| /* $Id: bitops.h,v 1.67 2001/11/19 18:36:34 davem Exp $ |
| * bitops.h: Bit string operations on the Sparc. |
| * |
| * Copyright 1995 David S. Miller (davem@caip.rutgers.edu) |
| * Copyright 1996 Eddie C. Dost (ecd@skynet.be) |
| * Copyright 2001 Anton Blanchard (anton@samba.org) |
| */ |
| |
| #ifndef _SPARC_BITOPS_H |
| #define _SPARC_BITOPS_H |
| |
| #include <linux/compiler.h> |
| #include <asm/byteorder.h> |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * Set bit 'nr' in 32-bit quantity at address 'addr' where bit '0' |
| * is in the highest of the four bytes and bit '31' is the high bit |
| * within the first byte. Sparc is BIG-Endian. Unless noted otherwise |
| * all bit-ops return 0 if bit was previously clear and != 0 otherwise. |
| */ |
| static inline int test_and_set_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| register unsigned long mask asm("g2"); |
| register unsigned long *ADDR asm("g1"); |
| register int tmp1 asm("g3"); |
| register int tmp2 asm("g4"); |
| register int tmp3 asm("g5"); |
| register int tmp4 asm("g7"); |
| |
| ADDR = ((unsigned long *) addr) + (nr >> 5); |
| mask = 1 << (nr & 31); |
| |
| __asm__ __volatile__( |
| "mov %%o7, %%g4\n\t" |
| "call ___set_bit\n\t" |
| " add %%o7, 8, %%o7\n" |
| : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) |
| : "0" (mask), "r" (ADDR) |
| : "memory", "cc"); |
| |
| return mask != 0; |
| } |
| |
| static inline void set_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| register unsigned long mask asm("g2"); |
| register unsigned long *ADDR asm("g1"); |
| register int tmp1 asm("g3"); |
| register int tmp2 asm("g4"); |
| register int tmp3 asm("g5"); |
| register int tmp4 asm("g7"); |
| |
| ADDR = ((unsigned long *) addr) + (nr >> 5); |
| mask = 1 << (nr & 31); |
| |
| __asm__ __volatile__( |
| "mov %%o7, %%g4\n\t" |
| "call ___set_bit\n\t" |
| " add %%o7, 8, %%o7\n" |
| : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) |
| : "0" (mask), "r" (ADDR) |
| : "memory", "cc"); |
| } |
| |
| static inline int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| register unsigned long mask asm("g2"); |
| register unsigned long *ADDR asm("g1"); |
| register int tmp1 asm("g3"); |
| register int tmp2 asm("g4"); |
| register int tmp3 asm("g5"); |
| register int tmp4 asm("g7"); |
| |
| ADDR = ((unsigned long *) addr) + (nr >> 5); |
| mask = 1 << (nr & 31); |
| |
| __asm__ __volatile__( |
| "mov %%o7, %%g4\n\t" |
| "call ___clear_bit\n\t" |
| " add %%o7, 8, %%o7\n" |
| : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) |
| : "0" (mask), "r" (ADDR) |
| : "memory", "cc"); |
| |
| return mask != 0; |
| } |
| |
| static inline void clear_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| register unsigned long mask asm("g2"); |
| register unsigned long *ADDR asm("g1"); |
| register int tmp1 asm("g3"); |
| register int tmp2 asm("g4"); |
| register int tmp3 asm("g5"); |
| register int tmp4 asm("g7"); |
| |
| ADDR = ((unsigned long *) addr) + (nr >> 5); |
| mask = 1 << (nr & 31); |
| |
| __asm__ __volatile__( |
| "mov %%o7, %%g4\n\t" |
| "call ___clear_bit\n\t" |
| " add %%o7, 8, %%o7\n" |
| : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) |
| : "0" (mask), "r" (ADDR) |
| : "memory", "cc"); |
| } |
| |
| static inline int test_and_change_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| register unsigned long mask asm("g2"); |
| register unsigned long *ADDR asm("g1"); |
| register int tmp1 asm("g3"); |
| register int tmp2 asm("g4"); |
| register int tmp3 asm("g5"); |
| register int tmp4 asm("g7"); |
| |
| ADDR = ((unsigned long *) addr) + (nr >> 5); |
| mask = 1 << (nr & 31); |
| |
| __asm__ __volatile__( |
| "mov %%o7, %%g4\n\t" |
| "call ___change_bit\n\t" |
| " add %%o7, 8, %%o7\n" |
| : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) |
| : "0" (mask), "r" (ADDR) |
| : "memory", "cc"); |
| |
| return mask != 0; |
| } |
| |
| static inline void change_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| register unsigned long mask asm("g2"); |
| register unsigned long *ADDR asm("g1"); |
| register int tmp1 asm("g3"); |
| register int tmp2 asm("g4"); |
| register int tmp3 asm("g5"); |
| register int tmp4 asm("g7"); |
| |
| ADDR = ((unsigned long *) addr) + (nr >> 5); |
| mask = 1 << (nr & 31); |
| |
| __asm__ __volatile__( |
| "mov %%o7, %%g4\n\t" |
| "call ___change_bit\n\t" |
| " add %%o7, 8, %%o7\n" |
| : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) |
| : "0" (mask), "r" (ADDR) |
| : "memory", "cc"); |
| } |
| |
| /* |
| * non-atomic versions |
| */ |
| static inline void __set_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned long mask = 1UL << (nr & 0x1f); |
| unsigned long *p = ((unsigned long *)addr) + (nr >> 5); |
| |
| *p |= mask; |
| } |
| |
| static inline void __clear_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned long mask = 1UL << (nr & 0x1f); |
| unsigned long *p = ((unsigned long *)addr) + (nr >> 5); |
| |
| *p &= ~mask; |
| } |
| |
| static inline void __change_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned long mask = 1UL << (nr & 0x1f); |
| unsigned long *p = ((unsigned long *)addr) + (nr >> 5); |
| |
| *p ^= mask; |
| } |
| |
| static inline int __test_and_set_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned long mask = 1UL << (nr & 0x1f); |
| unsigned long *p = ((unsigned long *)addr) + (nr >> 5); |
| unsigned long old = *p; |
| |
| *p = old | mask; |
| return (old & mask) != 0; |
| } |
| |
| static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned long mask = 1UL << (nr & 0x1f); |
| unsigned long *p = ((unsigned long *)addr) + (nr >> 5); |
| unsigned long old = *p; |
| |
| *p = old & ~mask; |
| return (old & mask) != 0; |
| } |
| |
| static inline int __test_and_change_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned long mask = 1UL << (nr & 0x1f); |
| unsigned long *p = ((unsigned long *)addr) + (nr >> 5); |
| unsigned long old = *p; |
| |
| *p = old ^ mask; |
| return (old & mask) != 0; |
| } |
| |
| #define smp_mb__before_clear_bit() do { } while(0) |
| #define smp_mb__after_clear_bit() do { } while(0) |
| |
| /* The following routine need not be atomic. */ |
| static inline int test_bit(int nr, __const__ volatile unsigned long *addr) |
| { |
| return (1UL & (((unsigned long *)addr)[nr >> 5] >> (nr & 31))) != 0UL; |
| } |
| |
| /* The easy/cheese version for now. */ |
| static inline unsigned long ffz(unsigned long word) |
| { |
| unsigned long result = 0; |
| |
| while(word & 1) { |
| result++; |
| word >>= 1; |
| } |
| return result; |
| } |
| |
| /** |
| * __ffs - find first bit in word. |
| * @word: The word to search |
| * |
| * Undefined if no bit exists, so code should check against 0 first. |
| */ |
| static inline int __ffs(unsigned long word) |
| { |
| int num = 0; |
| |
| if ((word & 0xffff) == 0) { |
| num += 16; |
| word >>= 16; |
| } |
| if ((word & 0xff) == 0) { |
| num += 8; |
| word >>= 8; |
| } |
| if ((word & 0xf) == 0) { |
| num += 4; |
| word >>= 4; |
| } |
| if ((word & 0x3) == 0) { |
| num += 2; |
| word >>= 2; |
| } |
| if ((word & 0x1) == 0) |
| num += 1; |
| return num; |
| } |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is cleared. |
| */ |
| static inline int sched_find_first_bit(unsigned long *b) |
| { |
| |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 32; |
| if (unlikely(b[2])) |
| return __ffs(b[2]) + 64; |
| if (b[3]) |
| return __ffs(b[3]) + 96; |
| return __ffs(b[4]) + 128; |
| } |
| |
| /* |
| * ffs: find first bit set. This is defined the same way as |
| * the libc and compiler builtin ffs routines, therefore |
| * differs in spirit from the above ffz (man ffs). |
| */ |
| static inline int ffs(int x) |
| { |
| if (!x) |
| return 0; |
| return __ffs((unsigned long)x) + 1; |
| } |
| |
| /* |
| * fls: find last (most-significant) bit set. |
| * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. |
| */ |
| #define fls(x) generic_fls(x) |
| |
| /* |
| * hweightN: returns the hamming weight (i.e. the number |
| * of bits set) of a N-bit word |
| */ |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| /* |
| * find_next_zero_bit() finds the first zero bit in a bit string of length |
| * 'size' bits, starting the search at bit 'offset'. This is largely based |
| * on Linus's ALPHA routines, which are pretty portable BTW. |
| */ |
| static inline unsigned long find_next_zero_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *(p++); |
| tmp |= ~0UL >> (32-offset); |
| if (size < 32) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size & ~31UL) { |
| if (~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp |= ~0UL << size; |
| if (tmp == ~0UL) /* Are any bits zero? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| /* |
| * Linus sez that gcc can optimize the following correctly, we'll see if this |
| * holds on the Sparc as it does for the ALPHA. |
| */ |
| #define find_first_zero_bit(addr, size) \ |
| find_next_zero_bit((addr), (size), 0) |
| |
| /** |
| * find_next_bit - find the first set bit in a memory region |
| * @addr: The address to base the search on |
| * @offset: The bitnumber to start searching at |
| * @size: The maximum size to search |
| * |
| * Scheduler induced bitop, do not use. |
| */ |
| static inline int find_next_bit(const unsigned long *addr, int size, int offset) |
| { |
| const unsigned long *p = addr + (offset >> 5); |
| int num = offset & ~0x1f; |
| unsigned long word; |
| |
| word = *p++; |
| word &= ~((1 << (offset & 0x1f)) - 1); |
| while (num < size) { |
| if (word != 0) { |
| return __ffs(word) + num; |
| } |
| word = *p++; |
| num += 0x20; |
| } |
| return num; |
| } |
| |
| /** |
| * find_first_bit - find the first set bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first set bit, not the number of the byte |
| * containing a bit. |
| */ |
| #define find_first_bit(addr, size) \ |
| find_next_bit((addr), (size), 0) |
| |
| /* |
| */ |
| static inline int test_le_bit(int nr, __const__ unsigned long * addr) |
| { |
| __const__ unsigned char *ADDR = (__const__ unsigned char *) addr; |
| return (ADDR[nr >> 3] >> (nr & 7)) & 1; |
| } |
| |
| /* |
| * non-atomic versions |
| */ |
| static inline void __set_le_bit(int nr, unsigned long *addr) |
| { |
| unsigned char *ADDR = (unsigned char *)addr; |
| |
| ADDR += nr >> 3; |
| *ADDR |= 1 << (nr & 0x07); |
| } |
| |
| static inline void __clear_le_bit(int nr, unsigned long *addr) |
| { |
| unsigned char *ADDR = (unsigned char *)addr; |
| |
| ADDR += nr >> 3; |
| *ADDR &= ~(1 << (nr & 0x07)); |
| } |
| |
| static inline int __test_and_set_le_bit(int nr, unsigned long *addr) |
| { |
| int mask, retval; |
| unsigned char *ADDR = (unsigned char *)addr; |
| |
| ADDR += nr >> 3; |
| mask = 1 << (nr & 0x07); |
| retval = (mask & *ADDR) != 0; |
| *ADDR |= mask; |
| return retval; |
| } |
| |
| static inline int __test_and_clear_le_bit(int nr, unsigned long *addr) |
| { |
| int mask, retval; |
| unsigned char *ADDR = (unsigned char *)addr; |
| |
| ADDR += nr >> 3; |
| mask = 1 << (nr & 0x07); |
| retval = (mask & *ADDR) != 0; |
| *ADDR &= ~mask; |
| return retval; |
| } |
| |
| static inline unsigned long find_next_zero_le_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if(offset) { |
| tmp = *(p++); |
| tmp |= __swab32(~0UL >> (32-offset)); |
| if(size < 32) |
| goto found_first; |
| if(~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while(size & ~31UL) { |
| if(~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if(!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp = __swab32(tmp) | (~0UL << size); |
| if (tmp == ~0UL) /* Are any bits zero? */ |
| return result + size; /* Nope. */ |
| return result + ffz(tmp); |
| |
| found_middle: |
| return result + ffz(__swab32(tmp)); |
| } |
| |
| #define find_first_zero_le_bit(addr, size) \ |
| find_next_zero_le_bit((addr), (size), 0) |
| |
| #define ext2_set_bit(nr,addr) \ |
| __test_and_set_le_bit((nr),(unsigned long *)(addr)) |
| #define ext2_clear_bit(nr,addr) \ |
| __test_and_clear_le_bit((nr),(unsigned long *)(addr)) |
| |
| #define ext2_set_bit_atomic(lock, nr, addr) \ |
| ({ \ |
| int ret; \ |
| spin_lock(lock); \ |
| ret = ext2_set_bit((nr), (unsigned long *)(addr)); \ |
| spin_unlock(lock); \ |
| ret; \ |
| }) |
| |
| #define ext2_clear_bit_atomic(lock, nr, addr) \ |
| ({ \ |
| int ret; \ |
| spin_lock(lock); \ |
| ret = ext2_clear_bit((nr), (unsigned long *)(addr)); \ |
| spin_unlock(lock); \ |
| ret; \ |
| }) |
| |
| #define ext2_test_bit(nr,addr) \ |
| test_le_bit((nr),(unsigned long *)(addr)) |
| #define ext2_find_first_zero_bit(addr, size) \ |
| find_first_zero_le_bit((unsigned long *)(addr), (size)) |
| #define ext2_find_next_zero_bit(addr, size, off) \ |
| find_next_zero_le_bit((unsigned long *)(addr), (size), (off)) |
| |
| /* Bitmap functions for the minix filesystem. */ |
| #define minix_test_and_set_bit(nr,addr) \ |
| test_and_set_bit((nr),(unsigned long *)(addr)) |
| #define minix_set_bit(nr,addr) \ |
| set_bit((nr),(unsigned long *)(addr)) |
| #define minix_test_and_clear_bit(nr,addr) \ |
| test_and_clear_bit((nr),(unsigned long *)(addr)) |
| #define minix_test_bit(nr,addr) \ |
| test_bit((nr),(unsigned long *)(addr)) |
| #define minix_find_first_zero_bit(addr,size) \ |
| find_first_zero_bit((unsigned long *)(addr),(size)) |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* defined(_SPARC_BITOPS_H) */ |