| /* |
| * ACPI 3.0 based NUMA setup |
| * Copyright 2004 Andi Kleen, SuSE Labs. |
| * |
| * Reads the ACPI SRAT table to figure out what memory belongs to which CPUs. |
| * |
| * Called from acpi_numa_init while reading the SRAT and SLIT tables. |
| * Assumes all memory regions belonging to a single proximity domain |
| * are in one chunk. Holes between them will be included in the node. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/acpi.h> |
| #include <linux/mmzone.h> |
| #include <linux/bitmap.h> |
| #include <linux/module.h> |
| #include <linux/topology.h> |
| #include <linux/bootmem.h> |
| #include <linux/memblock.h> |
| #include <linux/mm.h> |
| #include <asm/proto.h> |
| #include <asm/numa.h> |
| #include <asm/e820.h> |
| #include <asm/apic.h> |
| #include <asm/uv/uv.h> |
| |
| int acpi_numa __initdata; |
| |
| static struct acpi_table_slit *acpi_slit; |
| |
| static nodemask_t nodes_parsed __initdata; |
| static nodemask_t cpu_nodes_parsed __initdata; |
| static struct bootnode nodes[MAX_NUMNODES] __initdata; |
| static struct bootnode nodes_add[MAX_NUMNODES]; |
| |
| static int num_node_memblks __initdata; |
| static struct bootnode node_memblk_range[NR_NODE_MEMBLKS] __initdata; |
| static int memblk_nodeid[NR_NODE_MEMBLKS] __initdata; |
| |
| static __init int setup_node(int pxm) |
| { |
| return acpi_map_pxm_to_node(pxm); |
| } |
| |
| static __init int conflicting_memblks(unsigned long start, unsigned long end) |
| { |
| int i; |
| for (i = 0; i < num_node_memblks; i++) { |
| struct bootnode *nd = &node_memblk_range[i]; |
| if (nd->start == nd->end) |
| continue; |
| if (nd->end > start && nd->start < end) |
| return memblk_nodeid[i]; |
| if (nd->end == end && nd->start == start) |
| return memblk_nodeid[i]; |
| } |
| return -1; |
| } |
| |
| static __init void cutoff_node(int i, unsigned long start, unsigned long end) |
| { |
| struct bootnode *nd = &nodes[i]; |
| |
| if (nd->start < start) { |
| nd->start = start; |
| if (nd->end < nd->start) |
| nd->start = nd->end; |
| } |
| if (nd->end > end) { |
| nd->end = end; |
| if (nd->start > nd->end) |
| nd->start = nd->end; |
| } |
| } |
| |
| static __init void bad_srat(void) |
| { |
| int i; |
| printk(KERN_ERR "SRAT: SRAT not used.\n"); |
| acpi_numa = -1; |
| for (i = 0; i < MAX_LOCAL_APIC; i++) |
| apicid_to_node[i] = NUMA_NO_NODE; |
| for (i = 0; i < MAX_NUMNODES; i++) { |
| nodes[i].start = nodes[i].end = 0; |
| nodes_add[i].start = nodes_add[i].end = 0; |
| } |
| remove_all_active_ranges(); |
| } |
| |
| static __init inline int srat_disabled(void) |
| { |
| return numa_off || acpi_numa < 0; |
| } |
| |
| /* Callback for SLIT parsing */ |
| void __init acpi_numa_slit_init(struct acpi_table_slit *slit) |
| { |
| unsigned length; |
| unsigned long phys; |
| |
| length = slit->header.length; |
| phys = memblock_find_in_range(0, max_pfn_mapped<<PAGE_SHIFT, length, |
| PAGE_SIZE); |
| |
| if (phys == MEMBLOCK_ERROR) |
| panic(" Can not save slit!\n"); |
| |
| acpi_slit = __va(phys); |
| memcpy(acpi_slit, slit, length); |
| memblock_x86_reserve_range(phys, phys + length, "ACPI SLIT"); |
| } |
| |
| /* Callback for Proximity Domain -> x2APIC mapping */ |
| void __init |
| acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa) |
| { |
| int pxm, node; |
| int apic_id; |
| |
| if (srat_disabled()) |
| return; |
| if (pa->header.length < sizeof(struct acpi_srat_x2apic_cpu_affinity)) { |
| bad_srat(); |
| return; |
| } |
| if ((pa->flags & ACPI_SRAT_CPU_ENABLED) == 0) |
| return; |
| pxm = pa->proximity_domain; |
| node = setup_node(pxm); |
| if (node < 0) { |
| printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm); |
| bad_srat(); |
| return; |
| } |
| |
| apic_id = pa->apic_id; |
| apicid_to_node[apic_id] = node; |
| node_set(node, cpu_nodes_parsed); |
| acpi_numa = 1; |
| printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%04x -> Node %u\n", |
| pxm, apic_id, node); |
| } |
| |
| /* Callback for Proximity Domain -> LAPIC mapping */ |
| void __init |
| acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa) |
| { |
| int pxm, node; |
| int apic_id; |
| |
| if (srat_disabled()) |
| return; |
| if (pa->header.length != sizeof(struct acpi_srat_cpu_affinity)) { |
| bad_srat(); |
| return; |
| } |
| if ((pa->flags & ACPI_SRAT_CPU_ENABLED) == 0) |
| return; |
| pxm = pa->proximity_domain_lo; |
| node = setup_node(pxm); |
| if (node < 0) { |
| printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm); |
| bad_srat(); |
| return; |
| } |
| |
| if (get_uv_system_type() >= UV_X2APIC) |
| apic_id = (pa->apic_id << 8) | pa->local_sapic_eid; |
| else |
| apic_id = pa->apic_id; |
| apicid_to_node[apic_id] = node; |
| node_set(node, cpu_nodes_parsed); |
| acpi_numa = 1; |
| printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%02x -> Node %u\n", |
| pxm, apic_id, node); |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE |
| static inline int save_add_info(void) {return 1;} |
| #else |
| static inline int save_add_info(void) {return 0;} |
| #endif |
| /* |
| * Update nodes_add[] |
| * This code supports one contiguous hot add area per node |
| */ |
| static void __init |
| update_nodes_add(int node, unsigned long start, unsigned long end) |
| { |
| unsigned long s_pfn = start >> PAGE_SHIFT; |
| unsigned long e_pfn = end >> PAGE_SHIFT; |
| int changed = 0; |
| struct bootnode *nd = &nodes_add[node]; |
| |
| /* I had some trouble with strange memory hotadd regions breaking |
| the boot. Be very strict here and reject anything unexpected. |
| If you want working memory hotadd write correct SRATs. |
| |
| The node size check is a basic sanity check to guard against |
| mistakes */ |
| if ((signed long)(end - start) < NODE_MIN_SIZE) { |
| printk(KERN_ERR "SRAT: Hotplug area too small\n"); |
| return; |
| } |
| |
| /* This check might be a bit too strict, but I'm keeping it for now. */ |
| if (absent_pages_in_range(s_pfn, e_pfn) != e_pfn - s_pfn) { |
| printk(KERN_ERR |
| "SRAT: Hotplug area %lu -> %lu has existing memory\n", |
| s_pfn, e_pfn); |
| return; |
| } |
| |
| /* Looks good */ |
| |
| if (nd->start == nd->end) { |
| nd->start = start; |
| nd->end = end; |
| changed = 1; |
| } else { |
| if (nd->start == end) { |
| nd->start = start; |
| changed = 1; |
| } |
| if (nd->end == start) { |
| nd->end = end; |
| changed = 1; |
| } |
| if (!changed) |
| printk(KERN_ERR "SRAT: Hotplug zone not continuous. Partly ignored\n"); |
| } |
| |
| if (changed) { |
| node_set(node, cpu_nodes_parsed); |
| printk(KERN_INFO "SRAT: hot plug zone found %Lx - %Lx\n", |
| nd->start, nd->end); |
| } |
| } |
| |
| /* Callback for parsing of the Proximity Domain <-> Memory Area mappings */ |
| void __init |
| acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma) |
| { |
| struct bootnode *nd, oldnode; |
| unsigned long start, end; |
| int node, pxm; |
| int i; |
| |
| if (srat_disabled()) |
| return; |
| if (ma->header.length != sizeof(struct acpi_srat_mem_affinity)) { |
| bad_srat(); |
| return; |
| } |
| if ((ma->flags & ACPI_SRAT_MEM_ENABLED) == 0) |
| return; |
| |
| if ((ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && !save_add_info()) |
| return; |
| start = ma->base_address; |
| end = start + ma->length; |
| pxm = ma->proximity_domain; |
| node = setup_node(pxm); |
| if (node < 0) { |
| printk(KERN_ERR "SRAT: Too many proximity domains.\n"); |
| bad_srat(); |
| return; |
| } |
| i = conflicting_memblks(start, end); |
| if (i == node) { |
| printk(KERN_WARNING |
| "SRAT: Warning: PXM %d (%lx-%lx) overlaps with itself (%Lx-%Lx)\n", |
| pxm, start, end, nodes[i].start, nodes[i].end); |
| } else if (i >= 0) { |
| printk(KERN_ERR |
| "SRAT: PXM %d (%lx-%lx) overlaps with PXM %d (%Lx-%Lx)\n", |
| pxm, start, end, node_to_pxm(i), |
| nodes[i].start, nodes[i].end); |
| bad_srat(); |
| return; |
| } |
| nd = &nodes[node]; |
| oldnode = *nd; |
| if (!node_test_and_set(node, nodes_parsed)) { |
| nd->start = start; |
| nd->end = end; |
| } else { |
| if (start < nd->start) |
| nd->start = start; |
| if (nd->end < end) |
| nd->end = end; |
| } |
| |
| printk(KERN_INFO "SRAT: Node %u PXM %u %lx-%lx\n", node, pxm, |
| start, end); |
| |
| if (ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) { |
| update_nodes_add(node, start, end); |
| /* restore nodes[node] */ |
| *nd = oldnode; |
| if ((nd->start | nd->end) == 0) |
| node_clear(node, nodes_parsed); |
| } |
| |
| node_memblk_range[num_node_memblks].start = start; |
| node_memblk_range[num_node_memblks].end = end; |
| memblk_nodeid[num_node_memblks] = node; |
| num_node_memblks++; |
| } |
| |
| /* Sanity check to catch more bad SRATs (they are amazingly common). |
| Make sure the PXMs cover all memory. */ |
| static int __init nodes_cover_memory(const struct bootnode *nodes) |
| { |
| int i; |
| unsigned long pxmram, e820ram; |
| |
| pxmram = 0; |
| for_each_node_mask(i, nodes_parsed) { |
| unsigned long s = nodes[i].start >> PAGE_SHIFT; |
| unsigned long e = nodes[i].end >> PAGE_SHIFT; |
| pxmram += e - s; |
| pxmram -= __absent_pages_in_range(i, s, e); |
| if ((long)pxmram < 0) |
| pxmram = 0; |
| } |
| |
| e820ram = max_pfn - (memblock_x86_hole_size(0, max_pfn<<PAGE_SHIFT)>>PAGE_SHIFT); |
| /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ |
| if ((long)(e820ram - pxmram) >= (1<<(20 - PAGE_SHIFT))) { |
| printk(KERN_ERR |
| "SRAT: PXMs only cover %luMB of your %luMB e820 RAM. Not used.\n", |
| (pxmram << PAGE_SHIFT) >> 20, |
| (e820ram << PAGE_SHIFT) >> 20); |
| return 0; |
| } |
| return 1; |
| } |
| |
| void __init acpi_numa_arch_fixup(void) {} |
| |
| int __init acpi_get_nodes(struct bootnode *physnodes) |
| { |
| int i; |
| int ret = 0; |
| |
| for_each_node_mask(i, nodes_parsed) { |
| physnodes[ret].start = nodes[i].start; |
| physnodes[ret].end = nodes[i].end; |
| ret++; |
| } |
| return ret; |
| } |
| |
| /* Use the information discovered above to actually set up the nodes. */ |
| int __init acpi_scan_nodes(unsigned long start, unsigned long end) |
| { |
| int i; |
| |
| if (acpi_numa <= 0) |
| return -1; |
| |
| /* First clean up the node list */ |
| for (i = 0; i < MAX_NUMNODES; i++) |
| cutoff_node(i, start, end); |
| |
| /* |
| * Join together blocks on the same node, holes between |
| * which don't overlap with memory on other nodes. |
| */ |
| for (i = 0; i < num_node_memblks; ++i) { |
| int j, k; |
| |
| for (j = i + 1; j < num_node_memblks; ++j) { |
| unsigned long start, end; |
| |
| if (memblk_nodeid[i] != memblk_nodeid[j]) |
| continue; |
| start = min(node_memblk_range[i].end, |
| node_memblk_range[j].end); |
| end = max(node_memblk_range[i].start, |
| node_memblk_range[j].start); |
| for (k = 0; k < num_node_memblks; ++k) { |
| if (memblk_nodeid[i] == memblk_nodeid[k]) |
| continue; |
| if (start < node_memblk_range[k].end && |
| end > node_memblk_range[k].start) |
| break; |
| } |
| if (k < num_node_memblks) |
| continue; |
| start = min(node_memblk_range[i].start, |
| node_memblk_range[j].start); |
| end = max(node_memblk_range[i].end, |
| node_memblk_range[j].end); |
| printk(KERN_INFO "SRAT: Node %d " |
| "[%Lx,%Lx) + [%Lx,%Lx) -> [%lx,%lx)\n", |
| memblk_nodeid[i], |
| node_memblk_range[i].start, |
| node_memblk_range[i].end, |
| node_memblk_range[j].start, |
| node_memblk_range[j].end, |
| start, end); |
| node_memblk_range[i].start = start; |
| node_memblk_range[i].end = end; |
| k = --num_node_memblks - j; |
| memmove(memblk_nodeid + j, memblk_nodeid + j+1, |
| k * sizeof(*memblk_nodeid)); |
| memmove(node_memblk_range + j, node_memblk_range + j+1, |
| k * sizeof(*node_memblk_range)); |
| --j; |
| } |
| } |
| |
| memnode_shift = compute_hash_shift(node_memblk_range, num_node_memblks, |
| memblk_nodeid); |
| if (memnode_shift < 0) { |
| printk(KERN_ERR |
| "SRAT: No NUMA node hash function found. Contact maintainer\n"); |
| bad_srat(); |
| return -1; |
| } |
| |
| for (i = 0; i < num_node_memblks; i++) |
| memblock_x86_register_active_regions(memblk_nodeid[i], |
| node_memblk_range[i].start >> PAGE_SHIFT, |
| node_memblk_range[i].end >> PAGE_SHIFT); |
| |
| /* for out of order entries in SRAT */ |
| sort_node_map(); |
| if (!nodes_cover_memory(nodes)) { |
| bad_srat(); |
| return -1; |
| } |
| |
| init_memory_mapping_high(); |
| |
| /* Account for nodes with cpus and no memory */ |
| nodes_or(node_possible_map, nodes_parsed, cpu_nodes_parsed); |
| |
| /* Finally register nodes */ |
| for_each_node_mask(i, node_possible_map) |
| setup_node_bootmem(i, nodes[i].start, nodes[i].end); |
| /* Try again in case setup_node_bootmem missed one due |
| to missing bootmem */ |
| for_each_node_mask(i, node_possible_map) |
| if (!node_online(i)) |
| setup_node_bootmem(i, nodes[i].start, nodes[i].end); |
| |
| for (i = 0; i < nr_cpu_ids; i++) { |
| int node = early_cpu_to_node(i); |
| |
| if (node == NUMA_NO_NODE) |
| continue; |
| if (!node_online(node)) |
| numa_clear_node(i); |
| } |
| numa_init_array(); |
| return 0; |
| } |
| |
| #ifdef CONFIG_NUMA_EMU |
| static int fake_node_to_pxm_map[MAX_NUMNODES] __initdata = { |
| [0 ... MAX_NUMNODES-1] = PXM_INVAL |
| }; |
| static s16 fake_apicid_to_node[MAX_LOCAL_APIC] __initdata = { |
| [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE |
| }; |
| static int __init find_node_by_addr(unsigned long addr) |
| { |
| int ret = NUMA_NO_NODE; |
| int i; |
| |
| for_each_node_mask(i, nodes_parsed) { |
| /* |
| * Find the real node that this emulated node appears on. For |
| * the sake of simplicity, we only use a real node's starting |
| * address to determine which emulated node it appears on. |
| */ |
| if (addr >= nodes[i].start && addr < nodes[i].end) { |
| ret = i; |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * In NUMA emulation, we need to setup proximity domain (_PXM) to node ID |
| * mappings that respect the real ACPI topology but reflect our emulated |
| * environment. For each emulated node, we find which real node it appears on |
| * and create PXM to NID mappings for those fake nodes which mirror that |
| * locality. SLIT will now represent the correct distances between emulated |
| * nodes as a result of the real topology. |
| */ |
| void __init acpi_fake_nodes(const struct bootnode *fake_nodes, int num_nodes) |
| { |
| int i, j; |
| |
| printk(KERN_INFO "Faking PXM affinity for fake nodes on real " |
| "topology.\n"); |
| for (i = 0; i < num_nodes; i++) { |
| int nid, pxm; |
| |
| nid = find_node_by_addr(fake_nodes[i].start); |
| if (nid == NUMA_NO_NODE) |
| continue; |
| pxm = node_to_pxm(nid); |
| if (pxm == PXM_INVAL) |
| continue; |
| fake_node_to_pxm_map[i] = pxm; |
| /* |
| * For each apicid_to_node mapping that exists for this real |
| * node, it must now point to the fake node ID. |
| */ |
| for (j = 0; j < MAX_LOCAL_APIC; j++) |
| if (apicid_to_node[j] == nid && |
| fake_apicid_to_node[j] == NUMA_NO_NODE) |
| fake_apicid_to_node[j] = i; |
| } |
| for (i = 0; i < num_nodes; i++) |
| __acpi_map_pxm_to_node(fake_node_to_pxm_map[i], i); |
| memcpy(apicid_to_node, fake_apicid_to_node, sizeof(apicid_to_node)); |
| |
| nodes_clear(nodes_parsed); |
| for (i = 0; i < num_nodes; i++) |
| if (fake_nodes[i].start != fake_nodes[i].end) |
| node_set(i, nodes_parsed); |
| } |
| |
| static int null_slit_node_compare(int a, int b) |
| { |
| return node_to_pxm(a) == node_to_pxm(b); |
| } |
| #else |
| static int null_slit_node_compare(int a, int b) |
| { |
| return a == b; |
| } |
| #endif /* CONFIG_NUMA_EMU */ |
| |
| int __node_distance(int a, int b) |
| { |
| int index; |
| |
| if (!acpi_slit) |
| return null_slit_node_compare(a, b) ? LOCAL_DISTANCE : |
| REMOTE_DISTANCE; |
| index = acpi_slit->locality_count * node_to_pxm(a); |
| return acpi_slit->entry[index + node_to_pxm(b)]; |
| } |
| |
| EXPORT_SYMBOL(__node_distance); |
| |
| #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || defined(CONFIG_ACPI_HOTPLUG_MEMORY) |
| int memory_add_physaddr_to_nid(u64 start) |
| { |
| int i, ret = 0; |
| |
| for_each_node(i) |
| if (nodes_add[i].start <= start && nodes_add[i].end > start) |
| ret = i; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); |
| #endif |