| /******************************************************************************* |
| |
| Intel(R) Gigabit Ethernet Linux driver |
| Copyright(c) 2007-2009 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| /* e1000_82575 |
| * e1000_82576 |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/if_ether.h> |
| |
| #include "e1000_mac.h" |
| #include "e1000_82575.h" |
| |
| static s32 igb_get_invariants_82575(struct e1000_hw *); |
| static s32 igb_acquire_phy_82575(struct e1000_hw *); |
| static void igb_release_phy_82575(struct e1000_hw *); |
| static s32 igb_acquire_nvm_82575(struct e1000_hw *); |
| static void igb_release_nvm_82575(struct e1000_hw *); |
| static s32 igb_check_for_link_82575(struct e1000_hw *); |
| static s32 igb_get_cfg_done_82575(struct e1000_hw *); |
| static s32 igb_init_hw_82575(struct e1000_hw *); |
| static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); |
| static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); |
| static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *); |
| static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16); |
| static s32 igb_reset_hw_82575(struct e1000_hw *); |
| static s32 igb_reset_hw_82580(struct e1000_hw *); |
| static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); |
| static s32 igb_setup_copper_link_82575(struct e1000_hw *); |
| static s32 igb_setup_serdes_link_82575(struct e1000_hw *); |
| static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); |
| static void igb_clear_hw_cntrs_82575(struct e1000_hw *); |
| static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); |
| static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, |
| u16 *); |
| static s32 igb_get_phy_id_82575(struct e1000_hw *); |
| static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); |
| static bool igb_sgmii_active_82575(struct e1000_hw *); |
| static s32 igb_reset_init_script_82575(struct e1000_hw *); |
| static s32 igb_read_mac_addr_82575(struct e1000_hw *); |
| static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw); |
| static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw); |
| static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw); |
| static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw); |
| static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, |
| u16 offset); |
| static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, |
| u16 offset); |
| static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw); |
| static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw); |
| static const u16 e1000_82580_rxpbs_table[] = |
| { 36, 72, 144, 1, 2, 4, 8, 16, |
| 35, 70, 140 }; |
| #define E1000_82580_RXPBS_TABLE_SIZE \ |
| (sizeof(e1000_82580_rxpbs_table)/sizeof(u16)) |
| |
| /** |
| * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO |
| * @hw: pointer to the HW structure |
| * |
| * Called to determine if the I2C pins are being used for I2C or as an |
| * external MDIO interface since the two options are mutually exclusive. |
| **/ |
| static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw) |
| { |
| u32 reg = 0; |
| bool ext_mdio = false; |
| |
| switch (hw->mac.type) { |
| case e1000_82575: |
| case e1000_82576: |
| reg = rd32(E1000_MDIC); |
| ext_mdio = !!(reg & E1000_MDIC_DEST); |
| break; |
| case e1000_82580: |
| case e1000_i350: |
| reg = rd32(E1000_MDICNFG); |
| ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); |
| break; |
| default: |
| break; |
| } |
| return ext_mdio; |
| } |
| |
| static s32 igb_get_invariants_82575(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| struct e1000_mac_info *mac = &hw->mac; |
| struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575; |
| u32 eecd; |
| s32 ret_val; |
| u16 size; |
| u32 ctrl_ext = 0; |
| |
| switch (hw->device_id) { |
| case E1000_DEV_ID_82575EB_COPPER: |
| case E1000_DEV_ID_82575EB_FIBER_SERDES: |
| case E1000_DEV_ID_82575GB_QUAD_COPPER: |
| mac->type = e1000_82575; |
| break; |
| case E1000_DEV_ID_82576: |
| case E1000_DEV_ID_82576_NS: |
| case E1000_DEV_ID_82576_NS_SERDES: |
| case E1000_DEV_ID_82576_FIBER: |
| case E1000_DEV_ID_82576_SERDES: |
| case E1000_DEV_ID_82576_QUAD_COPPER: |
| case E1000_DEV_ID_82576_QUAD_COPPER_ET2: |
| case E1000_DEV_ID_82576_SERDES_QUAD: |
| mac->type = e1000_82576; |
| break; |
| case E1000_DEV_ID_82580_COPPER: |
| case E1000_DEV_ID_82580_FIBER: |
| case E1000_DEV_ID_82580_QUAD_FIBER: |
| case E1000_DEV_ID_82580_SERDES: |
| case E1000_DEV_ID_82580_SGMII: |
| case E1000_DEV_ID_82580_COPPER_DUAL: |
| case E1000_DEV_ID_DH89XXCC_SGMII: |
| case E1000_DEV_ID_DH89XXCC_SERDES: |
| case E1000_DEV_ID_DH89XXCC_BACKPLANE: |
| case E1000_DEV_ID_DH89XXCC_SFP: |
| mac->type = e1000_82580; |
| break; |
| case E1000_DEV_ID_I350_COPPER: |
| case E1000_DEV_ID_I350_FIBER: |
| case E1000_DEV_ID_I350_SERDES: |
| case E1000_DEV_ID_I350_SGMII: |
| mac->type = e1000_i350; |
| break; |
| default: |
| return -E1000_ERR_MAC_INIT; |
| break; |
| } |
| |
| /* Set media type */ |
| /* |
| * The 82575 uses bits 22:23 for link mode. The mode can be changed |
| * based on the EEPROM. We cannot rely upon device ID. There |
| * is no distinguishable difference between fiber and internal |
| * SerDes mode on the 82575. There can be an external PHY attached |
| * on the SGMII interface. For this, we'll set sgmii_active to true. |
| */ |
| phy->media_type = e1000_media_type_copper; |
| dev_spec->sgmii_active = false; |
| |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { |
| case E1000_CTRL_EXT_LINK_MODE_SGMII: |
| dev_spec->sgmii_active = true; |
| break; |
| case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: |
| case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: |
| hw->phy.media_type = e1000_media_type_internal_serdes; |
| break; |
| default: |
| break; |
| } |
| |
| /* Set mta register count */ |
| mac->mta_reg_count = 128; |
| /* Set rar entry count */ |
| mac->rar_entry_count = E1000_RAR_ENTRIES_82575; |
| if (mac->type == e1000_82576) |
| mac->rar_entry_count = E1000_RAR_ENTRIES_82576; |
| if (mac->type == e1000_82580) |
| mac->rar_entry_count = E1000_RAR_ENTRIES_82580; |
| if (mac->type == e1000_i350) |
| mac->rar_entry_count = E1000_RAR_ENTRIES_I350; |
| /* reset */ |
| if (mac->type >= e1000_82580) |
| mac->ops.reset_hw = igb_reset_hw_82580; |
| else |
| mac->ops.reset_hw = igb_reset_hw_82575; |
| /* Set if part includes ASF firmware */ |
| mac->asf_firmware_present = true; |
| /* Set if manageability features are enabled. */ |
| mac->arc_subsystem_valid = |
| (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) |
| ? true : false; |
| /* enable EEE on i350 parts */ |
| if (mac->type == e1000_i350) |
| dev_spec->eee_disable = false; |
| else |
| dev_spec->eee_disable = true; |
| /* physical interface link setup */ |
| mac->ops.setup_physical_interface = |
| (hw->phy.media_type == e1000_media_type_copper) |
| ? igb_setup_copper_link_82575 |
| : igb_setup_serdes_link_82575; |
| |
| /* NVM initialization */ |
| eecd = rd32(E1000_EECD); |
| |
| nvm->opcode_bits = 8; |
| nvm->delay_usec = 1; |
| switch (nvm->override) { |
| case e1000_nvm_override_spi_large: |
| nvm->page_size = 32; |
| nvm->address_bits = 16; |
| break; |
| case e1000_nvm_override_spi_small: |
| nvm->page_size = 8; |
| nvm->address_bits = 8; |
| break; |
| default: |
| nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
| nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
| break; |
| } |
| |
| nvm->type = e1000_nvm_eeprom_spi; |
| |
| size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
| E1000_EECD_SIZE_EX_SHIFT); |
| |
| /* |
| * Added to a constant, "size" becomes the left-shift value |
| * for setting word_size. |
| */ |
| size += NVM_WORD_SIZE_BASE_SHIFT; |
| |
| nvm->word_size = 1 << size; |
| if (nvm->word_size == (1 << 15)) |
| nvm->page_size = 128; |
| |
| /* NVM Function Pointers */ |
| nvm->ops.acquire = igb_acquire_nvm_82575; |
| if (nvm->word_size < (1 << 15)) |
| nvm->ops.read = igb_read_nvm_eerd; |
| else |
| nvm->ops.read = igb_read_nvm_spi; |
| |
| nvm->ops.release = igb_release_nvm_82575; |
| switch (hw->mac.type) { |
| case e1000_82580: |
| nvm->ops.validate = igb_validate_nvm_checksum_82580; |
| nvm->ops.update = igb_update_nvm_checksum_82580; |
| break; |
| case e1000_i350: |
| nvm->ops.validate = igb_validate_nvm_checksum_i350; |
| nvm->ops.update = igb_update_nvm_checksum_i350; |
| break; |
| default: |
| nvm->ops.validate = igb_validate_nvm_checksum; |
| nvm->ops.update = igb_update_nvm_checksum; |
| } |
| nvm->ops.write = igb_write_nvm_spi; |
| |
| /* if part supports SR-IOV then initialize mailbox parameters */ |
| switch (mac->type) { |
| case e1000_82576: |
| case e1000_i350: |
| igb_init_mbx_params_pf(hw); |
| break; |
| default: |
| break; |
| } |
| |
| /* setup PHY parameters */ |
| if (phy->media_type != e1000_media_type_copper) { |
| phy->type = e1000_phy_none; |
| return 0; |
| } |
| |
| phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| phy->reset_delay_us = 100; |
| |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| |
| /* PHY function pointers */ |
| if (igb_sgmii_active_82575(hw)) { |
| phy->ops.reset = igb_phy_hw_reset_sgmii_82575; |
| ctrl_ext |= E1000_CTRL_I2C_ENA; |
| } else { |
| phy->ops.reset = igb_phy_hw_reset; |
| ctrl_ext &= ~E1000_CTRL_I2C_ENA; |
| } |
| |
| wr32(E1000_CTRL_EXT, ctrl_ext); |
| igb_reset_mdicnfg_82580(hw); |
| |
| if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) { |
| phy->ops.read_reg = igb_read_phy_reg_sgmii_82575; |
| phy->ops.write_reg = igb_write_phy_reg_sgmii_82575; |
| } else if (hw->mac.type >= e1000_82580) { |
| phy->ops.read_reg = igb_read_phy_reg_82580; |
| phy->ops.write_reg = igb_write_phy_reg_82580; |
| } else { |
| phy->ops.read_reg = igb_read_phy_reg_igp; |
| phy->ops.write_reg = igb_write_phy_reg_igp; |
| } |
| |
| /* set lan id */ |
| hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >> |
| E1000_STATUS_FUNC_SHIFT; |
| |
| /* Set phy->phy_addr and phy->id. */ |
| ret_val = igb_get_phy_id_82575(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Verify phy id and set remaining function pointers */ |
| switch (phy->id) { |
| case I347AT4_E_PHY_ID: |
| case M88E1112_E_PHY_ID: |
| case M88E1111_I_PHY_ID: |
| phy->type = e1000_phy_m88; |
| phy->ops.get_phy_info = igb_get_phy_info_m88; |
| |
| if (phy->id == I347AT4_E_PHY_ID || |
| phy->id == M88E1112_E_PHY_ID) |
| phy->ops.get_cable_length = igb_get_cable_length_m88_gen2; |
| else |
| phy->ops.get_cable_length = igb_get_cable_length_m88; |
| |
| phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; |
| break; |
| case IGP03E1000_E_PHY_ID: |
| phy->type = e1000_phy_igp_3; |
| phy->ops.get_phy_info = igb_get_phy_info_igp; |
| phy->ops.get_cable_length = igb_get_cable_length_igp_2; |
| phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; |
| phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575; |
| phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state; |
| break; |
| case I82580_I_PHY_ID: |
| case I350_I_PHY_ID: |
| phy->type = e1000_phy_82580; |
| phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580; |
| phy->ops.get_cable_length = igb_get_cable_length_82580; |
| phy->ops.get_phy_info = igb_get_phy_info_82580; |
| break; |
| default: |
| return -E1000_ERR_PHY; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * igb_acquire_phy_82575 - Acquire rights to access PHY |
| * @hw: pointer to the HW structure |
| * |
| * Acquire access rights to the correct PHY. This is a |
| * function pointer entry point called by the api module. |
| **/ |
| static s32 igb_acquire_phy_82575(struct e1000_hw *hw) |
| { |
| u16 mask = E1000_SWFW_PHY0_SM; |
| |
| if (hw->bus.func == E1000_FUNC_1) |
| mask = E1000_SWFW_PHY1_SM; |
| else if (hw->bus.func == E1000_FUNC_2) |
| mask = E1000_SWFW_PHY2_SM; |
| else if (hw->bus.func == E1000_FUNC_3) |
| mask = E1000_SWFW_PHY3_SM; |
| |
| return igb_acquire_swfw_sync_82575(hw, mask); |
| } |
| |
| /** |
| * igb_release_phy_82575 - Release rights to access PHY |
| * @hw: pointer to the HW structure |
| * |
| * A wrapper to release access rights to the correct PHY. This is a |
| * function pointer entry point called by the api module. |
| **/ |
| static void igb_release_phy_82575(struct e1000_hw *hw) |
| { |
| u16 mask = E1000_SWFW_PHY0_SM; |
| |
| if (hw->bus.func == E1000_FUNC_1) |
| mask = E1000_SWFW_PHY1_SM; |
| else if (hw->bus.func == E1000_FUNC_2) |
| mask = E1000_SWFW_PHY2_SM; |
| else if (hw->bus.func == E1000_FUNC_3) |
| mask = E1000_SWFW_PHY3_SM; |
| |
| igb_release_swfw_sync_82575(hw, mask); |
| } |
| |
| /** |
| * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Reads the PHY register at offset using the serial gigabit media independent |
| * interface and stores the retrieved information in data. |
| **/ |
| static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, |
| u16 *data) |
| { |
| s32 ret_val = -E1000_ERR_PARAM; |
| |
| if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { |
| hw_dbg("PHY Address %u is out of range\n", offset); |
| goto out; |
| } |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| ret_val = igb_read_phy_reg_i2c(hw, offset, data); |
| |
| hw->phy.ops.release(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Writes the data to PHY register at the offset using the serial gigabit |
| * media independent interface. |
| **/ |
| static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, |
| u16 data) |
| { |
| s32 ret_val = -E1000_ERR_PARAM; |
| |
| |
| if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { |
| hw_dbg("PHY Address %d is out of range\n", offset); |
| goto out; |
| } |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| ret_val = igb_write_phy_reg_i2c(hw, offset, data); |
| |
| hw->phy.ops.release(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_get_phy_id_82575 - Retrieve PHY addr and id |
| * @hw: pointer to the HW structure |
| * |
| * Retrieves the PHY address and ID for both PHY's which do and do not use |
| * sgmi interface. |
| **/ |
| static s32 igb_get_phy_id_82575(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val = 0; |
| u16 phy_id; |
| u32 ctrl_ext; |
| u32 mdic; |
| |
| /* |
| * For SGMII PHYs, we try the list of possible addresses until |
| * we find one that works. For non-SGMII PHYs |
| * (e.g. integrated copper PHYs), an address of 1 should |
| * work. The result of this function should mean phy->phy_addr |
| * and phy->id are set correctly. |
| */ |
| if (!(igb_sgmii_active_82575(hw))) { |
| phy->addr = 1; |
| ret_val = igb_get_phy_id(hw); |
| goto out; |
| } |
| |
| if (igb_sgmii_uses_mdio_82575(hw)) { |
| switch (hw->mac.type) { |
| case e1000_82575: |
| case e1000_82576: |
| mdic = rd32(E1000_MDIC); |
| mdic &= E1000_MDIC_PHY_MASK; |
| phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; |
| break; |
| case e1000_82580: |
| case e1000_i350: |
| mdic = rd32(E1000_MDICNFG); |
| mdic &= E1000_MDICNFG_PHY_MASK; |
| phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; |
| break; |
| default: |
| ret_val = -E1000_ERR_PHY; |
| goto out; |
| break; |
| } |
| ret_val = igb_get_phy_id(hw); |
| goto out; |
| } |
| |
| /* Power on sgmii phy if it is disabled */ |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); |
| wrfl(); |
| msleep(300); |
| |
| /* |
| * The address field in the I2CCMD register is 3 bits and 0 is invalid. |
| * Therefore, we need to test 1-7 |
| */ |
| for (phy->addr = 1; phy->addr < 8; phy->addr++) { |
| ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); |
| if (ret_val == 0) { |
| hw_dbg("Vendor ID 0x%08X read at address %u\n", |
| phy_id, phy->addr); |
| /* |
| * At the time of this writing, The M88 part is |
| * the only supported SGMII PHY product. |
| */ |
| if (phy_id == M88_VENDOR) |
| break; |
| } else { |
| hw_dbg("PHY address %u was unreadable\n", phy->addr); |
| } |
| } |
| |
| /* A valid PHY type couldn't be found. */ |
| if (phy->addr == 8) { |
| phy->addr = 0; |
| ret_val = -E1000_ERR_PHY; |
| goto out; |
| } else { |
| ret_val = igb_get_phy_id(hw); |
| } |
| |
| /* restore previous sfp cage power state */ |
| wr32(E1000_CTRL_EXT, ctrl_ext); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset |
| * @hw: pointer to the HW structure |
| * |
| * Resets the PHY using the serial gigabit media independent interface. |
| **/ |
| static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| /* |
| * This isn't a true "hard" reset, but is the only reset |
| * available to us at this time. |
| */ |
| |
| hw_dbg("Soft resetting SGMII attached PHY...\n"); |
| |
| /* |
| * SFP documentation requires the following to configure the SPF module |
| * to work on SGMII. No further documentation is given. |
| */ |
| ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); |
| if (ret_val) |
| goto out; |
| |
| ret_val = igb_phy_sw_reset(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state |
| * @hw: pointer to the HW structure |
| * @active: true to enable LPLU, false to disable |
| * |
| * Sets the LPLU D0 state according to the active flag. When |
| * activating LPLU this function also disables smart speed |
| * and vice versa. LPLU will not be activated unless the |
| * device autonegotiation advertisement meets standards of |
| * either 10 or 10/100 or 10/100/1000 at all duplexes. |
| * This is a function pointer entry point only called by |
| * PHY setup routines. |
| **/ |
| static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| |
| ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); |
| if (ret_val) |
| goto out; |
| |
| if (active) { |
| data |= IGP02E1000_PM_D0_LPLU; |
| ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| data); |
| if (ret_val) |
| goto out; |
| |
| /* When LPLU is enabled, we should disable SmartSpeed */ |
| ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| goto out; |
| } else { |
| data &= ~IGP02E1000_PM_D0_LPLU; |
| ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| data); |
| /* |
| * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| * during Dx states where the power conservation is most |
| * important. During driver activity we should enable |
| * SmartSpeed, so performance is maintained. |
| */ |
| if (phy->smart_speed == e1000_smart_speed_on) { |
| ret_val = phy->ops.read_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, &data); |
| if (ret_val) |
| goto out; |
| |
| data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = phy->ops.write_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, data); |
| if (ret_val) |
| goto out; |
| } else if (phy->smart_speed == e1000_smart_speed_off) { |
| ret_val = phy->ops.read_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, &data); |
| if (ret_val) |
| goto out; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = phy->ops.write_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, data); |
| if (ret_val) |
| goto out; |
| } |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_acquire_nvm_82575 - Request for access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the necessary semaphores for exclusive access to the EEPROM. |
| * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| * Return successful if access grant bit set, else clear the request for |
| * EEPROM access and return -E1000_ERR_NVM (-1). |
| **/ |
| static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); |
| if (ret_val) |
| goto out; |
| |
| ret_val = igb_acquire_nvm(hw); |
| |
| if (ret_val) |
| igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_release_nvm_82575 - Release exclusive access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Stop any current commands to the EEPROM and clear the EEPROM request bit, |
| * then release the semaphores acquired. |
| **/ |
| static void igb_release_nvm_82575(struct e1000_hw *hw) |
| { |
| igb_release_nvm(hw); |
| igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); |
| } |
| |
| /** |
| * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore |
| * @hw: pointer to the HW structure |
| * @mask: specifies which semaphore to acquire |
| * |
| * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
| * will also specify which port we're acquiring the lock for. |
| **/ |
| static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) |
| { |
| u32 swfw_sync; |
| u32 swmask = mask; |
| u32 fwmask = mask << 16; |
| s32 ret_val = 0; |
| s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ |
| |
| while (i < timeout) { |
| if (igb_get_hw_semaphore(hw)) { |
| ret_val = -E1000_ERR_SWFW_SYNC; |
| goto out; |
| } |
| |
| swfw_sync = rd32(E1000_SW_FW_SYNC); |
| if (!(swfw_sync & (fwmask | swmask))) |
| break; |
| |
| /* |
| * Firmware currently using resource (fwmask) |
| * or other software thread using resource (swmask) |
| */ |
| igb_put_hw_semaphore(hw); |
| mdelay(5); |
| i++; |
| } |
| |
| if (i == timeout) { |
| hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); |
| ret_val = -E1000_ERR_SWFW_SYNC; |
| goto out; |
| } |
| |
| swfw_sync |= swmask; |
| wr32(E1000_SW_FW_SYNC, swfw_sync); |
| |
| igb_put_hw_semaphore(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_release_swfw_sync_82575 - Release SW/FW semaphore |
| * @hw: pointer to the HW structure |
| * @mask: specifies which semaphore to acquire |
| * |
| * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
| * will also specify which port we're releasing the lock for. |
| **/ |
| static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) |
| { |
| u32 swfw_sync; |
| |
| while (igb_get_hw_semaphore(hw) != 0); |
| /* Empty */ |
| |
| swfw_sync = rd32(E1000_SW_FW_SYNC); |
| swfw_sync &= ~mask; |
| wr32(E1000_SW_FW_SYNC, swfw_sync); |
| |
| igb_put_hw_semaphore(hw); |
| } |
| |
| /** |
| * igb_get_cfg_done_82575 - Read config done bit |
| * @hw: pointer to the HW structure |
| * |
| * Read the management control register for the config done bit for |
| * completion status. NOTE: silicon which is EEPROM-less will fail trying |
| * to read the config done bit, so an error is *ONLY* logged and returns |
| * 0. If we were to return with error, EEPROM-less silicon |
| * would not be able to be reset or change link. |
| **/ |
| static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) |
| { |
| s32 timeout = PHY_CFG_TIMEOUT; |
| s32 ret_val = 0; |
| u32 mask = E1000_NVM_CFG_DONE_PORT_0; |
| |
| if (hw->bus.func == 1) |
| mask = E1000_NVM_CFG_DONE_PORT_1; |
| else if (hw->bus.func == E1000_FUNC_2) |
| mask = E1000_NVM_CFG_DONE_PORT_2; |
| else if (hw->bus.func == E1000_FUNC_3) |
| mask = E1000_NVM_CFG_DONE_PORT_3; |
| |
| while (timeout) { |
| if (rd32(E1000_EEMNGCTL) & mask) |
| break; |
| msleep(1); |
| timeout--; |
| } |
| if (!timeout) |
| hw_dbg("MNG configuration cycle has not completed.\n"); |
| |
| /* If EEPROM is not marked present, init the PHY manually */ |
| if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && |
| (hw->phy.type == e1000_phy_igp_3)) |
| igb_phy_init_script_igp3(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * igb_check_for_link_82575 - Check for link |
| * @hw: pointer to the HW structure |
| * |
| * If sgmii is enabled, then use the pcs register to determine link, otherwise |
| * use the generic interface for determining link. |
| **/ |
| static s32 igb_check_for_link_82575(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 speed, duplex; |
| |
| if (hw->phy.media_type != e1000_media_type_copper) { |
| ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, |
| &duplex); |
| /* |
| * Use this flag to determine if link needs to be checked or |
| * not. If we have link clear the flag so that we do not |
| * continue to check for link. |
| */ |
| hw->mac.get_link_status = !hw->mac.serdes_has_link; |
| } else { |
| ret_val = igb_check_for_copper_link(hw); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown |
| * @hw: pointer to the HW structure |
| **/ |
| void igb_power_up_serdes_link_82575(struct e1000_hw *hw) |
| { |
| u32 reg; |
| |
| |
| if ((hw->phy.media_type != e1000_media_type_internal_serdes) && |
| !igb_sgmii_active_82575(hw)) |
| return; |
| |
| /* Enable PCS to turn on link */ |
| reg = rd32(E1000_PCS_CFG0); |
| reg |= E1000_PCS_CFG_PCS_EN; |
| wr32(E1000_PCS_CFG0, reg); |
| |
| /* Power up the laser */ |
| reg = rd32(E1000_CTRL_EXT); |
| reg &= ~E1000_CTRL_EXT_SDP3_DATA; |
| wr32(E1000_CTRL_EXT, reg); |
| |
| /* flush the write to verify completion */ |
| wrfl(); |
| msleep(1); |
| } |
| |
| /** |
| * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex |
| * @hw: pointer to the HW structure |
| * @speed: stores the current speed |
| * @duplex: stores the current duplex |
| * |
| * Using the physical coding sub-layer (PCS), retrieve the current speed and |
| * duplex, then store the values in the pointers provided. |
| **/ |
| static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, |
| u16 *duplex) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 pcs; |
| |
| /* Set up defaults for the return values of this function */ |
| mac->serdes_has_link = false; |
| *speed = 0; |
| *duplex = 0; |
| |
| /* |
| * Read the PCS Status register for link state. For non-copper mode, |
| * the status register is not accurate. The PCS status register is |
| * used instead. |
| */ |
| pcs = rd32(E1000_PCS_LSTAT); |
| |
| /* |
| * The link up bit determines when link is up on autoneg. The sync ok |
| * gets set once both sides sync up and agree upon link. Stable link |
| * can be determined by checking for both link up and link sync ok |
| */ |
| if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { |
| mac->serdes_has_link = true; |
| |
| /* Detect and store PCS speed */ |
| if (pcs & E1000_PCS_LSTS_SPEED_1000) { |
| *speed = SPEED_1000; |
| } else if (pcs & E1000_PCS_LSTS_SPEED_100) { |
| *speed = SPEED_100; |
| } else { |
| *speed = SPEED_10; |
| } |
| |
| /* Detect and store PCS duplex */ |
| if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) { |
| *duplex = FULL_DUPLEX; |
| } else { |
| *duplex = HALF_DUPLEX; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * igb_shutdown_serdes_link_82575 - Remove link during power down |
| * @hw: pointer to the HW structure |
| * |
| * In the case of fiber serdes, shut down optics and PCS on driver unload |
| * when management pass thru is not enabled. |
| **/ |
| void igb_shutdown_serdes_link_82575(struct e1000_hw *hw) |
| { |
| u32 reg; |
| |
| if (hw->phy.media_type != e1000_media_type_internal_serdes && |
| igb_sgmii_active_82575(hw)) |
| return; |
| |
| if (!igb_enable_mng_pass_thru(hw)) { |
| /* Disable PCS to turn off link */ |
| reg = rd32(E1000_PCS_CFG0); |
| reg &= ~E1000_PCS_CFG_PCS_EN; |
| wr32(E1000_PCS_CFG0, reg); |
| |
| /* shutdown the laser */ |
| reg = rd32(E1000_CTRL_EXT); |
| reg |= E1000_CTRL_EXT_SDP3_DATA; |
| wr32(E1000_CTRL_EXT, reg); |
| |
| /* flush the write to verify completion */ |
| wrfl(); |
| msleep(1); |
| } |
| } |
| |
| /** |
| * igb_reset_hw_82575 - Reset hardware |
| * @hw: pointer to the HW structure |
| * |
| * This resets the hardware into a known state. This is a |
| * function pointer entry point called by the api module. |
| **/ |
| static s32 igb_reset_hw_82575(struct e1000_hw *hw) |
| { |
| u32 ctrl, icr; |
| s32 ret_val; |
| |
| /* |
| * Prevent the PCI-E bus from sticking if there is no TLP connection |
| * on the last TLP read/write transaction when MAC is reset. |
| */ |
| ret_val = igb_disable_pcie_master(hw); |
| if (ret_val) |
| hw_dbg("PCI-E Master disable polling has failed.\n"); |
| |
| /* set the completion timeout for interface */ |
| ret_val = igb_set_pcie_completion_timeout(hw); |
| if (ret_val) { |
| hw_dbg("PCI-E Set completion timeout has failed.\n"); |
| } |
| |
| hw_dbg("Masking off all interrupts\n"); |
| wr32(E1000_IMC, 0xffffffff); |
| |
| wr32(E1000_RCTL, 0); |
| wr32(E1000_TCTL, E1000_TCTL_PSP); |
| wrfl(); |
| |
| msleep(10); |
| |
| ctrl = rd32(E1000_CTRL); |
| |
| hw_dbg("Issuing a global reset to MAC\n"); |
| wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); |
| |
| ret_val = igb_get_auto_rd_done(hw); |
| if (ret_val) { |
| /* |
| * When auto config read does not complete, do not |
| * return with an error. This can happen in situations |
| * where there is no eeprom and prevents getting link. |
| */ |
| hw_dbg("Auto Read Done did not complete\n"); |
| } |
| |
| /* If EEPROM is not present, run manual init scripts */ |
| if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) |
| igb_reset_init_script_82575(hw); |
| |
| /* Clear any pending interrupt events. */ |
| wr32(E1000_IMC, 0xffffffff); |
| icr = rd32(E1000_ICR); |
| |
| /* Install any alternate MAC address into RAR0 */ |
| ret_val = igb_check_alt_mac_addr(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * igb_init_hw_82575 - Initialize hardware |
| * @hw: pointer to the HW structure |
| * |
| * This inits the hardware readying it for operation. |
| **/ |
| static s32 igb_init_hw_82575(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| u16 i, rar_count = mac->rar_entry_count; |
| |
| /* Initialize identification LED */ |
| ret_val = igb_id_led_init(hw); |
| if (ret_val) { |
| hw_dbg("Error initializing identification LED\n"); |
| /* This is not fatal and we should not stop init due to this */ |
| } |
| |
| /* Disabling VLAN filtering */ |
| hw_dbg("Initializing the IEEE VLAN\n"); |
| igb_clear_vfta(hw); |
| |
| /* Setup the receive address */ |
| igb_init_rx_addrs(hw, rar_count); |
| |
| /* Zero out the Multicast HASH table */ |
| hw_dbg("Zeroing the MTA\n"); |
| for (i = 0; i < mac->mta_reg_count; i++) |
| array_wr32(E1000_MTA, i, 0); |
| |
| /* Zero out the Unicast HASH table */ |
| hw_dbg("Zeroing the UTA\n"); |
| for (i = 0; i < mac->uta_reg_count; i++) |
| array_wr32(E1000_UTA, i, 0); |
| |
| /* Setup link and flow control */ |
| ret_val = igb_setup_link(hw); |
| |
| /* |
| * Clear all of the statistics registers (clear on read). It is |
| * important that we do this after we have tried to establish link |
| * because the symbol error count will increment wildly if there |
| * is no link. |
| */ |
| igb_clear_hw_cntrs_82575(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * igb_setup_copper_link_82575 - Configure copper link settings |
| * @hw: pointer to the HW structure |
| * |
| * Configures the link for auto-neg or forced speed and duplex. Then we check |
| * for link, once link is established calls to configure collision distance |
| * and flow control are called. |
| **/ |
| static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| |
| ctrl = rd32(E1000_CTRL); |
| ctrl |= E1000_CTRL_SLU; |
| ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| wr32(E1000_CTRL, ctrl); |
| |
| ret_val = igb_setup_serdes_link_82575(hw); |
| if (ret_val) |
| goto out; |
| |
| if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) { |
| /* allow time for SFP cage time to power up phy */ |
| msleep(300); |
| |
| ret_val = hw->phy.ops.reset(hw); |
| if (ret_val) { |
| hw_dbg("Error resetting the PHY.\n"); |
| goto out; |
| } |
| } |
| switch (hw->phy.type) { |
| case e1000_phy_m88: |
| if (hw->phy.id == I347AT4_E_PHY_ID || |
| hw->phy.id == M88E1112_E_PHY_ID) |
| ret_val = igb_copper_link_setup_m88_gen2(hw); |
| else |
| ret_val = igb_copper_link_setup_m88(hw); |
| break; |
| case e1000_phy_igp_3: |
| ret_val = igb_copper_link_setup_igp(hw); |
| break; |
| case e1000_phy_82580: |
| ret_val = igb_copper_link_setup_82580(hw); |
| break; |
| default: |
| ret_val = -E1000_ERR_PHY; |
| break; |
| } |
| |
| if (ret_val) |
| goto out; |
| |
| ret_val = igb_setup_copper_link(hw); |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_setup_serdes_link_82575 - Setup link for serdes |
| * @hw: pointer to the HW structure |
| * |
| * Configure the physical coding sub-layer (PCS) link. The PCS link is |
| * used on copper connections where the serialized gigabit media independent |
| * interface (sgmii), or serdes fiber is being used. Configures the link |
| * for auto-negotiation or forces speed/duplex. |
| **/ |
| static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw) |
| { |
| u32 ctrl_ext, ctrl_reg, reg; |
| bool pcs_autoneg; |
| |
| if ((hw->phy.media_type != e1000_media_type_internal_serdes) && |
| !igb_sgmii_active_82575(hw)) |
| return 0; |
| |
| /* |
| * On the 82575, SerDes loopback mode persists until it is |
| * explicitly turned off or a power cycle is performed. A read to |
| * the register does not indicate its status. Therefore, we ensure |
| * loopback mode is disabled during initialization. |
| */ |
| wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); |
| |
| /* power on the sfp cage if present */ |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; |
| wr32(E1000_CTRL_EXT, ctrl_ext); |
| |
| ctrl_reg = rd32(E1000_CTRL); |
| ctrl_reg |= E1000_CTRL_SLU; |
| |
| if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { |
| /* set both sw defined pins */ |
| ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; |
| |
| /* Set switch control to serdes energy detect */ |
| reg = rd32(E1000_CONNSW); |
| reg |= E1000_CONNSW_ENRGSRC; |
| wr32(E1000_CONNSW, reg); |
| } |
| |
| reg = rd32(E1000_PCS_LCTL); |
| |
| /* default pcs_autoneg to the same setting as mac autoneg */ |
| pcs_autoneg = hw->mac.autoneg; |
| |
| switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { |
| case E1000_CTRL_EXT_LINK_MODE_SGMII: |
| /* sgmii mode lets the phy handle forcing speed/duplex */ |
| pcs_autoneg = true; |
| /* autoneg time out should be disabled for SGMII mode */ |
| reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); |
| break; |
| case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: |
| /* disable PCS autoneg and support parallel detect only */ |
| pcs_autoneg = false; |
| default: |
| /* |
| * non-SGMII modes only supports a speed of 1000/Full for the |
| * link so it is best to just force the MAC and let the pcs |
| * link either autoneg or be forced to 1000/Full |
| */ |
| ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | |
| E1000_CTRL_FD | E1000_CTRL_FRCDPX; |
| |
| /* set speed of 1000/Full if speed/duplex is forced */ |
| reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; |
| break; |
| } |
| |
| wr32(E1000_CTRL, ctrl_reg); |
| |
| /* |
| * New SerDes mode allows for forcing speed or autonegotiating speed |
| * at 1gb. Autoneg should be default set by most drivers. This is the |
| * mode that will be compatible with older link partners and switches. |
| * However, both are supported by the hardware and some drivers/tools. |
| */ |
| reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | |
| E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); |
| |
| /* |
| * We force flow control to prevent the CTRL register values from being |
| * overwritten by the autonegotiated flow control values |
| */ |
| reg |= E1000_PCS_LCTL_FORCE_FCTRL; |
| |
| if (pcs_autoneg) { |
| /* Set PCS register for autoneg */ |
| reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ |
| E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ |
| hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); |
| } else { |
| /* Set PCS register for forced link */ |
| reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ |
| |
| hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); |
| } |
| |
| wr32(E1000_PCS_LCTL, reg); |
| |
| if (!igb_sgmii_active_82575(hw)) |
| igb_force_mac_fc(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * igb_sgmii_active_82575 - Return sgmii state |
| * @hw: pointer to the HW structure |
| * |
| * 82575 silicon has a serialized gigabit media independent interface (sgmii) |
| * which can be enabled for use in the embedded applications. Simply |
| * return the current state of the sgmii interface. |
| **/ |
| static bool igb_sgmii_active_82575(struct e1000_hw *hw) |
| { |
| struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; |
| return dev_spec->sgmii_active; |
| } |
| |
| /** |
| * igb_reset_init_script_82575 - Inits HW defaults after reset |
| * @hw: pointer to the HW structure |
| * |
| * Inits recommended HW defaults after a reset when there is no EEPROM |
| * detected. This is only for the 82575. |
| **/ |
| static s32 igb_reset_init_script_82575(struct e1000_hw *hw) |
| { |
| if (hw->mac.type == e1000_82575) { |
| hw_dbg("Running reset init script for 82575\n"); |
| /* SerDes configuration via SERDESCTRL */ |
| igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); |
| igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); |
| igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); |
| igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); |
| |
| /* CCM configuration via CCMCTL register */ |
| igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); |
| igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); |
| |
| /* PCIe lanes configuration */ |
| igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); |
| igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); |
| igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); |
| igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); |
| |
| /* PCIe PLL Configuration */ |
| igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); |
| igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); |
| igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * igb_read_mac_addr_82575 - Read device MAC address |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| |
| /* |
| * If there's an alternate MAC address place it in RAR0 |
| * so that it will override the Si installed default perm |
| * address. |
| */ |
| ret_val = igb_check_alt_mac_addr(hw); |
| if (ret_val) |
| goto out; |
| |
| ret_val = igb_read_mac_addr(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_power_down_phy_copper_82575 - Remove link during PHY power down |
| * @hw: pointer to the HW structure |
| * |
| * In the case of a PHY power down to save power, or to turn off link during a |
| * driver unload, or wake on lan is not enabled, remove the link. |
| **/ |
| void igb_power_down_phy_copper_82575(struct e1000_hw *hw) |
| { |
| /* If the management interface is not enabled, then power down */ |
| if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw))) |
| igb_power_down_phy_copper(hw); |
| } |
| |
| /** |
| * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters |
| * @hw: pointer to the HW structure |
| * |
| * Clears the hardware counters by reading the counter registers. |
| **/ |
| static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) |
| { |
| igb_clear_hw_cntrs_base(hw); |
| |
| rd32(E1000_PRC64); |
| rd32(E1000_PRC127); |
| rd32(E1000_PRC255); |
| rd32(E1000_PRC511); |
| rd32(E1000_PRC1023); |
| rd32(E1000_PRC1522); |
| rd32(E1000_PTC64); |
| rd32(E1000_PTC127); |
| rd32(E1000_PTC255); |
| rd32(E1000_PTC511); |
| rd32(E1000_PTC1023); |
| rd32(E1000_PTC1522); |
| |
| rd32(E1000_ALGNERRC); |
| rd32(E1000_RXERRC); |
| rd32(E1000_TNCRS); |
| rd32(E1000_CEXTERR); |
| rd32(E1000_TSCTC); |
| rd32(E1000_TSCTFC); |
| |
| rd32(E1000_MGTPRC); |
| rd32(E1000_MGTPDC); |
| rd32(E1000_MGTPTC); |
| |
| rd32(E1000_IAC); |
| rd32(E1000_ICRXOC); |
| |
| rd32(E1000_ICRXPTC); |
| rd32(E1000_ICRXATC); |
| rd32(E1000_ICTXPTC); |
| rd32(E1000_ICTXATC); |
| rd32(E1000_ICTXQEC); |
| rd32(E1000_ICTXQMTC); |
| rd32(E1000_ICRXDMTC); |
| |
| rd32(E1000_CBTMPC); |
| rd32(E1000_HTDPMC); |
| rd32(E1000_CBRMPC); |
| rd32(E1000_RPTHC); |
| rd32(E1000_HGPTC); |
| rd32(E1000_HTCBDPC); |
| rd32(E1000_HGORCL); |
| rd32(E1000_HGORCH); |
| rd32(E1000_HGOTCL); |
| rd32(E1000_HGOTCH); |
| rd32(E1000_LENERRS); |
| |
| /* This register should not be read in copper configurations */ |
| if (hw->phy.media_type == e1000_media_type_internal_serdes || |
| igb_sgmii_active_82575(hw)) |
| rd32(E1000_SCVPC); |
| } |
| |
| /** |
| * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable |
| * @hw: pointer to the HW structure |
| * |
| * After rx enable if managability is enabled then there is likely some |
| * bad data at the start of the fifo and possibly in the DMA fifo. This |
| * function clears the fifos and flushes any packets that came in as rx was |
| * being enabled. |
| **/ |
| void igb_rx_fifo_flush_82575(struct e1000_hw *hw) |
| { |
| u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; |
| int i, ms_wait; |
| |
| if (hw->mac.type != e1000_82575 || |
| !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN)) |
| return; |
| |
| /* Disable all RX queues */ |
| for (i = 0; i < 4; i++) { |
| rxdctl[i] = rd32(E1000_RXDCTL(i)); |
| wr32(E1000_RXDCTL(i), |
| rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); |
| } |
| /* Poll all queues to verify they have shut down */ |
| for (ms_wait = 0; ms_wait < 10; ms_wait++) { |
| msleep(1); |
| rx_enabled = 0; |
| for (i = 0; i < 4; i++) |
| rx_enabled |= rd32(E1000_RXDCTL(i)); |
| if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) |
| break; |
| } |
| |
| if (ms_wait == 10) |
| hw_dbg("Queue disable timed out after 10ms\n"); |
| |
| /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all |
| * incoming packets are rejected. Set enable and wait 2ms so that |
| * any packet that was coming in as RCTL.EN was set is flushed |
| */ |
| rfctl = rd32(E1000_RFCTL); |
| wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); |
| |
| rlpml = rd32(E1000_RLPML); |
| wr32(E1000_RLPML, 0); |
| |
| rctl = rd32(E1000_RCTL); |
| temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); |
| temp_rctl |= E1000_RCTL_LPE; |
| |
| wr32(E1000_RCTL, temp_rctl); |
| wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN); |
| wrfl(); |
| msleep(2); |
| |
| /* Enable RX queues that were previously enabled and restore our |
| * previous state |
| */ |
| for (i = 0; i < 4; i++) |
| wr32(E1000_RXDCTL(i), rxdctl[i]); |
| wr32(E1000_RCTL, rctl); |
| wrfl(); |
| |
| wr32(E1000_RLPML, rlpml); |
| wr32(E1000_RFCTL, rfctl); |
| |
| /* Flush receive errors generated by workaround */ |
| rd32(E1000_ROC); |
| rd32(E1000_RNBC); |
| rd32(E1000_MPC); |
| } |
| |
| /** |
| * igb_set_pcie_completion_timeout - set pci-e completion timeout |
| * @hw: pointer to the HW structure |
| * |
| * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, |
| * however the hardware default for these parts is 500us to 1ms which is less |
| * than the 10ms recommended by the pci-e spec. To address this we need to |
| * increase the value to either 10ms to 200ms for capability version 1 config, |
| * or 16ms to 55ms for version 2. |
| **/ |
| static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw) |
| { |
| u32 gcr = rd32(E1000_GCR); |
| s32 ret_val = 0; |
| u16 pcie_devctl2; |
| |
| /* only take action if timeout value is defaulted to 0 */ |
| if (gcr & E1000_GCR_CMPL_TMOUT_MASK) |
| goto out; |
| |
| /* |
| * if capababilities version is type 1 we can write the |
| * timeout of 10ms to 200ms through the GCR register |
| */ |
| if (!(gcr & E1000_GCR_CAP_VER2)) { |
| gcr |= E1000_GCR_CMPL_TMOUT_10ms; |
| goto out; |
| } |
| |
| /* |
| * for version 2 capabilities we need to write the config space |
| * directly in order to set the completion timeout value for |
| * 16ms to 55ms |
| */ |
| ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, |
| &pcie_devctl2); |
| if (ret_val) |
| goto out; |
| |
| pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; |
| |
| ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, |
| &pcie_devctl2); |
| out: |
| /* disable completion timeout resend */ |
| gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; |
| |
| wr32(E1000_GCR, gcr); |
| return ret_val; |
| } |
| |
| /** |
| * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing |
| * @hw: pointer to the hardware struct |
| * @enable: state to enter, either enabled or disabled |
| * @pf: Physical Function pool - do not set anti-spoofing for the PF |
| * |
| * enables/disables L2 switch anti-spoofing functionality. |
| **/ |
| void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) |
| { |
| u32 dtxswc; |
| |
| switch (hw->mac.type) { |
| case e1000_82576: |
| case e1000_i350: |
| dtxswc = rd32(E1000_DTXSWC); |
| if (enable) { |
| dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK | |
| E1000_DTXSWC_VLAN_SPOOF_MASK); |
| /* The PF can spoof - it has to in order to |
| * support emulation mode NICs */ |
| dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); |
| } else { |
| dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | |
| E1000_DTXSWC_VLAN_SPOOF_MASK); |
| } |
| wr32(E1000_DTXSWC, dtxswc); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback |
| * @hw: pointer to the hardware struct |
| * @enable: state to enter, either enabled or disabled |
| * |
| * enables/disables L2 switch loopback functionality. |
| **/ |
| void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) |
| { |
| u32 dtxswc = rd32(E1000_DTXSWC); |
| |
| if (enable) |
| dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; |
| else |
| dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; |
| |
| wr32(E1000_DTXSWC, dtxswc); |
| } |
| |
| /** |
| * igb_vmdq_set_replication_pf - enable or disable vmdq replication |
| * @hw: pointer to the hardware struct |
| * @enable: state to enter, either enabled or disabled |
| * |
| * enables/disables replication of packets across multiple pools. |
| **/ |
| void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) |
| { |
| u32 vt_ctl = rd32(E1000_VT_CTL); |
| |
| if (enable) |
| vt_ctl |= E1000_VT_CTL_VM_REPL_EN; |
| else |
| vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; |
| |
| wr32(E1000_VT_CTL, vt_ctl); |
| } |
| |
| /** |
| * igb_read_phy_reg_82580 - Read 82580 MDI control register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Reads the MDI control register in the PHY at offset and stores the |
| * information read to data. |
| **/ |
| static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| s32 ret_val; |
| |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| ret_val = igb_read_phy_reg_mdic(hw, offset, data); |
| |
| hw->phy.ops.release(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_write_phy_reg_82580 - Write 82580 MDI control register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write to register at offset |
| * |
| * Writes data to MDI control register in the PHY at offset. |
| **/ |
| static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| s32 ret_val; |
| |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| ret_val = igb_write_phy_reg_mdic(hw, offset, data); |
| |
| hw->phy.ops.release(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits |
| * @hw: pointer to the HW structure |
| * |
| * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on |
| * the values found in the EEPROM. This addresses an issue in which these |
| * bits are not restored from EEPROM after reset. |
| **/ |
| static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u32 mdicnfg; |
| u16 nvm_data = 0; |
| |
| if (hw->mac.type != e1000_82580) |
| goto out; |
| if (!igb_sgmii_active_82575(hw)) |
| goto out; |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + |
| NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, |
| &nvm_data); |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| |
| mdicnfg = rd32(E1000_MDICNFG); |
| if (nvm_data & NVM_WORD24_EXT_MDIO) |
| mdicnfg |= E1000_MDICNFG_EXT_MDIO; |
| if (nvm_data & NVM_WORD24_COM_MDIO) |
| mdicnfg |= E1000_MDICNFG_COM_MDIO; |
| wr32(E1000_MDICNFG, mdicnfg); |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_reset_hw_82580 - Reset hardware |
| * @hw: pointer to the HW structure |
| * |
| * This resets function or entire device (all ports, etc.) |
| * to a known state. |
| **/ |
| static s32 igb_reset_hw_82580(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| /* BH SW mailbox bit in SW_FW_SYNC */ |
| u16 swmbsw_mask = E1000_SW_SYNCH_MB; |
| u32 ctrl, icr; |
| bool global_device_reset = hw->dev_spec._82575.global_device_reset; |
| |
| |
| hw->dev_spec._82575.global_device_reset = false; |
| |
| /* Get current control state. */ |
| ctrl = rd32(E1000_CTRL); |
| |
| /* |
| * Prevent the PCI-E bus from sticking if there is no TLP connection |
| * on the last TLP read/write transaction when MAC is reset. |
| */ |
| ret_val = igb_disable_pcie_master(hw); |
| if (ret_val) |
| hw_dbg("PCI-E Master disable polling has failed.\n"); |
| |
| hw_dbg("Masking off all interrupts\n"); |
| wr32(E1000_IMC, 0xffffffff); |
| wr32(E1000_RCTL, 0); |
| wr32(E1000_TCTL, E1000_TCTL_PSP); |
| wrfl(); |
| |
| msleep(10); |
| |
| /* Determine whether or not a global dev reset is requested */ |
| if (global_device_reset && |
| igb_acquire_swfw_sync_82575(hw, swmbsw_mask)) |
| global_device_reset = false; |
| |
| if (global_device_reset && |
| !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET)) |
| ctrl |= E1000_CTRL_DEV_RST; |
| else |
| ctrl |= E1000_CTRL_RST; |
| |
| wr32(E1000_CTRL, ctrl); |
| |
| /* Add delay to insure DEV_RST has time to complete */ |
| if (global_device_reset) |
| msleep(5); |
| |
| ret_val = igb_get_auto_rd_done(hw); |
| if (ret_val) { |
| /* |
| * When auto config read does not complete, do not |
| * return with an error. This can happen in situations |
| * where there is no eeprom and prevents getting link. |
| */ |
| hw_dbg("Auto Read Done did not complete\n"); |
| } |
| |
| /* If EEPROM is not present, run manual init scripts */ |
| if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) |
| igb_reset_init_script_82575(hw); |
| |
| /* clear global device reset status bit */ |
| wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET); |
| |
| /* Clear any pending interrupt events. */ |
| wr32(E1000_IMC, 0xffffffff); |
| icr = rd32(E1000_ICR); |
| |
| ret_val = igb_reset_mdicnfg_82580(hw); |
| if (ret_val) |
| hw_dbg("Could not reset MDICNFG based on EEPROM\n"); |
| |
| /* Install any alternate MAC address into RAR0 */ |
| ret_val = igb_check_alt_mac_addr(hw); |
| |
| /* Release semaphore */ |
| if (global_device_reset) |
| igb_release_swfw_sync_82575(hw, swmbsw_mask); |
| |
| return ret_val; |
| } |
| |
| /** |
| * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size |
| * @data: data received by reading RXPBS register |
| * |
| * The 82580 uses a table based approach for packet buffer allocation sizes. |
| * This function converts the retrieved value into the correct table value |
| * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 |
| * 0x0 36 72 144 1 2 4 8 16 |
| * 0x8 35 70 140 rsv rsv rsv rsv rsv |
| */ |
| u16 igb_rxpbs_adjust_82580(u32 data) |
| { |
| u16 ret_val = 0; |
| |
| if (data < E1000_82580_RXPBS_TABLE_SIZE) |
| ret_val = e1000_82580_rxpbs_table[data]; |
| |
| return ret_val; |
| } |
| |
| /** |
| * igb_validate_nvm_checksum_with_offset - Validate EEPROM |
| * checksum |
| * @hw: pointer to the HW structure |
| * @offset: offset in words of the checksum protected region |
| * |
| * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| **/ |
| s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) |
| { |
| s32 ret_val = 0; |
| u16 checksum = 0; |
| u16 i, nvm_data; |
| |
| for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { |
| ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| checksum += nvm_data; |
| } |
| |
| if (checksum != (u16) NVM_SUM) { |
| hw_dbg("NVM Checksum Invalid\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_update_nvm_checksum_with_offset - Update EEPROM |
| * checksum |
| * @hw: pointer to the HW structure |
| * @offset: offset in words of the checksum protected region |
| * |
| * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| * up to the checksum. Then calculates the EEPROM checksum and writes the |
| * value to the EEPROM. |
| **/ |
| s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) |
| { |
| s32 ret_val; |
| u16 checksum = 0; |
| u16 i, nvm_data; |
| |
| for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { |
| ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg("NVM Read Error while updating checksum.\n"); |
| goto out; |
| } |
| checksum += nvm_data; |
| } |
| checksum = (u16) NVM_SUM - checksum; |
| ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, |
| &checksum); |
| if (ret_val) |
| hw_dbg("NVM Write Error while updating checksum.\n"); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Calculates the EEPROM section checksum by reading/adding each word of |
| * the EEPROM and then verifies that the sum of the EEPROM is |
| * equal to 0xBABA. |
| **/ |
| static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u16 eeprom_regions_count = 1; |
| u16 j, nvm_data; |
| u16 nvm_offset; |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| |
| if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { |
| /* if chekcsums compatibility bit is set validate checksums |
| * for all 4 ports. */ |
| eeprom_regions_count = 4; |
| } |
| |
| for (j = 0; j < eeprom_regions_count; j++) { |
| nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); |
| ret_val = igb_validate_nvm_checksum_with_offset(hw, |
| nvm_offset); |
| if (ret_val != 0) |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_update_nvm_checksum_82580 - Update EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Updates the EEPROM section checksums for all 4 ports by reading/adding |
| * each word of the EEPROM up to the checksum. Then calculates the EEPROM |
| * checksum and writes the value to the EEPROM. |
| **/ |
| static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 j, nvm_data; |
| u16 nvm_offset; |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg("NVM Read Error while updating checksum" |
| " compatibility bit.\n"); |
| goto out; |
| } |
| |
| if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) { |
| /* set compatibility bit to validate checksums appropriately */ |
| nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; |
| ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, |
| &nvm_data); |
| if (ret_val) { |
| hw_dbg("NVM Write Error while updating checksum" |
| " compatibility bit.\n"); |
| goto out; |
| } |
| } |
| |
| for (j = 0; j < 4; j++) { |
| nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); |
| ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); |
| if (ret_val) |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Calculates the EEPROM section checksum by reading/adding each word of |
| * the EEPROM and then verifies that the sum of the EEPROM is |
| * equal to 0xBABA. |
| **/ |
| static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u16 j; |
| u16 nvm_offset; |
| |
| for (j = 0; j < 4; j++) { |
| nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); |
| ret_val = igb_validate_nvm_checksum_with_offset(hw, |
| nvm_offset); |
| if (ret_val != 0) |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_update_nvm_checksum_i350 - Update EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Updates the EEPROM section checksums for all 4 ports by reading/adding |
| * each word of the EEPROM up to the checksum. Then calculates the EEPROM |
| * checksum and writes the value to the EEPROM. |
| **/ |
| static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u16 j; |
| u16 nvm_offset; |
| |
| for (j = 0; j < 4; j++) { |
| nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); |
| ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); |
| if (ret_val != 0) |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| /** |
| * igb_set_eee_i350 - Enable/disable EEE support |
| * @hw: pointer to the HW structure |
| * |
| * Enable/disable EEE based on setting in dev_spec structure. |
| * |
| **/ |
| s32 igb_set_eee_i350(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u32 ipcnfg, eeer, ctrl_ext; |
| |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| if ((hw->mac.type != e1000_i350) || |
| (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK)) |
| goto out; |
| ipcnfg = rd32(E1000_IPCNFG); |
| eeer = rd32(E1000_EEER); |
| |
| /* enable or disable per user setting */ |
| if (!(hw->dev_spec._82575.eee_disable)) { |
| ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | |
| E1000_IPCNFG_EEE_100M_AN); |
| eeer |= (E1000_EEER_TX_LPI_EN | |
| E1000_EEER_RX_LPI_EN | |
| E1000_EEER_LPI_FC); |
| |
| } else { |
| ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | |
| E1000_IPCNFG_EEE_100M_AN); |
| eeer &= ~(E1000_EEER_TX_LPI_EN | |
| E1000_EEER_RX_LPI_EN | |
| E1000_EEER_LPI_FC); |
| } |
| wr32(E1000_IPCNFG, ipcnfg); |
| wr32(E1000_EEER, eeer); |
| out: |
| |
| return ret_val; |
| } |
| |
| static struct e1000_mac_operations e1000_mac_ops_82575 = { |
| .init_hw = igb_init_hw_82575, |
| .check_for_link = igb_check_for_link_82575, |
| .rar_set = igb_rar_set, |
| .read_mac_addr = igb_read_mac_addr_82575, |
| .get_speed_and_duplex = igb_get_speed_and_duplex_copper, |
| }; |
| |
| static struct e1000_phy_operations e1000_phy_ops_82575 = { |
| .acquire = igb_acquire_phy_82575, |
| .get_cfg_done = igb_get_cfg_done_82575, |
| .release = igb_release_phy_82575, |
| }; |
| |
| static struct e1000_nvm_operations e1000_nvm_ops_82575 = { |
| .acquire = igb_acquire_nvm_82575, |
| .read = igb_read_nvm_eerd, |
| .release = igb_release_nvm_82575, |
| .write = igb_write_nvm_spi, |
| }; |
| |
| const struct e1000_info e1000_82575_info = { |
| .get_invariants = igb_get_invariants_82575, |
| .mac_ops = &e1000_mac_ops_82575, |
| .phy_ops = &e1000_phy_ops_82575, |
| .nvm_ops = &e1000_nvm_ops_82575, |
| }; |
| |