| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/writeback.h> |
| #include <linux/pagevec.h> |
| #include "ctree.h" |
| #include "transaction.h" |
| #include "btrfs_inode.h" |
| #include "extent_io.h" |
| |
| static u64 entry_end(struct btrfs_ordered_extent *entry) |
| { |
| if (entry->file_offset + entry->len < entry->file_offset) |
| return (u64)-1; |
| return entry->file_offset + entry->len; |
| } |
| |
| /* returns NULL if the insertion worked, or it returns the node it did find |
| * in the tree |
| */ |
| static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, |
| struct rb_node *node) |
| { |
| struct rb_node **p = &root->rb_node; |
| struct rb_node *parent = NULL; |
| struct btrfs_ordered_extent *entry; |
| |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); |
| |
| if (file_offset < entry->file_offset) |
| p = &(*p)->rb_left; |
| else if (file_offset >= entry_end(entry)) |
| p = &(*p)->rb_right; |
| else |
| return parent; |
| } |
| |
| rb_link_node(node, parent, p); |
| rb_insert_color(node, root); |
| return NULL; |
| } |
| |
| /* |
| * look for a given offset in the tree, and if it can't be found return the |
| * first lesser offset |
| */ |
| static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, |
| struct rb_node **prev_ret) |
| { |
| struct rb_node *n = root->rb_node; |
| struct rb_node *prev = NULL; |
| struct rb_node *test; |
| struct btrfs_ordered_extent *entry; |
| struct btrfs_ordered_extent *prev_entry = NULL; |
| |
| while (n) { |
| entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); |
| prev = n; |
| prev_entry = entry; |
| |
| if (file_offset < entry->file_offset) |
| n = n->rb_left; |
| else if (file_offset >= entry_end(entry)) |
| n = n->rb_right; |
| else |
| return n; |
| } |
| if (!prev_ret) |
| return NULL; |
| |
| while (prev && file_offset >= entry_end(prev_entry)) { |
| test = rb_next(prev); |
| if (!test) |
| break; |
| prev_entry = rb_entry(test, struct btrfs_ordered_extent, |
| rb_node); |
| if (file_offset < entry_end(prev_entry)) |
| break; |
| |
| prev = test; |
| } |
| if (prev) |
| prev_entry = rb_entry(prev, struct btrfs_ordered_extent, |
| rb_node); |
| while (prev && file_offset < entry_end(prev_entry)) { |
| test = rb_prev(prev); |
| if (!test) |
| break; |
| prev_entry = rb_entry(test, struct btrfs_ordered_extent, |
| rb_node); |
| prev = test; |
| } |
| *prev_ret = prev; |
| return NULL; |
| } |
| |
| /* |
| * helper to check if a given offset is inside a given entry |
| */ |
| static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) |
| { |
| if (file_offset < entry->file_offset || |
| entry->file_offset + entry->len <= file_offset) |
| return 0; |
| return 1; |
| } |
| |
| static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, |
| u64 len) |
| { |
| if (file_offset + len <= entry->file_offset || |
| entry->file_offset + entry->len <= file_offset) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * look find the first ordered struct that has this offset, otherwise |
| * the first one less than this offset |
| */ |
| static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, |
| u64 file_offset) |
| { |
| struct rb_root *root = &tree->tree; |
| struct rb_node *prev; |
| struct rb_node *ret; |
| struct btrfs_ordered_extent *entry; |
| |
| if (tree->last) { |
| entry = rb_entry(tree->last, struct btrfs_ordered_extent, |
| rb_node); |
| if (offset_in_entry(entry, file_offset)) |
| return tree->last; |
| } |
| ret = __tree_search(root, file_offset, &prev); |
| if (!ret) |
| ret = prev; |
| if (ret) |
| tree->last = ret; |
| return ret; |
| } |
| |
| /* allocate and add a new ordered_extent into the per-inode tree. |
| * file_offset is the logical offset in the file |
| * |
| * start is the disk block number of an extent already reserved in the |
| * extent allocation tree |
| * |
| * len is the length of the extent |
| * |
| * The tree is given a single reference on the ordered extent that was |
| * inserted. |
| */ |
| static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, |
| u64 start, u64 len, u64 disk_len, |
| int type, int dio) |
| { |
| struct btrfs_ordered_inode_tree *tree; |
| struct rb_node *node; |
| struct btrfs_ordered_extent *entry; |
| |
| tree = &BTRFS_I(inode)->ordered_tree; |
| entry = kzalloc(sizeof(*entry), GFP_NOFS); |
| if (!entry) |
| return -ENOMEM; |
| |
| entry->file_offset = file_offset; |
| entry->start = start; |
| entry->len = len; |
| entry->disk_len = disk_len; |
| entry->bytes_left = len; |
| entry->inode = inode; |
| if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) |
| set_bit(type, &entry->flags); |
| |
| if (dio) |
| set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); |
| |
| /* one ref for the tree */ |
| atomic_set(&entry->refs, 1); |
| init_waitqueue_head(&entry->wait); |
| INIT_LIST_HEAD(&entry->list); |
| INIT_LIST_HEAD(&entry->root_extent_list); |
| |
| spin_lock(&tree->lock); |
| node = tree_insert(&tree->tree, file_offset, |
| &entry->rb_node); |
| BUG_ON(node); |
| spin_unlock(&tree->lock); |
| |
| spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); |
| list_add_tail(&entry->root_extent_list, |
| &BTRFS_I(inode)->root->fs_info->ordered_extents); |
| spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); |
| |
| BUG_ON(node); |
| return 0; |
| } |
| |
| int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, |
| u64 start, u64 len, u64 disk_len, int type) |
| { |
| return __btrfs_add_ordered_extent(inode, file_offset, start, len, |
| disk_len, type, 0); |
| } |
| |
| int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, |
| u64 start, u64 len, u64 disk_len, int type) |
| { |
| return __btrfs_add_ordered_extent(inode, file_offset, start, len, |
| disk_len, type, 1); |
| } |
| |
| /* |
| * Add a struct btrfs_ordered_sum into the list of checksums to be inserted |
| * when an ordered extent is finished. If the list covers more than one |
| * ordered extent, it is split across multiples. |
| */ |
| int btrfs_add_ordered_sum(struct inode *inode, |
| struct btrfs_ordered_extent *entry, |
| struct btrfs_ordered_sum *sum) |
| { |
| struct btrfs_ordered_inode_tree *tree; |
| |
| tree = &BTRFS_I(inode)->ordered_tree; |
| spin_lock(&tree->lock); |
| list_add_tail(&sum->list, &entry->list); |
| spin_unlock(&tree->lock); |
| return 0; |
| } |
| |
| /* |
| * this is used to account for finished IO across a given range |
| * of the file. The IO may span ordered extents. If |
| * a given ordered_extent is completely done, 1 is returned, otherwise |
| * 0. |
| * |
| * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used |
| * to make sure this function only returns 1 once for a given ordered extent. |
| * |
| * file_offset is updated to one byte past the range that is recorded as |
| * complete. This allows you to walk forward in the file. |
| */ |
| int btrfs_dec_test_first_ordered_pending(struct inode *inode, |
| struct btrfs_ordered_extent **cached, |
| u64 *file_offset, u64 io_size) |
| { |
| struct btrfs_ordered_inode_tree *tree; |
| struct rb_node *node; |
| struct btrfs_ordered_extent *entry = NULL; |
| int ret; |
| u64 dec_end; |
| u64 dec_start; |
| u64 to_dec; |
| |
| tree = &BTRFS_I(inode)->ordered_tree; |
| spin_lock(&tree->lock); |
| node = tree_search(tree, *file_offset); |
| if (!node) { |
| ret = 1; |
| goto out; |
| } |
| |
| entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| if (!offset_in_entry(entry, *file_offset)) { |
| ret = 1; |
| goto out; |
| } |
| |
| dec_start = max(*file_offset, entry->file_offset); |
| dec_end = min(*file_offset + io_size, entry->file_offset + |
| entry->len); |
| *file_offset = dec_end; |
| if (dec_start > dec_end) { |
| printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n", |
| (unsigned long long)dec_start, |
| (unsigned long long)dec_end); |
| } |
| to_dec = dec_end - dec_start; |
| if (to_dec > entry->bytes_left) { |
| printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", |
| (unsigned long long)entry->bytes_left, |
| (unsigned long long)to_dec); |
| } |
| entry->bytes_left -= to_dec; |
| if (entry->bytes_left == 0) |
| ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); |
| else |
| ret = 1; |
| out: |
| if (!ret && cached && entry) { |
| *cached = entry; |
| atomic_inc(&entry->refs); |
| } |
| spin_unlock(&tree->lock); |
| return ret == 0; |
| } |
| |
| /* |
| * this is used to account for finished IO across a given range |
| * of the file. The IO should not span ordered extents. If |
| * a given ordered_extent is completely done, 1 is returned, otherwise |
| * 0. |
| * |
| * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used |
| * to make sure this function only returns 1 once for a given ordered extent. |
| */ |
| int btrfs_dec_test_ordered_pending(struct inode *inode, |
| struct btrfs_ordered_extent **cached, |
| u64 file_offset, u64 io_size) |
| { |
| struct btrfs_ordered_inode_tree *tree; |
| struct rb_node *node; |
| struct btrfs_ordered_extent *entry = NULL; |
| int ret; |
| |
| tree = &BTRFS_I(inode)->ordered_tree; |
| spin_lock(&tree->lock); |
| node = tree_search(tree, file_offset); |
| if (!node) { |
| ret = 1; |
| goto out; |
| } |
| |
| entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| if (!offset_in_entry(entry, file_offset)) { |
| ret = 1; |
| goto out; |
| } |
| |
| if (io_size > entry->bytes_left) { |
| printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", |
| (unsigned long long)entry->bytes_left, |
| (unsigned long long)io_size); |
| } |
| entry->bytes_left -= io_size; |
| if (entry->bytes_left == 0) |
| ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); |
| else |
| ret = 1; |
| out: |
| if (!ret && cached && entry) { |
| *cached = entry; |
| atomic_inc(&entry->refs); |
| } |
| spin_unlock(&tree->lock); |
| return ret == 0; |
| } |
| |
| /* |
| * used to drop a reference on an ordered extent. This will free |
| * the extent if the last reference is dropped |
| */ |
| int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) |
| { |
| struct list_head *cur; |
| struct btrfs_ordered_sum *sum; |
| |
| if (atomic_dec_and_test(&entry->refs)) { |
| while (!list_empty(&entry->list)) { |
| cur = entry->list.next; |
| sum = list_entry(cur, struct btrfs_ordered_sum, list); |
| list_del(&sum->list); |
| kfree(sum); |
| } |
| kfree(entry); |
| } |
| return 0; |
| } |
| |
| /* |
| * remove an ordered extent from the tree. No references are dropped |
| * and you must wake_up entry->wait. You must hold the tree lock |
| * while you call this function. |
| */ |
| static int __btrfs_remove_ordered_extent(struct inode *inode, |
| struct btrfs_ordered_extent *entry) |
| { |
| struct btrfs_ordered_inode_tree *tree; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct rb_node *node; |
| |
| tree = &BTRFS_I(inode)->ordered_tree; |
| node = &entry->rb_node; |
| rb_erase(node, &tree->tree); |
| tree->last = NULL; |
| set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); |
| |
| spin_lock(&root->fs_info->ordered_extent_lock); |
| list_del_init(&entry->root_extent_list); |
| |
| /* |
| * we have no more ordered extents for this inode and |
| * no dirty pages. We can safely remove it from the |
| * list of ordered extents |
| */ |
| if (RB_EMPTY_ROOT(&tree->tree) && |
| !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { |
| list_del_init(&BTRFS_I(inode)->ordered_operations); |
| } |
| spin_unlock(&root->fs_info->ordered_extent_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * remove an ordered extent from the tree. No references are dropped |
| * but any waiters are woken. |
| */ |
| int btrfs_remove_ordered_extent(struct inode *inode, |
| struct btrfs_ordered_extent *entry) |
| { |
| struct btrfs_ordered_inode_tree *tree; |
| int ret; |
| |
| tree = &BTRFS_I(inode)->ordered_tree; |
| spin_lock(&tree->lock); |
| ret = __btrfs_remove_ordered_extent(inode, entry); |
| spin_unlock(&tree->lock); |
| wake_up(&entry->wait); |
| |
| return ret; |
| } |
| |
| /* |
| * wait for all the ordered extents in a root. This is done when balancing |
| * space between drives. |
| */ |
| int btrfs_wait_ordered_extents(struct btrfs_root *root, |
| int nocow_only, int delay_iput) |
| { |
| struct list_head splice; |
| struct list_head *cur; |
| struct btrfs_ordered_extent *ordered; |
| struct inode *inode; |
| |
| INIT_LIST_HEAD(&splice); |
| |
| spin_lock(&root->fs_info->ordered_extent_lock); |
| list_splice_init(&root->fs_info->ordered_extents, &splice); |
| while (!list_empty(&splice)) { |
| cur = splice.next; |
| ordered = list_entry(cur, struct btrfs_ordered_extent, |
| root_extent_list); |
| if (nocow_only && |
| !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && |
| !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { |
| list_move(&ordered->root_extent_list, |
| &root->fs_info->ordered_extents); |
| cond_resched_lock(&root->fs_info->ordered_extent_lock); |
| continue; |
| } |
| |
| list_del_init(&ordered->root_extent_list); |
| atomic_inc(&ordered->refs); |
| |
| /* |
| * the inode may be getting freed (in sys_unlink path). |
| */ |
| inode = igrab(ordered->inode); |
| |
| spin_unlock(&root->fs_info->ordered_extent_lock); |
| |
| if (inode) { |
| btrfs_start_ordered_extent(inode, ordered, 1); |
| btrfs_put_ordered_extent(ordered); |
| if (delay_iput) |
| btrfs_add_delayed_iput(inode); |
| else |
| iput(inode); |
| } else { |
| btrfs_put_ordered_extent(ordered); |
| } |
| |
| spin_lock(&root->fs_info->ordered_extent_lock); |
| } |
| spin_unlock(&root->fs_info->ordered_extent_lock); |
| return 0; |
| } |
| |
| /* |
| * this is used during transaction commit to write all the inodes |
| * added to the ordered operation list. These files must be fully on |
| * disk before the transaction commits. |
| * |
| * we have two modes here, one is to just start the IO via filemap_flush |
| * and the other is to wait for all the io. When we wait, we have an |
| * extra check to make sure the ordered operation list really is empty |
| * before we return |
| */ |
| int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) |
| { |
| struct btrfs_inode *btrfs_inode; |
| struct inode *inode; |
| struct list_head splice; |
| |
| INIT_LIST_HEAD(&splice); |
| |
| mutex_lock(&root->fs_info->ordered_operations_mutex); |
| spin_lock(&root->fs_info->ordered_extent_lock); |
| again: |
| list_splice_init(&root->fs_info->ordered_operations, &splice); |
| |
| while (!list_empty(&splice)) { |
| btrfs_inode = list_entry(splice.next, struct btrfs_inode, |
| ordered_operations); |
| |
| inode = &btrfs_inode->vfs_inode; |
| |
| list_del_init(&btrfs_inode->ordered_operations); |
| |
| /* |
| * the inode may be getting freed (in sys_unlink path). |
| */ |
| inode = igrab(inode); |
| |
| if (!wait && inode) { |
| list_add_tail(&BTRFS_I(inode)->ordered_operations, |
| &root->fs_info->ordered_operations); |
| } |
| spin_unlock(&root->fs_info->ordered_extent_lock); |
| |
| if (inode) { |
| if (wait) |
| btrfs_wait_ordered_range(inode, 0, (u64)-1); |
| else |
| filemap_flush(inode->i_mapping); |
| btrfs_add_delayed_iput(inode); |
| } |
| |
| cond_resched(); |
| spin_lock(&root->fs_info->ordered_extent_lock); |
| } |
| if (wait && !list_empty(&root->fs_info->ordered_operations)) |
| goto again; |
| |
| spin_unlock(&root->fs_info->ordered_extent_lock); |
| mutex_unlock(&root->fs_info->ordered_operations_mutex); |
| |
| return 0; |
| } |
| |
| /* |
| * Used to start IO or wait for a given ordered extent to finish. |
| * |
| * If wait is one, this effectively waits on page writeback for all the pages |
| * in the extent, and it waits on the io completion code to insert |
| * metadata into the btree corresponding to the extent |
| */ |
| void btrfs_start_ordered_extent(struct inode *inode, |
| struct btrfs_ordered_extent *entry, |
| int wait) |
| { |
| u64 start = entry->file_offset; |
| u64 end = start + entry->len - 1; |
| |
| /* |
| * pages in the range can be dirty, clean or writeback. We |
| * start IO on any dirty ones so the wait doesn't stall waiting |
| * for pdflush to find them |
| */ |
| if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) |
| filemap_fdatawrite_range(inode->i_mapping, start, end); |
| if (wait) { |
| wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, |
| &entry->flags)); |
| } |
| } |
| |
| /* |
| * Used to wait on ordered extents across a large range of bytes. |
| */ |
| int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) |
| { |
| u64 end; |
| u64 orig_end; |
| struct btrfs_ordered_extent *ordered; |
| int found; |
| |
| if (start + len < start) { |
| orig_end = INT_LIMIT(loff_t); |
| } else { |
| orig_end = start + len - 1; |
| if (orig_end > INT_LIMIT(loff_t)) |
| orig_end = INT_LIMIT(loff_t); |
| } |
| again: |
| /* start IO across the range first to instantiate any delalloc |
| * extents |
| */ |
| filemap_fdatawrite_range(inode->i_mapping, start, orig_end); |
| |
| /* The compression code will leave pages locked but return from |
| * writepage without setting the page writeback. Starting again |
| * with WB_SYNC_ALL will end up waiting for the IO to actually start. |
| */ |
| filemap_fdatawrite_range(inode->i_mapping, start, orig_end); |
| |
| filemap_fdatawait_range(inode->i_mapping, start, orig_end); |
| |
| end = orig_end; |
| found = 0; |
| while (1) { |
| ordered = btrfs_lookup_first_ordered_extent(inode, end); |
| if (!ordered) |
| break; |
| if (ordered->file_offset > orig_end) { |
| btrfs_put_ordered_extent(ordered); |
| break; |
| } |
| if (ordered->file_offset + ordered->len < start) { |
| btrfs_put_ordered_extent(ordered); |
| break; |
| } |
| found++; |
| btrfs_start_ordered_extent(inode, ordered, 1); |
| end = ordered->file_offset; |
| btrfs_put_ordered_extent(ordered); |
| if (end == 0 || end == start) |
| break; |
| end--; |
| } |
| if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, |
| EXTENT_DELALLOC, 0, NULL)) { |
| schedule_timeout(1); |
| goto again; |
| } |
| return 0; |
| } |
| |
| /* |
| * find an ordered extent corresponding to file_offset. return NULL if |
| * nothing is found, otherwise take a reference on the extent and return it |
| */ |
| struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, |
| u64 file_offset) |
| { |
| struct btrfs_ordered_inode_tree *tree; |
| struct rb_node *node; |
| struct btrfs_ordered_extent *entry = NULL; |
| |
| tree = &BTRFS_I(inode)->ordered_tree; |
| spin_lock(&tree->lock); |
| node = tree_search(tree, file_offset); |
| if (!node) |
| goto out; |
| |
| entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| if (!offset_in_entry(entry, file_offset)) |
| entry = NULL; |
| if (entry) |
| atomic_inc(&entry->refs); |
| out: |
| spin_unlock(&tree->lock); |
| return entry; |
| } |
| |
| /* Since the DIO code tries to lock a wide area we need to look for any ordered |
| * extents that exist in the range, rather than just the start of the range. |
| */ |
| struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, |
| u64 file_offset, |
| u64 len) |
| { |
| struct btrfs_ordered_inode_tree *tree; |
| struct rb_node *node; |
| struct btrfs_ordered_extent *entry = NULL; |
| |
| tree = &BTRFS_I(inode)->ordered_tree; |
| spin_lock(&tree->lock); |
| node = tree_search(tree, file_offset); |
| if (!node) { |
| node = tree_search(tree, file_offset + len); |
| if (!node) |
| goto out; |
| } |
| |
| while (1) { |
| entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| if (range_overlaps(entry, file_offset, len)) |
| break; |
| |
| if (entry->file_offset >= file_offset + len) { |
| entry = NULL; |
| break; |
| } |
| entry = NULL; |
| node = rb_next(node); |
| if (!node) |
| break; |
| } |
| out: |
| if (entry) |
| atomic_inc(&entry->refs); |
| spin_unlock(&tree->lock); |
| return entry; |
| } |
| |
| /* |
| * lookup and return any extent before 'file_offset'. NULL is returned |
| * if none is found |
| */ |
| struct btrfs_ordered_extent * |
| btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) |
| { |
| struct btrfs_ordered_inode_tree *tree; |
| struct rb_node *node; |
| struct btrfs_ordered_extent *entry = NULL; |
| |
| tree = &BTRFS_I(inode)->ordered_tree; |
| spin_lock(&tree->lock); |
| node = tree_search(tree, file_offset); |
| if (!node) |
| goto out; |
| |
| entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| atomic_inc(&entry->refs); |
| out: |
| spin_unlock(&tree->lock); |
| return entry; |
| } |
| |
| /* |
| * After an extent is done, call this to conditionally update the on disk |
| * i_size. i_size is updated to cover any fully written part of the file. |
| */ |
| int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, |
| struct btrfs_ordered_extent *ordered) |
| { |
| struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| u64 disk_i_size; |
| u64 new_i_size; |
| u64 i_size_test; |
| u64 i_size = i_size_read(inode); |
| struct rb_node *node; |
| struct rb_node *prev = NULL; |
| struct btrfs_ordered_extent *test; |
| int ret = 1; |
| |
| if (ordered) |
| offset = entry_end(ordered); |
| else |
| offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); |
| |
| spin_lock(&tree->lock); |
| disk_i_size = BTRFS_I(inode)->disk_i_size; |
| |
| /* truncate file */ |
| if (disk_i_size > i_size) { |
| BTRFS_I(inode)->disk_i_size = i_size; |
| ret = 0; |
| goto out; |
| } |
| |
| /* |
| * if the disk i_size is already at the inode->i_size, or |
| * this ordered extent is inside the disk i_size, we're done |
| */ |
| if (disk_i_size == i_size || offset <= disk_i_size) { |
| goto out; |
| } |
| |
| /* |
| * we can't update the disk_isize if there are delalloc bytes |
| * between disk_i_size and this ordered extent |
| */ |
| if (test_range_bit(io_tree, disk_i_size, offset - 1, |
| EXTENT_DELALLOC, 0, NULL)) { |
| goto out; |
| } |
| /* |
| * walk backward from this ordered extent to disk_i_size. |
| * if we find an ordered extent then we can't update disk i_size |
| * yet |
| */ |
| if (ordered) { |
| node = rb_prev(&ordered->rb_node); |
| } else { |
| prev = tree_search(tree, offset); |
| /* |
| * we insert file extents without involving ordered struct, |
| * so there should be no ordered struct cover this offset |
| */ |
| if (prev) { |
| test = rb_entry(prev, struct btrfs_ordered_extent, |
| rb_node); |
| BUG_ON(offset_in_entry(test, offset)); |
| } |
| node = prev; |
| } |
| while (node) { |
| test = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| if (test->file_offset + test->len <= disk_i_size) |
| break; |
| if (test->file_offset >= i_size) |
| break; |
| if (test->file_offset >= disk_i_size) |
| goto out; |
| node = rb_prev(node); |
| } |
| new_i_size = min_t(u64, offset, i_size); |
| |
| /* |
| * at this point, we know we can safely update i_size to at least |
| * the offset from this ordered extent. But, we need to |
| * walk forward and see if ios from higher up in the file have |
| * finished. |
| */ |
| if (ordered) { |
| node = rb_next(&ordered->rb_node); |
| } else { |
| if (prev) |
| node = rb_next(prev); |
| else |
| node = rb_first(&tree->tree); |
| } |
| i_size_test = 0; |
| if (node) { |
| /* |
| * do we have an area where IO might have finished |
| * between our ordered extent and the next one. |
| */ |
| test = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| if (test->file_offset > offset) |
| i_size_test = test->file_offset; |
| } else { |
| i_size_test = i_size; |
| } |
| |
| /* |
| * i_size_test is the end of a region after this ordered |
| * extent where there are no ordered extents. As long as there |
| * are no delalloc bytes in this area, it is safe to update |
| * disk_i_size to the end of the region. |
| */ |
| if (i_size_test > offset && |
| !test_range_bit(io_tree, offset, i_size_test - 1, |
| EXTENT_DELALLOC, 0, NULL)) { |
| new_i_size = min_t(u64, i_size_test, i_size); |
| } |
| BTRFS_I(inode)->disk_i_size = new_i_size; |
| ret = 0; |
| out: |
| /* |
| * we need to remove the ordered extent with the tree lock held |
| * so that other people calling this function don't find our fully |
| * processed ordered entry and skip updating the i_size |
| */ |
| if (ordered) |
| __btrfs_remove_ordered_extent(inode, ordered); |
| spin_unlock(&tree->lock); |
| if (ordered) |
| wake_up(&ordered->wait); |
| return ret; |
| } |
| |
| /* |
| * search the ordered extents for one corresponding to 'offset' and |
| * try to find a checksum. This is used because we allow pages to |
| * be reclaimed before their checksum is actually put into the btree |
| */ |
| int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, |
| u32 *sum) |
| { |
| struct btrfs_ordered_sum *ordered_sum; |
| struct btrfs_sector_sum *sector_sums; |
| struct btrfs_ordered_extent *ordered; |
| struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; |
| unsigned long num_sectors; |
| unsigned long i; |
| u32 sectorsize = BTRFS_I(inode)->root->sectorsize; |
| int ret = 1; |
| |
| ordered = btrfs_lookup_ordered_extent(inode, offset); |
| if (!ordered) |
| return 1; |
| |
| spin_lock(&tree->lock); |
| list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { |
| if (disk_bytenr >= ordered_sum->bytenr) { |
| num_sectors = ordered_sum->len / sectorsize; |
| sector_sums = ordered_sum->sums; |
| for (i = 0; i < num_sectors; i++) { |
| if (sector_sums[i].bytenr == disk_bytenr) { |
| *sum = sector_sums[i].sum; |
| ret = 0; |
| goto out; |
| } |
| } |
| } |
| } |
| out: |
| spin_unlock(&tree->lock); |
| btrfs_put_ordered_extent(ordered); |
| return ret; |
| } |
| |
| |
| /* |
| * add a given inode to the list of inodes that must be fully on |
| * disk before a transaction commit finishes. |
| * |
| * This basically gives us the ext3 style data=ordered mode, and it is mostly |
| * used to make sure renamed files are fully on disk. |
| * |
| * It is a noop if the inode is already fully on disk. |
| * |
| * If trans is not null, we'll do a friendly check for a transaction that |
| * is already flushing things and force the IO down ourselves. |
| */ |
| int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *inode) |
| { |
| u64 last_mod; |
| |
| last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); |
| |
| /* |
| * if this file hasn't been changed since the last transaction |
| * commit, we can safely return without doing anything |
| */ |
| if (last_mod < root->fs_info->last_trans_committed) |
| return 0; |
| |
| /* |
| * the transaction is already committing. Just start the IO and |
| * don't bother with all of this list nonsense |
| */ |
| if (trans && root->fs_info->running_transaction->blocked) { |
| btrfs_wait_ordered_range(inode, 0, (u64)-1); |
| return 0; |
| } |
| |
| spin_lock(&root->fs_info->ordered_extent_lock); |
| if (list_empty(&BTRFS_I(inode)->ordered_operations)) { |
| list_add_tail(&BTRFS_I(inode)->ordered_operations, |
| &root->fs_info->ordered_operations); |
| } |
| spin_unlock(&root->fs_info->ordered_extent_lock); |
| |
| return 0; |
| } |