| /* |
| * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved. |
| * |
| * The code contained herein is licensed under the GNU General Public |
| * License. You may obtain a copy of the GNU General Public License |
| * Version 2 or later at the following locations: |
| * |
| * http://www.opensource.org/licenses/gpl-license.html |
| * http://www.gnu.org/copyleft/gpl.html |
| */ |
| |
| #include <linux/io.h> |
| #include <linux/rtc.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/clk.h> |
| |
| #define RTC_INPUT_CLK_32768HZ (0x00 << 5) |
| #define RTC_INPUT_CLK_32000HZ (0x01 << 5) |
| #define RTC_INPUT_CLK_38400HZ (0x02 << 5) |
| |
| #define RTC_SW_BIT (1 << 0) |
| #define RTC_ALM_BIT (1 << 2) |
| #define RTC_1HZ_BIT (1 << 4) |
| #define RTC_2HZ_BIT (1 << 7) |
| #define RTC_SAM0_BIT (1 << 8) |
| #define RTC_SAM1_BIT (1 << 9) |
| #define RTC_SAM2_BIT (1 << 10) |
| #define RTC_SAM3_BIT (1 << 11) |
| #define RTC_SAM4_BIT (1 << 12) |
| #define RTC_SAM5_BIT (1 << 13) |
| #define RTC_SAM6_BIT (1 << 14) |
| #define RTC_SAM7_BIT (1 << 15) |
| #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \ |
| RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \ |
| RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT) |
| |
| #define RTC_ENABLE_BIT (1 << 7) |
| |
| #define MAX_PIE_NUM 9 |
| #define MAX_PIE_FREQ 512 |
| static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = { |
| { 2, RTC_2HZ_BIT }, |
| { 4, RTC_SAM0_BIT }, |
| { 8, RTC_SAM1_BIT }, |
| { 16, RTC_SAM2_BIT }, |
| { 32, RTC_SAM3_BIT }, |
| { 64, RTC_SAM4_BIT }, |
| { 128, RTC_SAM5_BIT }, |
| { 256, RTC_SAM6_BIT }, |
| { MAX_PIE_FREQ, RTC_SAM7_BIT }, |
| }; |
| |
| #define MXC_RTC_TIME 0 |
| #define MXC_RTC_ALARM 1 |
| |
| #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */ |
| #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */ |
| #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */ |
| #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */ |
| #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */ |
| #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */ |
| #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */ |
| #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */ |
| #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */ |
| #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */ |
| #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */ |
| #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */ |
| #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */ |
| |
| enum imx_rtc_type { |
| IMX1_RTC, |
| IMX21_RTC, |
| }; |
| |
| struct rtc_plat_data { |
| struct rtc_device *rtc; |
| void __iomem *ioaddr; |
| int irq; |
| struct clk *clk; |
| struct rtc_time g_rtc_alarm; |
| enum imx_rtc_type devtype; |
| }; |
| |
| static struct platform_device_id imx_rtc_devtype[] = { |
| { |
| .name = "imx1-rtc", |
| .driver_data = IMX1_RTC, |
| }, { |
| .name = "imx21-rtc", |
| .driver_data = IMX21_RTC, |
| }, { |
| /* sentinel */ |
| } |
| }; |
| MODULE_DEVICE_TABLE(platform, imx_rtc_devtype); |
| |
| static inline int is_imx1_rtc(struct rtc_plat_data *data) |
| { |
| return data->devtype == IMX1_RTC; |
| } |
| |
| /* |
| * This function is used to obtain the RTC time or the alarm value in |
| * second. |
| */ |
| static time64_t get_alarm_or_time(struct device *dev, int time_alarm) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct rtc_plat_data *pdata = platform_get_drvdata(pdev); |
| void __iomem *ioaddr = pdata->ioaddr; |
| u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0; |
| |
| switch (time_alarm) { |
| case MXC_RTC_TIME: |
| day = readw(ioaddr + RTC_DAYR); |
| hr_min = readw(ioaddr + RTC_HOURMIN); |
| sec = readw(ioaddr + RTC_SECOND); |
| break; |
| case MXC_RTC_ALARM: |
| day = readw(ioaddr + RTC_DAYALARM); |
| hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff; |
| sec = readw(ioaddr + RTC_ALRM_SEC); |
| break; |
| } |
| |
| hr = hr_min >> 8; |
| min = hr_min & 0xff; |
| |
| return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec; |
| } |
| |
| /* |
| * This function sets the RTC alarm value or the time value. |
| */ |
| static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time) |
| { |
| u32 tod, day, hr, min, sec, temp; |
| struct platform_device *pdev = to_platform_device(dev); |
| struct rtc_plat_data *pdata = platform_get_drvdata(pdev); |
| void __iomem *ioaddr = pdata->ioaddr; |
| |
| day = div_s64_rem(time, 86400, &tod); |
| |
| /* time is within a day now */ |
| hr = tod / 3600; |
| tod -= hr * 3600; |
| |
| /* time is within an hour now */ |
| min = tod / 60; |
| sec = tod - min * 60; |
| |
| temp = (hr << 8) + min; |
| |
| switch (time_alarm) { |
| case MXC_RTC_TIME: |
| writew(day, ioaddr + RTC_DAYR); |
| writew(sec, ioaddr + RTC_SECOND); |
| writew(temp, ioaddr + RTC_HOURMIN); |
| break; |
| case MXC_RTC_ALARM: |
| writew(day, ioaddr + RTC_DAYALARM); |
| writew(sec, ioaddr + RTC_ALRM_SEC); |
| writew(temp, ioaddr + RTC_ALRM_HM); |
| break; |
| } |
| } |
| |
| /* |
| * This function updates the RTC alarm registers and then clears all the |
| * interrupt status bits. |
| */ |
| static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm) |
| { |
| time64_t time; |
| struct platform_device *pdev = to_platform_device(dev); |
| struct rtc_plat_data *pdata = platform_get_drvdata(pdev); |
| void __iomem *ioaddr = pdata->ioaddr; |
| |
| time = rtc_tm_to_time64(alrm); |
| |
| /* clear all the interrupt status bits */ |
| writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR); |
| set_alarm_or_time(dev, MXC_RTC_ALARM, time); |
| } |
| |
| static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit, |
| unsigned int enabled) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct rtc_plat_data *pdata = platform_get_drvdata(pdev); |
| void __iomem *ioaddr = pdata->ioaddr; |
| u32 reg; |
| |
| spin_lock_irq(&pdata->rtc->irq_lock); |
| reg = readw(ioaddr + RTC_RTCIENR); |
| |
| if (enabled) |
| reg |= bit; |
| else |
| reg &= ~bit; |
| |
| writew(reg, ioaddr + RTC_RTCIENR); |
| spin_unlock_irq(&pdata->rtc->irq_lock); |
| } |
| |
| /* This function is the RTC interrupt service routine. */ |
| static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id) |
| { |
| struct platform_device *pdev = dev_id; |
| struct rtc_plat_data *pdata = platform_get_drvdata(pdev); |
| void __iomem *ioaddr = pdata->ioaddr; |
| unsigned long flags; |
| u32 status; |
| u32 events = 0; |
| |
| spin_lock_irqsave(&pdata->rtc->irq_lock, flags); |
| status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR); |
| /* clear interrupt sources */ |
| writew(status, ioaddr + RTC_RTCISR); |
| |
| /* update irq data & counter */ |
| if (status & RTC_ALM_BIT) { |
| events |= (RTC_AF | RTC_IRQF); |
| /* RTC alarm should be one-shot */ |
| mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0); |
| } |
| |
| if (status & RTC_1HZ_BIT) |
| events |= (RTC_UF | RTC_IRQF); |
| |
| if (status & PIT_ALL_ON) |
| events |= (RTC_PF | RTC_IRQF); |
| |
| rtc_update_irq(pdata->rtc, 1, events); |
| spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Clear all interrupts and release the IRQ |
| */ |
| static void mxc_rtc_release(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct rtc_plat_data *pdata = platform_get_drvdata(pdev); |
| void __iomem *ioaddr = pdata->ioaddr; |
| |
| spin_lock_irq(&pdata->rtc->irq_lock); |
| |
| /* Disable all rtc interrupts */ |
| writew(0, ioaddr + RTC_RTCIENR); |
| |
| /* Clear all interrupt status */ |
| writew(0xffffffff, ioaddr + RTC_RTCISR); |
| |
| spin_unlock_irq(&pdata->rtc->irq_lock); |
| } |
| |
| static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) |
| { |
| mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled); |
| return 0; |
| } |
| |
| /* |
| * This function reads the current RTC time into tm in Gregorian date. |
| */ |
| static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| time64_t val; |
| |
| /* Avoid roll-over from reading the different registers */ |
| do { |
| val = get_alarm_or_time(dev, MXC_RTC_TIME); |
| } while (val != get_alarm_or_time(dev, MXC_RTC_TIME)); |
| |
| rtc_time64_to_tm(val, tm); |
| |
| return 0; |
| } |
| |
| /* |
| * This function sets the internal RTC time based on tm in Gregorian date. |
| */ |
| static int mxc_rtc_set_mmss(struct device *dev, time64_t time) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct rtc_plat_data *pdata = platform_get_drvdata(pdev); |
| |
| /* |
| * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only |
| */ |
| if (is_imx1_rtc(pdata)) { |
| struct rtc_time tm; |
| |
| rtc_time64_to_tm(time, &tm); |
| tm.tm_year = 70; |
| time = rtc_tm_to_time64(&tm); |
| } |
| |
| /* Avoid roll-over from reading the different registers */ |
| do { |
| set_alarm_or_time(dev, MXC_RTC_TIME, time); |
| } while (time != get_alarm_or_time(dev, MXC_RTC_TIME)); |
| |
| return 0; |
| } |
| |
| /* |
| * This function reads the current alarm value into the passed in 'alrm' |
| * argument. It updates the alrm's pending field value based on the whether |
| * an alarm interrupt occurs or not. |
| */ |
| static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct rtc_plat_data *pdata = platform_get_drvdata(pdev); |
| void __iomem *ioaddr = pdata->ioaddr; |
| |
| rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time); |
| alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0; |
| |
| return 0; |
| } |
| |
| /* |
| * This function sets the RTC alarm based on passed in alrm. |
| */ |
| static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct rtc_plat_data *pdata = platform_get_drvdata(pdev); |
| |
| rtc_update_alarm(dev, &alrm->time); |
| |
| memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time)); |
| mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled); |
| |
| return 0; |
| } |
| |
| /* RTC layer */ |
| static struct rtc_class_ops mxc_rtc_ops = { |
| .release = mxc_rtc_release, |
| .read_time = mxc_rtc_read_time, |
| .set_mmss64 = mxc_rtc_set_mmss, |
| .read_alarm = mxc_rtc_read_alarm, |
| .set_alarm = mxc_rtc_set_alarm, |
| .alarm_irq_enable = mxc_rtc_alarm_irq_enable, |
| }; |
| |
| static int mxc_rtc_probe(struct platform_device *pdev) |
| { |
| struct resource *res; |
| struct rtc_device *rtc; |
| struct rtc_plat_data *pdata = NULL; |
| u32 reg; |
| unsigned long rate; |
| int ret; |
| |
| pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); |
| if (!pdata) |
| return -ENOMEM; |
| |
| pdata->devtype = pdev->id_entry->driver_data; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(pdata->ioaddr)) |
| return PTR_ERR(pdata->ioaddr); |
| |
| pdata->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(pdata->clk)) { |
| dev_err(&pdev->dev, "unable to get clock!\n"); |
| return PTR_ERR(pdata->clk); |
| } |
| |
| ret = clk_prepare_enable(pdata->clk); |
| if (ret) |
| return ret; |
| |
| rate = clk_get_rate(pdata->clk); |
| |
| if (rate == 32768) |
| reg = RTC_INPUT_CLK_32768HZ; |
| else if (rate == 32000) |
| reg = RTC_INPUT_CLK_32000HZ; |
| else if (rate == 38400) |
| reg = RTC_INPUT_CLK_38400HZ; |
| else { |
| dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate); |
| ret = -EINVAL; |
| goto exit_put_clk; |
| } |
| |
| reg |= RTC_ENABLE_BIT; |
| writew(reg, (pdata->ioaddr + RTC_RTCCTL)); |
| if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) { |
| dev_err(&pdev->dev, "hardware module can't be enabled!\n"); |
| ret = -EIO; |
| goto exit_put_clk; |
| } |
| |
| platform_set_drvdata(pdev, pdata); |
| |
| /* Configure and enable the RTC */ |
| pdata->irq = platform_get_irq(pdev, 0); |
| |
| if (pdata->irq >= 0 && |
| devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt, |
| IRQF_SHARED, pdev->name, pdev) < 0) { |
| dev_warn(&pdev->dev, "interrupt not available.\n"); |
| pdata->irq = -1; |
| } |
| |
| if (pdata->irq >= 0) |
| device_init_wakeup(&pdev->dev, 1); |
| |
| rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops, |
| THIS_MODULE); |
| if (IS_ERR(rtc)) { |
| ret = PTR_ERR(rtc); |
| goto exit_put_clk; |
| } |
| |
| pdata->rtc = rtc; |
| |
| return 0; |
| |
| exit_put_clk: |
| clk_disable_unprepare(pdata->clk); |
| |
| return ret; |
| } |
| |
| static int mxc_rtc_remove(struct platform_device *pdev) |
| { |
| struct rtc_plat_data *pdata = platform_get_drvdata(pdev); |
| |
| clk_disable_unprepare(pdata->clk); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int mxc_rtc_suspend(struct device *dev) |
| { |
| struct rtc_plat_data *pdata = dev_get_drvdata(dev); |
| |
| if (device_may_wakeup(dev)) |
| enable_irq_wake(pdata->irq); |
| |
| return 0; |
| } |
| |
| static int mxc_rtc_resume(struct device *dev) |
| { |
| struct rtc_plat_data *pdata = dev_get_drvdata(dev); |
| |
| if (device_may_wakeup(dev)) |
| disable_irq_wake(pdata->irq); |
| |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume); |
| |
| static struct platform_driver mxc_rtc_driver = { |
| .driver = { |
| .name = "mxc_rtc", |
| .pm = &mxc_rtc_pm_ops, |
| }, |
| .id_table = imx_rtc_devtype, |
| .probe = mxc_rtc_probe, |
| .remove = mxc_rtc_remove, |
| }; |
| |
| module_platform_driver(mxc_rtc_driver) |
| |
| MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>"); |
| MODULE_DESCRIPTION("RTC driver for Freescale MXC"); |
| MODULE_LICENSE("GPL"); |
| |