| /* |
| * Kernel-based Virtual Machine -- Performance Monitoring Unit support |
| * |
| * Copyright 2015 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Avi Kivity <avi@redhat.com> |
| * Gleb Natapov <gleb@redhat.com> |
| * Wei Huang <wei@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kvm_host.h> |
| #include <linux/perf_event.h> |
| #include <asm/perf_event.h> |
| #include "x86.h" |
| #include "cpuid.h" |
| #include "lapic.h" |
| #include "pmu.h" |
| |
| /* NOTE: |
| * - Each perf counter is defined as "struct kvm_pmc"; |
| * - There are two types of perf counters: general purpose (gp) and fixed. |
| * gp counters are stored in gp_counters[] and fixed counters are stored |
| * in fixed_counters[] respectively. Both of them are part of "struct |
| * kvm_pmu"; |
| * - pmu.c understands the difference between gp counters and fixed counters. |
| * However AMD doesn't support fixed-counters; |
| * - There are three types of index to access perf counters (PMC): |
| * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD |
| * has MSR_K7_PERFCTRn. |
| * 2. MSR Index (named idx): This normally is used by RDPMC instruction. |
| * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access |
| * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except |
| * that it also supports fixed counters. idx can be used to as index to |
| * gp and fixed counters. |
| * 3. Global PMC Index (named pmc): pmc is an index specific to PMU |
| * code. Each pmc, stored in kvm_pmc.idx field, is unique across |
| * all perf counters (both gp and fixed). The mapping relationship |
| * between pmc and perf counters is as the following: |
| * * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters |
| * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed |
| * * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters |
| */ |
| |
| static void kvm_pmi_trigger_fn(struct irq_work *irq_work) |
| { |
| struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); |
| struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); |
| |
| kvm_pmu_deliver_pmi(vcpu); |
| } |
| |
| static void kvm_perf_overflow(struct perf_event *perf_event, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct kvm_pmc *pmc = perf_event->overflow_handler_context; |
| struct kvm_pmu *pmu = pmc_to_pmu(pmc); |
| |
| if (!test_and_set_bit(pmc->idx, |
| (unsigned long *)&pmu->reprogram_pmi)) { |
| __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); |
| kvm_make_request(KVM_REQ_PMU, pmc->vcpu); |
| } |
| } |
| |
| static void kvm_perf_overflow_intr(struct perf_event *perf_event, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct kvm_pmc *pmc = perf_event->overflow_handler_context; |
| struct kvm_pmu *pmu = pmc_to_pmu(pmc); |
| |
| if (!test_and_set_bit(pmc->idx, |
| (unsigned long *)&pmu->reprogram_pmi)) { |
| __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); |
| kvm_make_request(KVM_REQ_PMU, pmc->vcpu); |
| |
| /* |
| * Inject PMI. If vcpu was in a guest mode during NMI PMI |
| * can be ejected on a guest mode re-entry. Otherwise we can't |
| * be sure that vcpu wasn't executing hlt instruction at the |
| * time of vmexit and is not going to re-enter guest mode until |
| * woken up. So we should wake it, but this is impossible from |
| * NMI context. Do it from irq work instead. |
| */ |
| if (!kvm_is_in_guest()) |
| irq_work_queue(&pmc_to_pmu(pmc)->irq_work); |
| else |
| kvm_make_request(KVM_REQ_PMI, pmc->vcpu); |
| } |
| } |
| |
| static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, |
| unsigned config, bool exclude_user, |
| bool exclude_kernel, bool intr, |
| bool in_tx, bool in_tx_cp) |
| { |
| struct perf_event *event; |
| struct perf_event_attr attr = { |
| .type = type, |
| .size = sizeof(attr), |
| .pinned = true, |
| .exclude_idle = true, |
| .exclude_host = 1, |
| .exclude_user = exclude_user, |
| .exclude_kernel = exclude_kernel, |
| .config = config, |
| }; |
| |
| if (in_tx) |
| attr.config |= HSW_IN_TX; |
| if (in_tx_cp) |
| attr.config |= HSW_IN_TX_CHECKPOINTED; |
| |
| attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc); |
| |
| event = perf_event_create_kernel_counter(&attr, -1, current, |
| intr ? kvm_perf_overflow_intr : |
| kvm_perf_overflow, pmc); |
| if (IS_ERR(event)) { |
| pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", |
| PTR_ERR(event), pmc->idx); |
| return; |
| } |
| |
| pmc->perf_event = event; |
| clear_bit(pmc->idx, (unsigned long*)&pmc_to_pmu(pmc)->reprogram_pmi); |
| } |
| |
| void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel) |
| { |
| unsigned config, type = PERF_TYPE_RAW; |
| u8 event_select, unit_mask; |
| |
| if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) |
| printk_once("kvm pmu: pin control bit is ignored\n"); |
| |
| pmc->eventsel = eventsel; |
| |
| pmc_stop_counter(pmc); |
| |
| if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc)) |
| return; |
| |
| event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT; |
| unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; |
| |
| if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE | |
| ARCH_PERFMON_EVENTSEL_INV | |
| ARCH_PERFMON_EVENTSEL_CMASK | |
| HSW_IN_TX | |
| HSW_IN_TX_CHECKPOINTED))) { |
| config = kvm_x86_ops->pmu_ops->find_arch_event(pmc_to_pmu(pmc), |
| event_select, |
| unit_mask); |
| if (config != PERF_COUNT_HW_MAX) |
| type = PERF_TYPE_HARDWARE; |
| } |
| |
| if (type == PERF_TYPE_RAW) |
| config = eventsel & X86_RAW_EVENT_MASK; |
| |
| pmc_reprogram_counter(pmc, type, config, |
| !(eventsel & ARCH_PERFMON_EVENTSEL_USR), |
| !(eventsel & ARCH_PERFMON_EVENTSEL_OS), |
| eventsel & ARCH_PERFMON_EVENTSEL_INT, |
| (eventsel & HSW_IN_TX), |
| (eventsel & HSW_IN_TX_CHECKPOINTED)); |
| } |
| EXPORT_SYMBOL_GPL(reprogram_gp_counter); |
| |
| void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx) |
| { |
| unsigned en_field = ctrl & 0x3; |
| bool pmi = ctrl & 0x8; |
| |
| pmc_stop_counter(pmc); |
| |
| if (!en_field || !pmc_is_enabled(pmc)) |
| return; |
| |
| pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE, |
| kvm_x86_ops->pmu_ops->find_fixed_event(idx), |
| !(en_field & 0x2), /* exclude user */ |
| !(en_field & 0x1), /* exclude kernel */ |
| pmi, false, false); |
| } |
| EXPORT_SYMBOL_GPL(reprogram_fixed_counter); |
| |
| void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx) |
| { |
| struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx); |
| |
| if (!pmc) |
| return; |
| |
| if (pmc_is_gp(pmc)) |
| reprogram_gp_counter(pmc, pmc->eventsel); |
| else { |
| int idx = pmc_idx - INTEL_PMC_IDX_FIXED; |
| u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx); |
| |
| reprogram_fixed_counter(pmc, ctrl, idx); |
| } |
| } |
| EXPORT_SYMBOL_GPL(reprogram_counter); |
| |
| void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| u64 bitmask; |
| int bit; |
| |
| bitmask = pmu->reprogram_pmi; |
| |
| for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) { |
| struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, bit); |
| |
| if (unlikely(!pmc || !pmc->perf_event)) { |
| clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi); |
| continue; |
| } |
| |
| reprogram_counter(pmu, bit); |
| } |
| } |
| |
| /* check if idx is a valid index to access PMU */ |
| int kvm_pmu_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx) |
| { |
| return kvm_x86_ops->pmu_ops->is_valid_msr_idx(vcpu, idx); |
| } |
| |
| int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) |
| { |
| bool fast_mode = idx & (1u << 31); |
| struct kvm_pmc *pmc; |
| u64 ctr_val; |
| |
| pmc = kvm_x86_ops->pmu_ops->msr_idx_to_pmc(vcpu, idx); |
| if (!pmc) |
| return 1; |
| |
| ctr_val = pmc_read_counter(pmc); |
| if (fast_mode) |
| ctr_val = (u32)ctr_val; |
| |
| *data = ctr_val; |
| return 0; |
| } |
| |
| void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) |
| { |
| if (lapic_in_kernel(vcpu)) |
| kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); |
| } |
| |
| bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) |
| { |
| return kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, msr); |
| } |
| |
| int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data) |
| { |
| return kvm_x86_ops->pmu_ops->get_msr(vcpu, msr, data); |
| } |
| |
| int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| return kvm_x86_ops->pmu_ops->set_msr(vcpu, msr_info); |
| } |
| |
| /* refresh PMU settings. This function generally is called when underlying |
| * settings are changed (such as changes of PMU CPUID by guest VMs), which |
| * should rarely happen. |
| */ |
| void kvm_pmu_refresh(struct kvm_vcpu *vcpu) |
| { |
| kvm_x86_ops->pmu_ops->refresh(vcpu); |
| } |
| |
| void kvm_pmu_reset(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| |
| irq_work_sync(&pmu->irq_work); |
| kvm_x86_ops->pmu_ops->reset(vcpu); |
| } |
| |
| void kvm_pmu_init(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| |
| memset(pmu, 0, sizeof(*pmu)); |
| kvm_x86_ops->pmu_ops->init(vcpu); |
| init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); |
| kvm_pmu_refresh(vcpu); |
| } |
| |
| void kvm_pmu_destroy(struct kvm_vcpu *vcpu) |
| { |
| kvm_pmu_reset(vcpu); |
| } |