROBE_HASH_BITS 6 |
| #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) |
| |
| |
| /* |
| * Some oddball architectures like 64bit powerpc have function descriptors |
| * so this must be overridable. |
| */ |
| #ifndef kprobe_lookup_name |
| #define kprobe_lookup_name(name, addr) \ |
| addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) |
| #endif |
| |
| static int kprobes_initialized; |
| static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; |
| static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; |
| |
| /* NOTE: change this value only with kprobe_mutex held */ |
| static bool kprobe_enabled; |
| |
| static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */ |
| static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; |
| static struct { |
| spinlock_t lock ____cacheline_aligned_in_smp; |
| } kretprobe_table_locks[KPROBE_TABLE_SIZE]; |
| |
| static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) |
| { |
| return &(kretprobe_table_locks[hash].lock); |
| } |
| |
| /* |
| * Normally, functions that we'd want to prohibit kprobes in, are marked |
| * __kprobes. But, there are cases where such functions already belong to |
| * a different section (__sched for preempt_schedule) |
| * |
| * For such cases, we now have a blacklist |
| */ |
| static struct kprobe_blackpoint kprobe_blacklist[] = { |
| {"preempt_schedule",}, |
| {NULL} /* Terminator */ |
| }; |
| |
| #ifdef __ARCH_WANT_KPROBES_INSN_SLOT |
| /* |
| * kprobe->ainsn.insn points to the copy of the instruction to be |
| * single-stepped. x86_64, POWER4 and above have no-exec support and |
| * stepping on the instruction on a vmalloced/kmalloced/data page |
| * is a recipe for disaster |
| */ |
| #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) |
| |
| struct kprobe_insn_page { |
| struct hlist_node hlist; |
| kprobe_opcode_t *insns; /* Page of instruction slots */ |
| char slot_used[INSNS_PER_PAGE]; |
| int nused; |
| int ngarbage; |
| }; |
| |
| enum kprobe_slot_state { |
| SLOT_CLEAN = 0, |
| SLOT_DIRTY = 1, |
| SLOT_USED = 2, |
| }; |
| |
| static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */ |
| static struct hlist_head kprobe_insn_pages; |
| static int kprobe_garbage_slots; |
| static int collect_garbage_slots(void); |
| |
| static int __kprobes check_safety(void) |
| { |
| int ret = 0; |
| #if defined(CONFIG_PREEMPT) && defined(CONFIG_PM) |
| ret = freeze_processes(); |
| if (ret == 0) { |
| struct task_struct *p, *q; |
| do_each_thread(p, q) { |
| if (p != current && p->state == TASK_RUNNING && |
| p->pid != 0) { |
| printk("Check failed: %s is running\n",p->comm); |
| ret = -1; |
| goto loop_end; |
| } |
| } while_each_thread(p, q); |
| } |
| loop_end: |
| thaw_processes(); |
| #else |
| synchronize_sched(); |
| #endif |
| return ret; |
| } |
| |
| /** |
| * __get_insn_slot() - Find a slot on an executable page for an instruction. |
| * We allocate an executable page if there's no room on existing ones. |
| */ |
| static kprobe_opcode_t __kprobes *__get_insn_slot(void) |
| { |
| struct kprobe_insn_page *kip; |
| struct hlist_node *pos; |
| |
| retry: |
| hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) { |
| if (kip->nused < INSNS_PER_PAGE) { |
| int i; |
| for (i = 0; i < INSNS_PER_PAGE; i++) { |
| if (kip->slot_used[i] == SLOT_CLEAN) { |
| kip->slot_used[i] = SLOT_USED; |
| kip->nused++; |
| return kip->insns + (i * MAX_INSN_SIZE); |
| } |
| } |
| /* Surprise! No unused slots. Fix kip->nused. */ |
| kip->nused = INSNS_PER_PAGE; |
| } |
| } |
| |
| /* If there are any garbage slots, collect it and try again. */ |
| if (kprobe_garbage_slots && collect_garbage_slots() == 0) { |
| goto retry; |
| } |
| /* All out of space. Need to allocate a new page. Use slot 0. */ |
| kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL); |
| if (!kip) |
| return NULL; |
| |
| /* |
| * Use module_alloc so this page is within +/- 2GB of where the |
| * kernel image and loaded module images reside. This is required |
| * so x86_64 can correctly handle the %rip-relative fixups. |
| */ |
| kip->insns = module_alloc(PAGE_SIZE); |
| if (!kip->insns) { |
| kfree(kip); |
| return NULL; |
| } |
| INIT_HLIST_NODE(&kip->hlist); |
| hlist_add_head(&kip->hlist, &kprobe_insn_pages); |
| memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE); |
| kip->slot_used[0] = SLOT_USED; |
| kip->nused = 1; |
| kip->ngarbage = 0; |
| return kip->insns; |
| } |
| |
| kprobe_opcode_t __kprobes *get_insn_slot(void) |
| { |
| kprobe_opcode_t *ret; |
| mutex_lock(&kprobe_insn_mutex); |
| ret = __get_insn_slot(); |
| mutex_unlock(&kprobe_insn_mutex); |
| return ret; |
| } |
| |
| /* Return 1 if all garbages are collected, otherwise 0. */ |
| static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) |
| { |
| kip->slot_used[idx] = SLOT_CLEAN; |
| kip->nused--; |
| if (kip->nused == 0) { |
| /* |
| * Page is no longer in use. Free it unless |
| * it's the last one. We keep the last one |
| * so as not to have to set it up again the |
| * next time somebody inserts a probe. |
| */ |
| hlist_del(&kip->hlist); |
| if (hlist_empty(&kprobe_insn_pages)) { |
| INIT_HLIST_NODE(&kip->hlist); |
| hlist_add_head(&kip->hlist, |
| &kprobe_insn_pages); |
| } else { |
| module_free(NULL, kip->insns); |
| kfree(kip); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int __kprobes collect_garbage_slots(void) |
| { |
| struct kprobe_insn_page *kip; |
| struct hlist_node *pos, *next; |
| int safety; |
| |
| /* Ensure no-one is preepmted on the garbages */ |
| mutex_unlock(&kprobe_insn_mutex); |
| safety = check_safety(); |
| mutex_lock(&kprobe_insn_mutex); |
| if (safety != 0) |
| return -EAGAIN; |
| |
| hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) { |
| int i; |
| if (kip->ngarbage == 0) |
| continue; |
| kip->ngarbage = 0; /* we will collect all garbages */ |
| for (i = 0; i < INSNS_PER_PAGE; i++) { |
| if (kip->slot_used[i] == SLOT_DIRTY && |
| collect_one_slot(kip, i)) |
| break; |
| } |
| } |
| kprobe_garbage_slots = 0; |
| return 0; |
| } |
| |
| void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) |
| { |
| struct kprobe_insn_page *kip; |
| struct hlist_node *pos; |
| |
| mutex_lock(&kprobe_insn_mutex); |
| hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) { |
| if (kip->insns <= slot && |
| slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) { |
| int i = (slot - kip->insns) / MAX_INSN_SIZE; |
| if (dirty) { |
| kip->slot_used[i] = SLOT_DIRTY; |
| kip->ngarbage++; |
| } else { |
| collect_one_slot(kip, i); |
| } |
| break; |
| } |
| } |
| |
| if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE) |
| collect_garbage_slots(); |
| |
| mutex_unlock(&kprobe_insn_mutex); |
| } |
| #endif |
| |
| /* We have preemption disabled.. so it is safe to use __ versions */ |
| static inline void set_kprobe_instance(struct kprobe *kp) |
| { |
| __get_cpu_var(kprobe_instance) = kp; |
| } |
| |
| static inline void reset_kprobe_instance(void) |
| { |
| __get_cpu_var(kprobe_instance) = NULL; |
| } |
| |
| /* |
| * This routine is called either: |
| * - under the kprobe_mutex - during kprobe_[un]register() |
| * OR |
| * - with preemption disabled - from arch/xxx/kernel/kprobes.c |
| */ |
| struct kprobe __kprobes *get_kprobe(void *addr) |
| { |
| struct hlist_head *head; |
| struct hlist_node *node; |
| struct kprobe *p; |
| |
| head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; |
| hlist_for_each_entry_rcu(p, node, head, hlist) { |
| if (p->addr == addr) |
| return p; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Aggregate handlers for multiple kprobes support - these handlers |
| * take care of invoking the individual kprobe handlers on p->list |
| */ |
| static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kprobe *kp; |
| |
| list_for_each_entry_rcu(kp, &p->list, list) { |
| if (kp->pre_handler) { |
| set_kprobe_instance(kp); |
| if (kp->pre_handler(kp, regs)) |
| return 1; |
| } |
| reset_kprobe_instance(); |
| } |
| return 0; |
| } |
| |
| static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, |
| unsigned long flags) |
| { |
| struct kprobe *kp; |
| |
| list_for_each_entry_rcu(kp, &p->list, list) { |
| if (kp->post_handler) { |
| set_kprobe_instance(kp); |
| kp->post_handler(kp, regs, flags); |
| reset_kprobe_instance(); |
| } |
| } |
| } |
| |
| static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, |
| int trapnr) |
| { |
| struct kprobe *cur = __get_cpu_var(kprobe_instance); |
| |
| /* |
| * if we faulted "during" the execution of a user specified |
| * probe handler, invoke just that probe's fault handler |
| */ |
| if (cur && cur->fault_handler) { |
| if (cur->fault_handler(cur, regs, trapnr)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kprobe *cur = __get_cpu_var(kprobe_instance); |
| int ret = 0; |
| |
| if (cur && cur->break_handler) { |
| if (cur->break_handler(cur, regs)) |
| ret = 1; |
| } |
| reset_kprobe_instance(); |
| return ret; |
| } |
| |
| /* Walks the list and increments nmissed count for multiprobe case */ |
| void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) |
| { |
| struct kprobe *kp; |
| if (p->pre_handler != aggr_pre_handler) { |
| p->nmissed++; |
| } else { |
| list_for_each_entry_rcu(kp, &p->list, list) |
| kp->nmissed++; |
| } |
| return; |
| } |
| |
| void __kprobes recycle_rp_inst(struct kretprobe_instance *ri, |
| struct hlist_head *head) |
| { |
| struct kretprobe *rp = ri->rp; |
| |
| /* remove rp inst off the rprobe_inst_table */ |
| hlist_del(&ri->hlist); |
| INIT_HLIST_NODE(&ri->hlist); |
| if (likely(rp)) { |
| spin_lock(&rp->lock); |
| hlist_add_head(&ri->hlist, &rp->free_instances); |
| spin_unlock(&rp->lock); |
| } else |
| /* Unregistering */ |
| hlist_add_head(&ri->hlist, head); |
| } |
| |
| void kretprobe_hash_lock(struct task_struct *tsk, |
| struct hlist_head **head, unsigned long *flags) |
| { |
| unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); |
| spinlock_t *hlist_lock; |
| |
| *head = &kretprobe_inst_table[hash]; |
| hlist_lock = kretprobe_table_lock_ptr(hash); |
| spin_lock_irqsave(hlist_lock, *flags); |
| } |
| |
| static void kretprobe_table_lock(unsigned long hash, unsigned long *flags) |
| { |
| spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); |
| spin_lock_irqsave(hlist_lock, *flags); |
| } |
| |
| void kretprobe_hash_unlock(struct task_struct *tsk, unsigned long *flags) |
| { |
| unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); |
| spinlock_t *hlist_lock; |
| |
| hlist_lock = kretprobe_table_lock_ptr(hash); |
| spin_unlock_irqrestore(hlist_lock, *flags); |
| } |
| |
| void kretprobe_table_unlock(unsigned long hash, unsigned long *flags) |
| { |
| spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); |
| spin_unlock_irqrestore(hlist_lock, *flags); |
| } |
| |
| /* |
| * This function is called from finish_task_switch when task tk becomes dead, |
| * so that we can recycle any function-return probe instances associated |
| * with this task. These left over instances represent probed functions |
| * that have been called but will never return. |
| */ |
| void __kprobes kprobe_flush_task(struct task_struct *tk) |
| { |
| struct kretprobe_instance *ri; |
| struct hlist_head *head, empty_rp; |
| struct hlist_node *node, *tmp; |
| unsigned long hash, flags = 0; |
| |
| if (unlikely(!kprobes_initialized)) |
| /* Early boot. kretprobe_table_locks not yet initialized. */ |
| return; |
| |
| hash = hash_ptr(tk, KPROBE_HASH_BITS); |
| head = &kretprobe_inst_table[hash]; |
| kretprobe_table_lock(hash, &flags); |
| hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { |
| if (ri->task == tk) |
| recycle_rp_inst(ri, &empty_rp); |
| } |
| kretprobe_table_unlock(hash, &flags); |
| INIT_HLIST_HEAD(&empty_rp); |
| hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { |
| hlist_del(&ri->hlist); |
| kfree(ri); |
| } |
| } |
| |
| static inline void free_rp_inst(struct kretprobe *rp) |
| { |
| struct kretprobe_instance *ri; |
| struct hlist_node *pos, *next; |
| |
| hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) { |
| hlist_del(&ri->hlist); |
| kfree(ri); |
| } |
| } |
| |
| static void __kprobes cleanup_rp_inst(struct kretprobe *rp) |
| { |
| unsigned long flags, hash; |
| struct kretprobe_instance *ri; |
| struct hlist_node *pos, *next; |
| struct hlist_head *head; |
| |
| /* No race here */ |
| for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { |
| kretprobe_table_lock(hash, &flags); |
| head = &kretprobe_inst_table[hash]; |
| hlist_for_each_entry_safe(ri, pos, next, head, hlist) { |
| if (ri->rp == rp) |
| ri->rp = NULL; |
| } |
| kretprobe_table_unlock(hash, &flags); |
| } |
| free_rp_inst(rp); |
| } |
| |
| /* |
| * Keep all fields in the kprobe consistent |
| */ |
| static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p) |
| { |
| memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t)); |
| memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn)); |
| } |
| |
| /* |
| * Add the new probe to old_p->list. Fail if this is the |
| * second jprobe at the address - two jprobes can't coexist |
| */ |
| static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p) |
| { |
| if (p->break_handler) { |
| if (old_p->break_handler) |
| return -EEXIST; |
| list_add_tail_rcu(&p->list, &old_p->list); |
| old_p->break_handler = aggr_break_handler; |
| } else |
| list_add_rcu(&p->list, &old_p->list); |
| if (p->post_handler && !old_p->post_handler) |
| old_p->post_handler = aggr_post_handler; |
| return 0; |
| } |
| |
| /* |
| * Fill in the required fields of the "manager kprobe". Replace the |
| * earlier kprobe in the hlist with the manager kprobe |
| */ |
| static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p) |
| { |
| copy_kprobe(p, ap); |
| flush_insn_slot(ap); |
| ap->addr = p->addr; |
| ap->pre_handler = aggr_pre_handler; |
| ap->fault_handler = aggr_fault_handler; |
| if (p->post_handler) |
| ap->post_handler = aggr_post_handler; |
| if (p->break_handler) |
| ap->break_handler = aggr_break_handler; |
| |
| INIT_LIST_HEAD(&ap->list); |
| list_add_rcu(&p->list, &ap->list); |
| |
| hlist_replace_rcu(&p->hlist, &ap->hlist); |
| } |
| |
| /* |
| * This is the second or subsequent kprobe at the address - handle |
| * the intricacies |
| */ |
| static int __kprobes register_aggr_kprobe(struct kprobe *old_p, |
| struct kprobe *p) |
| { |
| int ret = 0; |
| struct kprobe *ap; |
| |
| if (old_p->pre_handler == aggr_pre_handler) { |
| copy_kprobe(old_p, p); |
| ret = add_new_kprobe(old_p, p); |
| } else { |
| ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL); |
| if (!ap) |
| return -ENOMEM; |
| add_aggr_kprobe(ap, old_p); |
| copy_kprobe(ap, p); |
| ret = add_new_kprobe(ap, p); |
| } |
| return ret; |
| } |
| |
| static int __kprobes in_kprobes_functions(unsigned long addr) |
| { |
| struct kprobe_blackpoint *kb; |
| |
| if (addr >= (unsigned long)__kprobes_text_start && |
| addr < (unsigned long)__kprobes_text_end) |
| return -EINVAL; |
| /* |
| * If there exists a kprobe_blacklist, verify and |
| * fail any probe registration in the prohibited area |
| */ |
| for (kb = kprobe_blacklist; kb->name != NULL; kb++) { |
| if (kb->start_addr) { |
| if (addr >= kb->start_addr && |
| addr < (kb->start_addr + kb->range)) |
| return -EINVAL; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * If we have a symbol_name argument, look it up and add the offset field |
| * to it. This way, we can specify a relative address to a symbol. |
| */ |
| static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) |
| { |
| kprobe_opcode_t *addr = p->addr; |
| if (p->symbol_name) { |
| if (addr) |
| return NULL; |
| kprobe_lookup_name(p->symbol_name, addr); |
| } |
| |
| if (!addr) |
| return NULL; |
| return (kprobe_opcode_t *)(((char *)addr) + p->offset); |
| } |
| |
| static int __kprobes __register_kprobe(struct kprobe *p, |
| unsigned long called_from) |
| { |
| int ret = 0; |
| struct kprobe *old_p; |
| struct module *probed_mod; |
| kprobe_opcode_t *addr; |
| |
| addr = kprobe_addr(p); |
| if (!addr) |
| return -EINVAL; |
| p->addr = addr; |
| |
| preempt_disable(); |
| if (!__kernel_text_address((unsigned long) p->addr) || |
| in_kprobes_functions((unsigned long) p->addr)) { |
| preempt_enable(); |
| return -EINVAL; |
| } |
| |
| p->mod_refcounted = 0; |
| |
| /* |
| * Check if are we probing a module. |
| */ |
| probed_mod = __module_text_address((unsigned long) p->addr); |
| if (probed_mod) { |
| struct module *calling_mod; |
| calling_mod = __module_text_address(called_from); |
| /* |
| * We must allow modules to probe themself and in this case |
| * avoid incrementing the module refcount, so as to allow |
| * unloading of self probing modules. |
| */ |
| if (calling_mod != probed_mod) { |
| if (unlikely(!try_module_get(probed_mod))) { |
| preempt_enable(); |
| return -EINVAL; |
| } |
| p->mod_refcounted = 1; |
| } else |
| probed_mod = NULL; |
| } |
| preempt_enable(); |
| |
| p->nmissed = 0; |
| INIT_LIST_HEAD(&p->list); |
| mutex_lock(&kprobe_mutex); |
| old_p = get_kprobe(p->addr); |
| if (old_p) { |
| ret = register_aggr_kprobe(old_p, p); |
| goto out; |
| } |
| |
| ret = arch_prepare_kprobe(p); |
| if (ret) |
| goto out; |
| |
| INIT_HLIST_NODE(&p->hlist); |
| hlist_add_head_rcu(&p->hlist, |
| &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); |
| |
| if (kprobe_enabled) |
| arch_arm_kprobe(p); |
| |
| out: |
| mutex_unlock(&kprobe_mutex); |
| |
| if (ret && probed_mod) |
| module_put(probed_mod); |
| return ret; |
| } |
| |
| /* |
| * Unregister a kprobe without a scheduler synchronization. |
| */ |
| static int __kprobes __unregister_kprobe_top(struct kprobe *p) |
| { |
| struct kprobe *old_p, *list_p; |
| |
| old_p = get_kprobe(p->addr); |
| if (unlikely(!old_p)) |
| return -EINVAL; |
| |
| if (p != old_p) { |
| list_for_each_entry_rcu(list_p, &old_p->list, list) |
| if (list_p == p) |
| /* kprobe p is a valid probe */ |
| goto valid_p; |
| return -EINVAL; |
| } |
| valid_p: |
| if (old_p == p || |
| (old_p->pre_handler == aggr_pre_handler && |
| list_is_singular(&old_p->list))) { |
| /* |
| * Only probe on the hash list. Disarm only if kprobes are |
| * enabled - otherwise, the breakpoint would already have |
| * been removed. We save on flushing icache. |
| */ |
| if (kprobe_enabled) |
| arch_disarm_kprobe(p); |
| hlist_del_rcu(&old_p->hlist); |
| } else { |
| if (p->break_handler) |
| old_p->break_handler = NULL; |
| if (p->post_handler) { |
| list_for_each_entry_rcu(list_p, &old_p->list, list) { |
| if ((list_p != p) && (list_p->post_handler)) |
| goto noclean; |
| } |
| old_p->post_handler = NULL; |
| } |
| noclean: |
| list_del_rcu(&p->list); |
| } |
| return 0; |
| } |
| |
| static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) |
| { |
| struct module *mod; |
| struct kprobe *old_p; |
| |
| if (p->mod_refcounted) { |
| /* |
| * Since we've already incremented refcount, |
| * we don't need to disable preemption. |
| */ |
| mod = module_text_address((unsigned long)p->addr); |
| if (mod) |
| module_put(mod); |
| } |
| |
| if (list_empty(&p->list) || list_is_singular(&p->list)) { |
| if (!list_empty(&p->list)) { |
| /* "p" is the last child of an aggr_kprobe */ |
| old_p = list_entry(p->list.next, struct kprobe, list); |
| list_del(&p->list); |
| kfree(old_p); |
| } |
| arch_remove_kprobe(p); |
| } |
| } |
| |
| static int __register_kprobes(struct kprobe **kps, int num, |
| unsigned long called_from) |
| { |
| int i, ret = 0; |
| |
| if (num <= 0) |
| return -EINVAL; |
| for (i = 0; i < num; i++) { |
| ret = __register_kprobe(kps[i], called_from); |
| if (ret < 0) { |
| if (i > 0) |
| unregister_kprobes(kps, i); |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * Registration and unregistration functions for kprobe. |
| */ |
| int __kprobes register_kprobe(struct kprobe *p) |
| { |
| return __register_kprobes(&p, 1, |
| (unsigned long)__builtin_return_address(0)); |
| } |
| |
| void __kprobes unregister_kprobe(struct kprobe *p) |
| { |
| unregister_kprobes(&p, 1); |
| } |
| |
| int __kprobes register_kprobes(struct kprobe **kps, int num) |
| { |
| return __register_kprobes(kps, num, |
| (unsigned long)__builtin_return_address(0)); |
| } |
| |
| void __kprobes unregister_kprobes(struct kprobe **kps, int num) |
| { |
| int i; |
| |
| if (num <= 0) |
| return; |
| mutex_lock(&kprobe_mutex); |
| for (i = 0; i < num; i++) |
| if (__unregister_kprobe_top(kps[i]) < 0) |
| kps[i]->addr = NULL; |
| mutex_unlock(&kprobe_mutex); |
| |
| synchronize_sched(); |
| for (i = 0; i < num; i++) |
| if (kps[i]->addr) |
| __unregister_kprobe_bottom(kps[i]); |
| } |
| |
| static struct notifier_block kprobe_exceptions_nb = { |
| .notifier_call = kprobe_exceptions_notify, |
| .priority = 0x7fffffff /* we need to be notified first */ |
| }; |
| |
| unsigned long __weak arch_deref_entry_point(void *entry) |
| { |
| return (unsigned long)entry; |
| } |
| |
| static int __register_jprobes(struct jprobe **jps, int num, |
| unsigned long called_from) |
| { |
| struct jprobe *jp; |
| int ret = 0, i; |
| |
| if (num <= 0) |
| return -EINVAL; |
| for (i = 0; i < num; i++) { |
| unsigned long addr; |
| jp = jps[i]; |
| addr = arch_deref_entry_point(jp->entry); |
| |
| if (!kernel_text_address(addr)) |
| ret = -EINVAL; |
| else { |
| /* Todo: Verify probepoint is a function entry point */ |
| jp->kp.pre_handler = setjmp_pre_handler; |
| jp->kp.break_handler = longjmp_break_handler; |
| ret = __register_kprobe(&jp->kp, called_from); |
| } |
| if (ret < 0) { |
| if (i > 0) |
| unregister_jprobes(jps, i); |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| int __kprobes register_jprobe(struct jprobe *jp) |
| { |
| return __register_jprobes(&jp, 1, |
| (unsigned long)__builtin_return_address(0)); |
| } |
| |
| void __kprobes unregister_jprobe(struct jprobe *jp) |
| { |
| unregister_jprobes(&jp, 1); |
| } |
| |
| int __kprobes register_jprobes(struct jprobe **jps, int num) |
| { |
| return __register_jprobes(jps, num, |
| (unsigned long)__builtin_return_address(0)); |
| } |
| |
| void __kprobes unregister_jprobes(struct jprobe **jps, int num) |
| { |
| int i; |
| |
| if (num <= 0) |
| return; |
| mutex_lock(&kprobe_mutex); |
| for (i = 0; i < num; i++) |
| if (__unregister_kprobe_top(&jps[i]->kp) < 0) |
| jps[i]->kp.addr = NULL; |
| mutex_unlock(&kprobe_mutex); |
| |
| synchronize_sched(); |
| for (i = 0; i < num; i++) { |
| if (jps[i]->kp.addr) |
| __unregister_kprobe_bottom(&jps[i]->kp); |
| } |
| } |
| |
| #ifdef CONFIG_KRETPROBES |
| /* |
| * This kprobe pre_handler is registered with every kretprobe. When probe |
| * hits it will set up the return probe. |
| */ |
| static int __kprobes pre_handler_kretprobe(struct kprobe *p, |
| struct pt_regs *regs) |
| { |
| struct kretprobe *rp = container_of(p, struct kretprobe, kp); |
| unsigned long hash, flags = 0; |
| struct kretprobe_instance *ri; |
| |
| /*TODO: consider to only swap the RA after the last pre_handler fired */ |
| hash = hash_ptr(current, KPROBE_HASH_BITS); |
| spin_lock_irqsave(&rp->lock, flags); |
| if (!hlist_empty(&rp->free_instances)) { |
| ri = hlist_entry(rp->free_instances.first, |
| struct kretprobe_instance, hlist); |
| hlist_del(&ri->hlist); |
| spin_unlock_irqrestore(&rp->lock, flags); |
| |
| ri->rp = rp; |
| ri->task = current; |
| |
| if (rp->entry_handler && rp->entry_handler(ri, regs)) { |
| spin_unlock_irqrestore(&rp->lock, flags); |
| return 0; |
| } |
| |
| arch_prepare_kretprobe(ri, regs); |
| |
| /* XXX(hch): why is there no hlist_move_head? */ |
| INIT_HLIST_NODE(&ri->hlist); |
| kretprobe_table_lock(hash, &flags); |
| hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); |
| kretprobe_table_unlock(hash, &flags); |
| } else { |
| rp->nmissed++; |
| spin_unlock_irqrestore(&rp->lock, flags); |
| } |
| return 0; |
| } |
| |
| static int __kprobes __register_kretprobe(struct kretprobe *rp, |
| unsigned long called_from) |
| { |
| int ret = 0; |
| struct kretprobe_instance *inst; |
| int i; |
| void *addr; |
| |
| if (kretprobe_blacklist_size) { |
| addr = kprobe_addr(&rp->kp); |
| if (!addr) |
| return -EINVAL; |
| |
| for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { |
| if (kretprobe_blacklist[i].addr == addr) |
| return -EINVAL; |
| } |
| } |
| |
| rp->kp.pre_handler = pre_handler_kretprobe; |
| rp->kp.post_handler = NULL; |
| rp->kp.fault_handler = NULL; |
| rp->kp.break_handler = NULL; |
| |
| /* Pre-allocate memory for max kretprobe instances */ |
| if (rp->maxactive <= 0) { |
| #ifdef CONFIG_PREEMPT |
| rp->maxactive = max(10, 2 * NR_CPUS); |
| #else |
| rp->maxactive = NR_CPUS; |
| #endif |
| } |
| spin_lock_init(&rp->lock); |
| INIT_HLIST_HEAD(&rp->free_instances); |
| for (i = 0; i < rp->maxactive; i++) { |
| inst = kmalloc(sizeof(struct kretprobe_instance) + |
| rp->data_size, GFP_KERNEL); |
| if (inst == NULL) { |
| free_rp_inst(rp); |
| return -ENOMEM; |
| } |
| INIT_HLIST_NODE(&inst->hlist); |
| hlist_add_head(&inst->hlist, &rp->free_instances); |
| } |
| |
| rp->nmissed = 0; |
| /* Establish function entry probe point */ |
| ret = __register_kprobe(&rp->kp, called_from); |
| if (ret != 0) |
| free_rp_inst(rp); |
| return ret; |
| } |
| |
| static int __register_kretprobes(struct kretprobe **rps, int num, |
| unsigned long called_from) |
| { |
| int ret = 0, i; |
| |
| if (num <= 0) |
| return -EINVAL; |
| for (i = 0; i < num; i++) { |
| ret = __register_kretprobe(rps[i], called_from); |
| if (ret < 0) { |
| if (i > 0) |
| unregister_kretprobes(rps, i); |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| int __kprobes register_kretprobe(struct kretprobe *rp) |
| { |
| return __register_kretprobes(&rp, 1, |
| (unsigned long)__builtin_return_address(0)); |
| } |
| |
| void __kprobes unregister_kretprobe(struct kretprobe *rp) |
| { |
| unregister_kretprobes(&rp, 1); |
| } |
| |
| int __kprobes register_kretprobes(struct kretprobe **rps, int num) |
| { |
| return __register_kretprobes(rps, num, |
| (unsigned long)__builtin_return_address(0)); |
| } |
| |
| void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) |
| { |
| int i; |
| |
| if (num <= 0) |
| return; |
| mutex_lock(&kprobe_mutex); |
| for (i = 0; i < num; i++) |
| if (__unregister_kprobe_top(&rps[i]->kp) < 0) |
| rps[i]->kp.addr = NULL; |
| mutex_unlock(&kprobe_mutex); |
| |
| synchronize_sched(); |
| for (i = 0; i < num; i++) { |
| if (rps[i]->kp.addr) { |
| __unregister_kprobe_bottom(&rps[i]->kp); |
| cleanup_rp_inst(rps[i]); |
| } |
| } |
| } |
| |
| #else /* CONFIG_KRETPROBES */ |
| int __kprobes register_kretprobe(struct kretprobe *rp) |
| { |
| return -ENOSYS; |
| } |
| |
| int __kprobes register_kretprobes(struct kretprobe **rps, int num) |
| { |
| return -ENOSYS; |
| } |
| void __kprobes unregister_kretprobe(struct kretprobe *rp) |
| { |
| } |
| |
| void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) |
| { |
| } |
| |
| static int __kprobes pre_handler_kretprobe(struct kprobe *p, |
| struct pt_regs *regs) |
| { |
| return 0; |
| } |
| |
| #endif /* CONFIG_KRETPROBES */ |
| |
| static int __init init_kprobes(void) |
| { |
| int i, err = 0; |
| unsigned long offset = 0, size = 0; |
| char *modname, namebuf[128]; |
| const char *symbol_name; |
| void *addr; |
| struct kprobe_blackpoint *kb; |
| |
| /* FIXME allocate the probe table, currently defined statically */ |
| /* initialize all list heads */ |
| for (i = 0; i < KPROBE_TABLE_SIZE; i++) { |
| INIT_HLIST_HEAD(&kprobe_table[i]); |
| INIT_HLIST_HEAD(&kretprobe_inst_table[i]); |
| spin_lock_init(&(kretprobe_table_locks[i].lock)); |
| } |
| |
| /* |
| * Lookup and populate the kprobe_blacklist. |
| * |
| * Unlike the kretprobe blacklist, we'll need to determine |
| * the range of addresses that belong to the said functions, |
| * since a kprobe need not necessarily be at the beginning |
| * of a function. |
| */ |
| for (kb = kprobe_blacklist; kb->name != NULL; kb++) { |
| kprobe_lookup_name(kb->name, addr); |
| if (!addr) |
| continue; |
| |
| kb->start_addr = (unsigned long)addr; |
| symbol_name = kallsyms_lookup(kb->start_addr, |
| &size, &offset, &modname, namebuf); |
| if (!symbol_name) |
| kb->range = 0; |
| else |
| kb->range = size; |
| } |
| |
| if (kretprobe_blacklist_size) { |
| /* lookup the function address from its name */ |
| for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { |
| kprobe_lookup_name(kretprobe_blacklist[i].name, |
| kretprobe_blacklist[i].addr); |
| if (!kretprobe_blacklist[i].addr) |
| printk("kretprobe: lookup failed: %s\n", |
| kretprobe_blacklist[i].name); |
| } |
| } |
| |
| /* By default, kprobes are enabled */ |
| kprobe_enabled = true; |
| |
| err = arch_init_kprobes(); |
| if (!err) |
| err = register_die_notifier(&kprobe_exceptions_nb); |
| kprobes_initialized = (err == 0); |
| |
| if (!err) |
| init_test_probes(); |
| return err; |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, |
| const char *sym, int offset,char *modname) |
| { |
| char *kprobe_type; |
| |
| if (p->pre_handler == pre_handler_kretprobe) |
| kprobe_type = "r"; |
| else if (p->pre_handler == setjmp_pre_handler) |
| kprobe_type = "j"; |
| else |
| kprobe_type = "k"; |
| if (sym) |
| seq_printf(pi, "%p %s %s+0x%x %s\n", p->addr, kprobe_type, |
| sym, offset, (modname ? modname : " ")); |
| else |
| seq_printf(pi, "%p %s %p\n", p->addr, kprobe_type, p->addr); |
| } |
| |
| static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) |
| { |
| return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; |
| } |
| |
| static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) |
| { |
| (*pos)++; |
| if (*pos >= KPROBE_TABLE_SIZE) |
| return NULL; |
| return pos; |
| } |
| |
| static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v) |
| { |
| /* Nothing to do */ |
| } |
| |
| static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) |
| { |
| struct hlist_head *head; |
| struct hlist_node *node; |
| struct kprobe *p, *kp; |
| const char *sym = NULL; |
| unsigned int i = *(loff_t *) v; |
| unsigned long offset = 0; |
| char *modname, namebuf[128]; |
| |
| head = &kprobe_table[i]; |
| preempt_disable(); |
| hlist_for_each_entry_rcu(p, node, head, hlist) { |
| sym = kallsyms_lookup((unsigned long)p->addr, NULL, |
| &offset, &modname, namebuf); |
| if (p->pre_handler == aggr_pre_handler) { |
| list_for_each_entry_rcu(kp, &p->list, list) |
| report_probe(pi, kp, sym, offset, modname); |
| } else |
| report_probe(pi, p, sym, offset, modname); |
| } |
| preempt_enable(); |
| return 0; |
| } |
| |
| static struct seq_operations kprobes_seq_ops = { |
| .start = kprobe_seq_start, |
| .next = kprobe_seq_next, |
| .stop = kprobe_seq_stop, |
| .show = show_kprobe_addr |
| }; |
| |
| static int __kprobes kprobes_open(struct inode *inode, struct file *filp) |
| { |
| return seq_open(filp, &kprobes_seq_ops); |
| } |
| |
| static struct file_operations debugfs_kprobes_operations = { |
| .open = kprobes_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |
| |
| static void __kprobes enable_all_kprobes(void) |
| { |
| struct hlist_head *head; |
| struct hlist_node *node; |
| struct kprobe *p; |
| unsigned int i; |
| |
| mutex_lock(&kprobe_mutex); |
| |
| /* If kprobes are already enabled, just return */ |
| if (kprobe_enabled) |
| goto already_enabled; |
| |
| for (i = 0; i < KPROBE_TABLE_SIZE; i++) { |
| head = &kprobe_table[i]; |
| hlist_for_each_entry_rcu(p, node, head, hlist) |
| arch_arm_kprobe(p); |
| } |
| |
| kprobe_enabled = true; |
| printk(KERN_INFO "Kprobes globally enabled\n"); |
| |
| already_enabled: |
| mutex_unlock(&kprobe_mutex); |
| return; |
| } |
| |
| static void __kprobes disable_all_kprobes(void) |
| { |
| struct hlist_head *head; |
| struct hlist_node *node; |
| struct kprobe *p; |
| unsigned int i; |
| |
| mutex_lock(&kprobe_mutex); |
| |
| /* If kprobes are already disabled, just return */ |
| if (!kprobe_enabled) |
| goto already_disabled; |
| |
| kprobe_enabled = false; |
| printk(KERN_INFO "Kprobes globally disabled\n"); |
| for (i = 0; i < KPROBE_TABLE_SIZE; i++) { |
| head = &kprobe_table[i]; |
| hlist_for_each_entry_rcu(p, node, head, hlist) { |
| if (!arch_trampoline_kprobe(p)) |
| arch_disarm_kprobe(p); |
| } |
| } |
| |
| mutex_unlock(&kprobe_mutex); |
| /* Allow all currently running kprobes to complete */ |
| synchronize_sched(); |
| return; |
| |
| already_disabled: |
| mutex_unlock(&kprobe_mutex); |
| return; |
| } |
| |
| /* |
| * XXX: The debugfs bool file interface doesn't allow for callbacks |
| * when the bool state is switched. We can reuse that facility when |
| * available |
| */ |
| static ssize_t read_enabled_file_bool(struct file *file, |
| char __user *user_buf, size_t count, loff_t *ppos) |
| { |
| char buf[3]; |
| |
| if (kprobe_enabled) |
| buf[0] = '1'; |
| else |
| buf[0] = '0'; |
| buf[1] = '\n'; |
| buf[2] = 0x00; |
| return simple_read_from_buffer(user_buf, count, ppos, buf, 2); |
| } |
| |
| static ssize_t write_enabled_file_bool(struct file *file, |
| const char __user *user_buf, size_t count, loff_t *ppos) |
| { |
| char buf[32]; |
| int buf_size; |
| |
| buf_size = min(count, (sizeof(buf)-1)); |
| if (copy_from_user(buf, user_buf, buf_size)) |
| return -EFAULT; |
| |
| switch (buf[0]) { |
| case 'y': |
| case 'Y': |
| case '1': |
| enable_all_kprobes(); |
| break; |
| case 'n': |
| case 'N': |
| case '0': |
| disable_all_kprobes(); |
| break; |
| } |
| |
| return count; |
| } |
| |
| static struct file_operations fops_kp = { |
| .read = read_enabled_file_bool, |
| .write = write_enabled_file_bool, |
| }; |
| |
| static int __kprobes debugfs_kprobe_init(void) |
| { |
| struct dentry *dir, *file; |
| unsigned int value = 1; |
| |
| dir = debugfs_create_dir("kprobes", NULL); |
| if (!dir) |
| return -ENOMEM; |
| |
| file = debugfs_create_file("list", 0444, dir, NULL, |
| &debugfs_kprobes_operations); |
| if (!file) { |
| debugfs_remove(dir); |
| return -ENOMEM; |
| } |
| |
| file = debugfs_create_file("enabled", 0600, dir, |
| &value, &fops_kp); |
| if (!file) { |
| debugfs_remove(dir); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| late_initcall(debugfs_kprobe_init); |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| module_init(init_kprobes); |
| |
| EXPORT_SYMBOL_GPL(register_kprobe); |
| EXPORT_SYMBOL_GPL(unregister_kprobe); |
| EXPORT_SYMBOL_GPL(register_kprobes); |
| EXPORT_SYMBOL_GPL(unregister_kprobes); |
| EXPORT_SYMBOL_GPL(register_jprobe); |
| EXPORT_SYMBOL_GPL(unregister_jprobe); |
| EXPORT_SYMBOL_GPL(register_jprobes); |
| EXPORT_SYMBOL_GPL(unregister_jprobes); |
| EXPORT_SYMBOL_GPL(jprobe_return); |
| EXPORT_SYMBOL_GPL(register_kretprobe); |
| EXPORT_SYMBOL_GPL(unregister_kretprobe); |
| EXPORT_SYMBOL_GPL(register_kretprobes); |
| EXPORT_SYMBOL_GPL(unregister_kretprobes); |