| /******************************************************************************* |
| |
| Intel PRO/1000 Linux driver |
| Copyright(c) 1999 - 2008 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| /* |
| * 80003ES2LAN Gigabit Ethernet Controller (Copper) |
| * 80003ES2LAN Gigabit Ethernet Controller (Serdes) |
| */ |
| |
| #include <linux/netdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| |
| #include "e1000.h" |
| |
| #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 |
| #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 |
| #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 |
| #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F |
| |
| #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 |
| #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 |
| #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 |
| |
| #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 |
| #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 |
| #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000 |
| |
| #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ |
| #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 |
| |
| #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 |
| #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 |
| |
| /* GG82563 PHY Specific Status Register (Page 0, Register 16 */ |
| #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */ |
| #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 |
| #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ |
| #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ |
| #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ |
| |
| /* PHY Specific Control Register 2 (Page 0, Register 26) */ |
| #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 |
| /* 1=Reverse Auto-Negotiation */ |
| |
| /* MAC Specific Control Register (Page 2, Register 21) */ |
| /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ |
| #define GG82563_MSCR_TX_CLK_MASK 0x0007 |
| #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 |
| #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 |
| #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 |
| |
| #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ |
| |
| /* DSP Distance Register (Page 5, Register 26) */ |
| #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M |
| 1 = 50-80M |
| 2 = 80-110M |
| 3 = 110-140M |
| 4 = >140M */ |
| |
| /* Kumeran Mode Control Register (Page 193, Register 16) */ |
| #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 |
| |
| /* Max number of times Kumeran read/write should be validated */ |
| #define GG82563_MAX_KMRN_RETRY 0x5 |
| |
| /* Power Management Control Register (Page 193, Register 20) */ |
| #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 |
| /* 1=Enable SERDES Electrical Idle */ |
| |
| /* In-Band Control Register (Page 194, Register 18) */ |
| #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ |
| |
| /* |
| * A table for the GG82563 cable length where the range is defined |
| * with a lower bound at "index" and the upper bound at |
| * "index + 5". |
| */ |
| static const u16 e1000_gg82563_cable_length_table[] = |
| { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; |
| |
| static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); |
| static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); |
| static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); |
| static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); |
| |
| /** |
| * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. |
| * @hw: pointer to the HW structure |
| * |
| * This is a function pointer entry point called by the api module. |
| **/ |
| static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| |
| if (hw->phy.media_type != e1000_media_type_copper) { |
| phy->type = e1000_phy_none; |
| return 0; |
| } |
| |
| phy->addr = 1; |
| phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| phy->reset_delay_us = 100; |
| phy->type = e1000_phy_gg82563; |
| |
| /* This can only be done after all function pointers are setup. */ |
| ret_val = e1000e_get_phy_id(hw); |
| |
| /* Verify phy id */ |
| if (phy->id != GG82563_E_PHY_ID) |
| return -E1000_ERR_PHY; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. |
| * @hw: pointer to the HW structure |
| * |
| * This is a function pointer entry point called by the api module. |
| **/ |
| static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 eecd = er32(EECD); |
| u16 size; |
| |
| nvm->opcode_bits = 8; |
| nvm->delay_usec = 1; |
| switch (nvm->override) { |
| case e1000_nvm_override_spi_large: |
| nvm->page_size = 32; |
| nvm->address_bits = 16; |
| break; |
| case e1000_nvm_override_spi_small: |
| nvm->page_size = 8; |
| nvm->address_bits = 8; |
| break; |
| default: |
| nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
| nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
| break; |
| } |
| |
| nvm->type = e1000_nvm_eeprom_spi; |
| |
| size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
| E1000_EECD_SIZE_EX_SHIFT); |
| |
| /* |
| * Added to a constant, "size" becomes the left-shift value |
| * for setting word_size. |
| */ |
| size += NVM_WORD_SIZE_BASE_SHIFT; |
| |
| /* EEPROM access above 16k is unsupported */ |
| if (size > 14) |
| size = 14; |
| nvm->word_size = 1 << size; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. |
| * @hw: pointer to the HW structure |
| * |
| * This is a function pointer entry point called by the api module. |
| **/ |
| static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_mac_info *mac = &hw->mac; |
| struct e1000_mac_operations *func = &mac->ops; |
| |
| /* Set media type */ |
| switch (adapter->pdev->device) { |
| case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
| hw->phy.media_type = e1000_media_type_internal_serdes; |
| break; |
| default: |
| hw->phy.media_type = e1000_media_type_copper; |
| break; |
| } |
| |
| /* Set mta register count */ |
| mac->mta_reg_count = 128; |
| /* Set rar entry count */ |
| mac->rar_entry_count = E1000_RAR_ENTRIES; |
| /* Set if manageability features are enabled. */ |
| mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0; |
| |
| /* check for link */ |
| switch (hw->phy.media_type) { |
| case e1000_media_type_copper: |
| func->setup_physical_interface = e1000_setup_copper_link_80003es2lan; |
| func->check_for_link = e1000e_check_for_copper_link; |
| break; |
| case e1000_media_type_fiber: |
| func->setup_physical_interface = e1000e_setup_fiber_serdes_link; |
| func->check_for_link = e1000e_check_for_fiber_link; |
| break; |
| case e1000_media_type_internal_serdes: |
| func->setup_physical_interface = e1000e_setup_fiber_serdes_link; |
| func->check_for_link = e1000e_check_for_serdes_link; |
| break; |
| default: |
| return -E1000_ERR_CONFIG; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| s32 rc; |
| |
| rc = e1000_init_mac_params_80003es2lan(adapter); |
| if (rc) |
| return rc; |
| |
| rc = e1000_init_nvm_params_80003es2lan(hw); |
| if (rc) |
| return rc; |
| |
| rc = e1000_init_phy_params_80003es2lan(hw); |
| if (rc) |
| return rc; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY |
| * @hw: pointer to the HW structure |
| * |
| * A wrapper to acquire access rights to the correct PHY. This is a |
| * function pointer entry point called by the api module. |
| **/ |
| static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) |
| { |
| u16 mask; |
| |
| mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
| mask |= E1000_SWFW_CSR_SM; |
| |
| return e1000_acquire_swfw_sync_80003es2lan(hw, mask); |
| } |
| |
| /** |
| * e1000_release_phy_80003es2lan - Release rights to access PHY |
| * @hw: pointer to the HW structure |
| * |
| * A wrapper to release access rights to the correct PHY. This is a |
| * function pointer entry point called by the api module. |
| **/ |
| static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) |
| { |
| u16 mask; |
| |
| mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
| mask |= E1000_SWFW_CSR_SM; |
| |
| e1000_release_swfw_sync_80003es2lan(hw, mask); |
| } |
| |
| /** |
| * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the semaphore to access the EEPROM. This is a function |
| * pointer entry point called by the api module. |
| **/ |
| static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000e_acquire_nvm(hw); |
| |
| if (ret_val) |
| e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM |
| * @hw: pointer to the HW structure |
| * |
| * Release the semaphore used to access the EEPROM. This is a |
| * function pointer entry point called by the api module. |
| **/ |
| static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) |
| { |
| e1000e_release_nvm(hw); |
| e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
| } |
| |
| /** |
| * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore |
| * @hw: pointer to the HW structure |
| * @mask: specifies which semaphore to acquire |
| * |
| * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
| * will also specify which port we're acquiring the lock for. |
| **/ |
| static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) |
| { |
| u32 swfw_sync; |
| u32 swmask = mask; |
| u32 fwmask = mask << 16; |
| s32 i = 0; |
| s32 timeout = 200; |
| |
| while (i < timeout) { |
| if (e1000e_get_hw_semaphore(hw)) |
| return -E1000_ERR_SWFW_SYNC; |
| |
| swfw_sync = er32(SW_FW_SYNC); |
| if (!(swfw_sync & (fwmask | swmask))) |
| break; |
| |
| /* |
| * Firmware currently using resource (fwmask) |
| * or other software thread using resource (swmask) |
| */ |
| e1000e_put_hw_semaphore(hw); |
| mdelay(5); |
| i++; |
| } |
| |
| if (i == timeout) { |
| hw_dbg(hw, |
| "Driver can't access resource, SW_FW_SYNC timeout.\n"); |
| return -E1000_ERR_SWFW_SYNC; |
| } |
| |
| swfw_sync |= swmask; |
| ew32(SW_FW_SYNC, swfw_sync); |
| |
| e1000e_put_hw_semaphore(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore |
| * @hw: pointer to the HW structure |
| * @mask: specifies which semaphore to acquire |
| * |
| * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
| * will also specify which port we're releasing the lock for. |
| **/ |
| static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) |
| { |
| u32 swfw_sync; |
| |
| while (e1000e_get_hw_semaphore(hw) != 0); |
| /* Empty */ |
| |
| swfw_sync = er32(SW_FW_SYNC); |
| swfw_sync &= ~mask; |
| ew32(SW_FW_SYNC, swfw_sync); |
| |
| e1000e_put_hw_semaphore(hw); |
| } |
| |
| /** |
| * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register |
| * @hw: pointer to the HW structure |
| * @offset: offset of the register to read |
| * @data: pointer to the data returned from the operation |
| * |
| * Read the GG82563 PHY register. This is a function pointer entry |
| * point called by the api module. |
| **/ |
| static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
| u32 offset, u16 *data) |
| { |
| s32 ret_val; |
| u32 page_select; |
| u16 temp; |
| |
| ret_val = e1000_acquire_phy_80003es2lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Select Configuration Page */ |
| if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
| page_select = GG82563_PHY_PAGE_SELECT; |
| } else { |
| /* |
| * Use Alternative Page Select register to access |
| * registers 30 and 31 |
| */ |
| page_select = GG82563_PHY_PAGE_SELECT_ALT; |
| } |
| |
| temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); |
| ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); |
| if (ret_val) { |
| e1000_release_phy_80003es2lan(hw); |
| return ret_val; |
| } |
| |
| /* |
| * The "ready" bit in the MDIC register may be incorrectly set |
| * before the device has completed the "Page Select" MDI |
| * transaction. So we wait 200us after each MDI command... |
| */ |
| udelay(200); |
| |
| /* ...and verify the command was successful. */ |
| ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); |
| |
| if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { |
| ret_val = -E1000_ERR_PHY; |
| e1000_release_phy_80003es2lan(hw); |
| return ret_val; |
| } |
| |
| udelay(200); |
| |
| ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, |
| data); |
| |
| udelay(200); |
| e1000_release_phy_80003es2lan(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register |
| * @hw: pointer to the HW structure |
| * @offset: offset of the register to read |
| * @data: value to write to the register |
| * |
| * Write to the GG82563 PHY register. This is a function pointer entry |
| * point called by the api module. |
| **/ |
| static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
| u32 offset, u16 data) |
| { |
| s32 ret_val; |
| u32 page_select; |
| u16 temp; |
| |
| ret_val = e1000_acquire_phy_80003es2lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Select Configuration Page */ |
| if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
| page_select = GG82563_PHY_PAGE_SELECT; |
| } else { |
| /* |
| * Use Alternative Page Select register to access |
| * registers 30 and 31 |
| */ |
| page_select = GG82563_PHY_PAGE_SELECT_ALT; |
| } |
| |
| temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); |
| ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); |
| if (ret_val) { |
| e1000_release_phy_80003es2lan(hw); |
| return ret_val; |
| } |
| |
| |
| /* |
| * The "ready" bit in the MDIC register may be incorrectly set |
| * before the device has completed the "Page Select" MDI |
| * transaction. So we wait 200us after each MDI command... |
| */ |
| udelay(200); |
| |
| /* ...and verify the command was successful. */ |
| ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); |
| |
| if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { |
| e1000_release_phy_80003es2lan(hw); |
| return -E1000_ERR_PHY; |
| } |
| |
| udelay(200); |
| |
| ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, |
| data); |
| |
| udelay(200); |
| e1000_release_phy_80003es2lan(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_nvm_80003es2lan - Write to ESB2 NVM |
| * @hw: pointer to the HW structure |
| * @offset: offset of the register to read |
| * @words: number of words to write |
| * @data: buffer of data to write to the NVM |
| * |
| * Write "words" of data to the ESB2 NVM. This is a function |
| * pointer entry point called by the api module. |
| **/ |
| static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, |
| u16 words, u16 *data) |
| { |
| return e1000e_write_nvm_spi(hw, offset, words, data); |
| } |
| |
| /** |
| * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete |
| * @hw: pointer to the HW structure |
| * |
| * Wait a specific amount of time for manageability processes to complete. |
| * This is a function pointer entry point called by the phy module. |
| **/ |
| static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) |
| { |
| s32 timeout = PHY_CFG_TIMEOUT; |
| u32 mask = E1000_NVM_CFG_DONE_PORT_0; |
| |
| if (hw->bus.func == 1) |
| mask = E1000_NVM_CFG_DONE_PORT_1; |
| |
| while (timeout) { |
| if (er32(EEMNGCTL) & mask) |
| break; |
| msleep(1); |
| timeout--; |
| } |
| if (!timeout) { |
| hw_dbg(hw, "MNG configuration cycle has not completed.\n"); |
| return -E1000_ERR_RESET; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex |
| * @hw: pointer to the HW structure |
| * |
| * Force the speed and duplex settings onto the PHY. This is a |
| * function pointer entry point called by the phy module. |
| **/ |
| static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 phy_data; |
| bool link; |
| |
| /* |
| * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
| * forced whenever speed and duplex are forced. |
| */ |
| ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; |
| ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data); |
| |
| ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| e1000e_phy_force_speed_duplex_setup(hw, &phy_data); |
| |
| /* Reset the phy to commit changes. */ |
| phy_data |= MII_CR_RESET; |
| |
| ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| udelay(1); |
| |
| if (hw->phy.autoneg_wait_to_complete) { |
| hw_dbg(hw, "Waiting for forced speed/duplex link " |
| "on GG82563 phy.\n"); |
| |
| ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 100000, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) { |
| /* |
| * We didn't get link. |
| * Reset the DSP and cross our fingers. |
| */ |
| ret_val = e1000e_phy_reset_dsp(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Try once more */ |
| ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 100000, &link); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* |
| * Resetting the phy means we need to verify the TX_CLK corresponds |
| * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. |
| */ |
| phy_data &= ~GG82563_MSCR_TX_CLK_MASK; |
| if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) |
| phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; |
| else |
| phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; |
| |
| /* |
| * In addition, we must re-enable CRS on Tx for both half and full |
| * duplex. |
| */ |
| phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
| ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_get_cable_length_80003es2lan - Set approximate cable length |
| * @hw: pointer to the HW structure |
| * |
| * Find the approximate cable length as measured by the GG82563 PHY. |
| * This is a function pointer entry point called by the phy module. |
| **/ |
| static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data; |
| u16 index; |
| |
| ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| index = phy_data & GG82563_DSPD_CABLE_LENGTH; |
| phy->min_cable_length = e1000_gg82563_cable_length_table[index]; |
| phy->max_cable_length = e1000_gg82563_cable_length_table[index+5]; |
| |
| phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_get_link_up_info_80003es2lan - Report speed and duplex |
| * @hw: pointer to the HW structure |
| * @speed: pointer to speed buffer |
| * @duplex: pointer to duplex buffer |
| * |
| * Retrieve the current speed and duplex configuration. |
| * This is a function pointer entry point called by the api module. |
| **/ |
| static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, |
| u16 *duplex) |
| { |
| s32 ret_val; |
| |
| if (hw->phy.media_type == e1000_media_type_copper) { |
| ret_val = e1000e_get_speed_and_duplex_copper(hw, |
| speed, |
| duplex); |
| if (ret_val) |
| return ret_val; |
| if (*speed == SPEED_1000) |
| ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); |
| else |
| ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, |
| *duplex); |
| } else { |
| ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw, |
| speed, |
| duplex); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_reset_hw_80003es2lan - Reset the ESB2 controller |
| * @hw: pointer to the HW structure |
| * |
| * Perform a global reset to the ESB2 controller. |
| * This is a function pointer entry point called by the api module. |
| **/ |
| static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| u32 icr; |
| s32 ret_val; |
| |
| /* |
| * Prevent the PCI-E bus from sticking if there is no TLP connection |
| * on the last TLP read/write transaction when MAC is reset. |
| */ |
| ret_val = e1000e_disable_pcie_master(hw); |
| if (ret_val) |
| hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); |
| |
| hw_dbg(hw, "Masking off all interrupts\n"); |
| ew32(IMC, 0xffffffff); |
| |
| ew32(RCTL, 0); |
| ew32(TCTL, E1000_TCTL_PSP); |
| e1e_flush(); |
| |
| msleep(10); |
| |
| ctrl = er32(CTRL); |
| |
| hw_dbg(hw, "Issuing a global reset to MAC\n"); |
| ew32(CTRL, ctrl | E1000_CTRL_RST); |
| |
| ret_val = e1000e_get_auto_rd_done(hw); |
| if (ret_val) |
| /* We don't want to continue accessing MAC registers. */ |
| return ret_val; |
| |
| /* Clear any pending interrupt events. */ |
| ew32(IMC, 0xffffffff); |
| icr = er32(ICR); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_init_hw_80003es2lan - Initialize the ESB2 controller |
| * @hw: pointer to the HW structure |
| * |
| * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. |
| * This is a function pointer entry point called by the api module. |
| **/ |
| static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 reg_data; |
| s32 ret_val; |
| u16 i; |
| |
| e1000_initialize_hw_bits_80003es2lan(hw); |
| |
| /* Initialize identification LED */ |
| ret_val = e1000e_id_led_init(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error initializing identification LED\n"); |
| return ret_val; |
| } |
| |
| /* Disabling VLAN filtering */ |
| hw_dbg(hw, "Initializing the IEEE VLAN\n"); |
| e1000e_clear_vfta(hw); |
| |
| /* Setup the receive address. */ |
| e1000e_init_rx_addrs(hw, mac->rar_entry_count); |
| |
| /* Zero out the Multicast HASH table */ |
| hw_dbg(hw, "Zeroing the MTA\n"); |
| for (i = 0; i < mac->mta_reg_count; i++) |
| E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
| |
| /* Setup link and flow control */ |
| ret_val = e1000e_setup_link(hw); |
| |
| /* Set the transmit descriptor write-back policy */ |
| reg_data = er32(TXDCTL(0)); |
| reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; |
| ew32(TXDCTL(0), reg_data); |
| |
| /* ...for both queues. */ |
| reg_data = er32(TXDCTL(1)); |
| reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; |
| ew32(TXDCTL(1), reg_data); |
| |
| /* Enable retransmit on late collisions */ |
| reg_data = er32(TCTL); |
| reg_data |= E1000_TCTL_RTLC; |
| ew32(TCTL, reg_data); |
| |
| /* Configure Gigabit Carry Extend Padding */ |
| reg_data = er32(TCTL_EXT); |
| reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; |
| reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; |
| ew32(TCTL_EXT, reg_data); |
| |
| /* Configure Transmit Inter-Packet Gap */ |
| reg_data = er32(TIPG); |
| reg_data &= ~E1000_TIPG_IPGT_MASK; |
| reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; |
| ew32(TIPG, reg_data); |
| |
| reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); |
| reg_data &= ~0x00100000; |
| E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); |
| |
| /* |
| * Clear all of the statistics registers (clear on read). It is |
| * important that we do this after we have tried to establish link |
| * because the symbol error count will increment wildly if there |
| * is no link. |
| */ |
| e1000_clear_hw_cntrs_80003es2lan(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 |
| * @hw: pointer to the HW structure |
| * |
| * Initializes required hardware-dependent bits needed for normal operation. |
| **/ |
| static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) |
| { |
| u32 reg; |
| |
| /* Transmit Descriptor Control 0 */ |
| reg = er32(TXDCTL(0)); |
| reg |= (1 << 22); |
| ew32(TXDCTL(0), reg); |
| |
| /* Transmit Descriptor Control 1 */ |
| reg = er32(TXDCTL(1)); |
| reg |= (1 << 22); |
| ew32(TXDCTL(1), reg); |
| |
| /* Transmit Arbitration Control 0 */ |
| reg = er32(TARC(0)); |
| reg &= ~(0xF << 27); /* 30:27 */ |
| if (hw->phy.media_type != e1000_media_type_copper) |
| reg &= ~(1 << 20); |
| ew32(TARC(0), reg); |
| |
| /* Transmit Arbitration Control 1 */ |
| reg = er32(TARC(1)); |
| if (er32(TCTL) & E1000_TCTL_MULR) |
| reg &= ~(1 << 28); |
| else |
| reg |= (1 << 28); |
| ew32(TARC(1), reg); |
| } |
| |
| /** |
| * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link |
| * @hw: pointer to the HW structure |
| * |
| * Setup some GG82563 PHY registers for obtaining link |
| **/ |
| static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u32 ctrl_ext; |
| u32 i = 0; |
| u16 data, data2; |
| |
| ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
| /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ |
| data |= GG82563_MSCR_TX_CLK_1000MBPS_25; |
| |
| ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data); |
| if (ret_val) |
| return ret_val; |
| |
| /* |
| * Options: |
| * MDI/MDI-X = 0 (default) |
| * 0 - Auto for all speeds |
| * 1 - MDI mode |
| * 2 - MDI-X mode |
| * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| */ |
| ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; |
| |
| switch (phy->mdix) { |
| case 1: |
| data |= GG82563_PSCR_CROSSOVER_MODE_MDI; |
| break; |
| case 2: |
| data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; |
| break; |
| case 0: |
| default: |
| data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; |
| break; |
| } |
| |
| /* |
| * Options: |
| * disable_polarity_correction = 0 (default) |
| * Automatic Correction for Reversed Cable Polarity |
| * 0 - Disabled |
| * 1 - Enabled |
| */ |
| data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
| if (phy->disable_polarity_correction) |
| data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
| |
| ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data); |
| if (ret_val) |
| return ret_val; |
| |
| /* SW Reset the PHY so all changes take effect */ |
| ret_val = e1000e_commit_phy(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error Resetting the PHY\n"); |
| return ret_val; |
| } |
| |
| /* Bypass Rx and Tx FIFO's */ |
| ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, |
| E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | |
| E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000e_read_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, |
| &data); |
| if (ret_val) |
| return ret_val; |
| data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; |
| ret_val = e1000e_write_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, |
| data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; |
| ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data); |
| if (ret_val) |
| return ret_val; |
| |
| ctrl_ext = er32(CTRL_EXT); |
| ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); |
| ew32(CTRL_EXT, ctrl_ext); |
| |
| ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| /* |
| * Do not init these registers when the HW is in IAMT mode, since the |
| * firmware will have already initialized them. We only initialize |
| * them if the HW is not in IAMT mode. |
| */ |
| if (!e1000e_check_mng_mode(hw)) { |
| /* Enable Electrical Idle on the PHY */ |
| data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; |
| ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data); |
| if (ret_val) |
| return ret_val; |
| |
| do { |
| ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, |
| &data2); |
| if (ret_val) |
| return ret_val; |
| i++; |
| } while ((data != data2) && (i < GG82563_MAX_KMRN_RETRY)); |
| |
| data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* |
| * Workaround: Disable padding in Kumeran interface in the MAC |
| * and in the PHY to avoid CRC errors. |
| */ |
| ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data |= GG82563_ICR_DIS_PADDING; |
| ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data); |
| if (ret_val) |
| return ret_val; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 |
| * @hw: pointer to the HW structure |
| * |
| * Essentially a wrapper for setting up all things "copper" related. |
| * This is a function pointer entry point called by the mac module. |
| **/ |
| static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| u16 reg_data; |
| |
| ctrl = er32(CTRL); |
| ctrl |= E1000_CTRL_SLU; |
| ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ew32(CTRL, ctrl); |
| |
| /* |
| * Set the mac to wait the maximum time between each |
| * iteration and increase the max iterations when |
| * polling the phy; this fixes erroneous timeouts at 10Mbps. |
| */ |
| ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); |
| if (ret_val) |
| return ret_val; |
| reg_data |= 0x3F; |
| ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_read_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, |
| ®_data); |
| if (ret_val) |
| return ret_val; |
| reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; |
| ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, |
| reg_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000e_setup_copper_link(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation |
| * @hw: pointer to the HW structure |
| * @duplex: current duplex setting |
| * |
| * Configure the KMRN interface by applying last minute quirks for |
| * 10/100 operation. |
| **/ |
| static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) |
| { |
| s32 ret_val; |
| u32 tipg; |
| u32 i = 0; |
| u16 reg_data, reg_data2; |
| |
| reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; |
| ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, |
| reg_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Configure Transmit Inter-Packet Gap */ |
| tipg = er32(TIPG); |
| tipg &= ~E1000_TIPG_IPGT_MASK; |
| tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; |
| ew32(TIPG, tipg); |
| |
| do { |
| ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); |
| if (ret_val) |
| return ret_val; |
| i++; |
| } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); |
| |
| if (duplex == HALF_DUPLEX) |
| reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; |
| else |
| reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| |
| ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation |
| * @hw: pointer to the HW structure |
| * |
| * Configure the KMRN interface by applying last minute quirks for |
| * gigabit operation. |
| **/ |
| static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 reg_data, reg_data2; |
| u32 tipg; |
| u32 i = 0; |
| |
| reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; |
| ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, |
| reg_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Configure Transmit Inter-Packet Gap */ |
| tipg = er32(TIPG); |
| tipg &= ~E1000_TIPG_IPGT_MASK; |
| tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; |
| ew32(TIPG, tipg); |
| |
| do { |
| ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); |
| if (ret_val) |
| return ret_val; |
| i++; |
| } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); |
| |
| reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters |
| * @hw: pointer to the HW structure |
| * |
| * Clears the hardware counters by reading the counter registers. |
| **/ |
| static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) |
| { |
| u32 temp; |
| |
| e1000e_clear_hw_cntrs_base(hw); |
| |
| temp = er32(PRC64); |
| temp = er32(PRC127); |
| temp = er32(PRC255); |
| temp = er32(PRC511); |
| temp = er32(PRC1023); |
| temp = er32(PRC1522); |
| temp = er32(PTC64); |
| temp = er32(PTC127); |
| temp = er32(PTC255); |
| temp = er32(PTC511); |
| temp = er32(PTC1023); |
| temp = er32(PTC1522); |
| |
| temp = er32(ALGNERRC); |
| temp = er32(RXERRC); |
| temp = er32(TNCRS); |
| temp = er32(CEXTERR); |
| temp = er32(TSCTC); |
| temp = er32(TSCTFC); |
| |
| temp = er32(MGTPRC); |
| temp = er32(MGTPDC); |
| temp = er32(MGTPTC); |
| |
| temp = er32(IAC); |
| temp = er32(ICRXOC); |
| |
| temp = er32(ICRXPTC); |
| temp = er32(ICRXATC); |
| temp = er32(ICTXPTC); |
| temp = er32(ICTXATC); |
| temp = er32(ICTXQEC); |
| temp = er32(ICTXQMTC); |
| temp = er32(ICRXDMTC); |
| } |
| |
| static struct e1000_mac_operations es2_mac_ops = { |
| .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT, |
| /* check_for_link dependent on media type */ |
| .cleanup_led = e1000e_cleanup_led_generic, |
| .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan, |
| .get_bus_info = e1000e_get_bus_info_pcie, |
| .get_link_up_info = e1000_get_link_up_info_80003es2lan, |
| .led_on = e1000e_led_on_generic, |
| .led_off = e1000e_led_off_generic, |
| .update_mc_addr_list = e1000e_update_mc_addr_list_generic, |
| .reset_hw = e1000_reset_hw_80003es2lan, |
| .init_hw = e1000_init_hw_80003es2lan, |
| .setup_link = e1000e_setup_link, |
| /* setup_physical_interface dependent on media type */ |
| }; |
| |
| static struct e1000_phy_operations es2_phy_ops = { |
| .acquire_phy = e1000_acquire_phy_80003es2lan, |
| .check_reset_block = e1000e_check_reset_block_generic, |
| .commit_phy = e1000e_phy_sw_reset, |
| .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan, |
| .get_cfg_done = e1000_get_cfg_done_80003es2lan, |
| .get_cable_length = e1000_get_cable_length_80003es2lan, |
| .get_phy_info = e1000e_get_phy_info_m88, |
| .read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan, |
| .release_phy = e1000_release_phy_80003es2lan, |
| .reset_phy = e1000e_phy_hw_reset_generic, |
| .set_d0_lplu_state = NULL, |
| .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
| .write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan, |
| }; |
| |
| static struct e1000_nvm_operations es2_nvm_ops = { |
| .acquire_nvm = e1000_acquire_nvm_80003es2lan, |
| .read_nvm = e1000e_read_nvm_eerd, |
| .release_nvm = e1000_release_nvm_80003es2lan, |
| .update_nvm = e1000e_update_nvm_checksum_generic, |
| .valid_led_default = e1000e_valid_led_default, |
| .validate_nvm = e1000e_validate_nvm_checksum_generic, |
| .write_nvm = e1000_write_nvm_80003es2lan, |
| }; |
| |
| struct e1000_info e1000_es2_info = { |
| .mac = e1000_80003es2lan, |
| .flags = FLAG_HAS_HW_VLAN_FILTER |
| | FLAG_HAS_JUMBO_FRAMES |
| | FLAG_HAS_WOL |
| | FLAG_APME_IN_CTRL3 |
| | FLAG_RX_CSUM_ENABLED |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_RX_NEEDS_RESTART /* errata */ |
| | FLAG_TARC_SET_BIT_ZERO /* errata */ |
| | FLAG_APME_CHECK_PORT_B |
| | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ |
| | FLAG_TIPG_MEDIUM_FOR_80003ESLAN, |
| .pba = 38, |
| .get_variants = e1000_get_variants_80003es2lan, |
| .mac_ops = &es2_mac_ops, |
| .phy_ops = &es2_phy_ops, |
| .nvm_ops = &es2_nvm_ops, |
| }; |
| |