| /* |
| * fs/ext4/extents_status.c |
| * |
| * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> |
| * Modified by |
| * Allison Henderson <achender@linux.vnet.ibm.com> |
| * Hugh Dickins <hughd@google.com> |
| * Zheng Liu <wenqing.lz@taobao.com> |
| * |
| * Ext4 extents status tree core functions. |
| */ |
| #include <linux/rbtree.h> |
| #include <linux/list_sort.h> |
| #include "ext4.h" |
| #include "extents_status.h" |
| #include "ext4_extents.h" |
| |
| #include <trace/events/ext4.h> |
| |
| /* |
| * According to previous discussion in Ext4 Developer Workshop, we |
| * will introduce a new structure called io tree to track all extent |
| * status in order to solve some problems that we have met |
| * (e.g. Reservation space warning), and provide extent-level locking. |
| * Delay extent tree is the first step to achieve this goal. It is |
| * original built by Yongqiang Yang. At that time it is called delay |
| * extent tree, whose goal is only track delayed extents in memory to |
| * simplify the implementation of fiemap and bigalloc, and introduce |
| * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called |
| * delay extent tree at the first commit. But for better understand |
| * what it does, it has been rename to extent status tree. |
| * |
| * Step1: |
| * Currently the first step has been done. All delayed extents are |
| * tracked in the tree. It maintains the delayed extent when a delayed |
| * allocation is issued, and the delayed extent is written out or |
| * invalidated. Therefore the implementation of fiemap and bigalloc |
| * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. |
| * |
| * The following comment describes the implemenmtation of extent |
| * status tree and future works. |
| * |
| * Step2: |
| * In this step all extent status are tracked by extent status tree. |
| * Thus, we can first try to lookup a block mapping in this tree before |
| * finding it in extent tree. Hence, single extent cache can be removed |
| * because extent status tree can do a better job. Extents in status |
| * tree are loaded on-demand. Therefore, the extent status tree may not |
| * contain all of the extents in a file. Meanwhile we define a shrinker |
| * to reclaim memory from extent status tree because fragmented extent |
| * tree will make status tree cost too much memory. written/unwritten/- |
| * hole extents in the tree will be reclaimed by this shrinker when we |
| * are under high memory pressure. Delayed extents will not be |
| * reclimed because fiemap, bigalloc, and seek_data/hole need it. |
| */ |
| |
| /* |
| * Extent status tree implementation for ext4. |
| * |
| * |
| * ========================================================================== |
| * Extent status tree tracks all extent status. |
| * |
| * 1. Why we need to implement extent status tree? |
| * |
| * Without extent status tree, ext4 identifies a delayed extent by looking |
| * up page cache, this has several deficiencies - complicated, buggy, |
| * and inefficient code. |
| * |
| * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a |
| * block or a range of blocks are belonged to a delayed extent. |
| * |
| * Let us have a look at how they do without extent status tree. |
| * -- FIEMAP |
| * FIEMAP looks up page cache to identify delayed allocations from holes. |
| * |
| * -- SEEK_HOLE/DATA |
| * SEEK_HOLE/DATA has the same problem as FIEMAP. |
| * |
| * -- bigalloc |
| * bigalloc looks up page cache to figure out if a block is |
| * already under delayed allocation or not to determine whether |
| * quota reserving is needed for the cluster. |
| * |
| * -- writeout |
| * Writeout looks up whole page cache to see if a buffer is |
| * mapped, If there are not very many delayed buffers, then it is |
| * time comsuming. |
| * |
| * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, |
| * bigalloc and writeout can figure out if a block or a range of |
| * blocks is under delayed allocation(belonged to a delayed extent) or |
| * not by searching the extent tree. |
| * |
| * |
| * ========================================================================== |
| * 2. Ext4 extent status tree impelmentation |
| * |
| * -- extent |
| * A extent is a range of blocks which are contiguous logically and |
| * physically. Unlike extent in extent tree, this extent in ext4 is |
| * a in-memory struct, there is no corresponding on-disk data. There |
| * is no limit on length of extent, so an extent can contain as many |
| * blocks as they are contiguous logically and physically. |
| * |
| * -- extent status tree |
| * Every inode has an extent status tree and all allocation blocks |
| * are added to the tree with different status. The extent in the |
| * tree are ordered by logical block no. |
| * |
| * -- operations on a extent status tree |
| * There are three important operations on a delayed extent tree: find |
| * next extent, adding a extent(a range of blocks) and removing a extent. |
| * |
| * -- race on a extent status tree |
| * Extent status tree is protected by inode->i_es_lock. |
| * |
| * -- memory consumption |
| * Fragmented extent tree will make extent status tree cost too much |
| * memory. Hence, we will reclaim written/unwritten/hole extents from |
| * the tree under a heavy memory pressure. |
| * |
| * |
| * ========================================================================== |
| * 3. Performance analysis |
| * |
| * -- overhead |
| * 1. There is a cache extent for write access, so if writes are |
| * not very random, adding space operaions are in O(1) time. |
| * |
| * -- gain |
| * 2. Code is much simpler, more readable, more maintainable and |
| * more efficient. |
| * |
| * |
| * ========================================================================== |
| * 4. TODO list |
| * |
| * -- Refactor delayed space reservation |
| * |
| * -- Extent-level locking |
| */ |
| |
| static struct kmem_cache *ext4_es_cachep; |
| |
| static int __es_insert_extent(struct inode *inode, struct extent_status *newes); |
| static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, |
| ext4_lblk_t end); |
| static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, |
| int nr_to_scan); |
| |
| int __init ext4_init_es(void) |
| { |
| ext4_es_cachep = kmem_cache_create("ext4_extent_status", |
| sizeof(struct extent_status), |
| 0, (SLAB_RECLAIM_ACCOUNT), NULL); |
| if (ext4_es_cachep == NULL) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void ext4_exit_es(void) |
| { |
| if (ext4_es_cachep) |
| kmem_cache_destroy(ext4_es_cachep); |
| } |
| |
| void ext4_es_init_tree(struct ext4_es_tree *tree) |
| { |
| tree->root = RB_ROOT; |
| tree->cache_es = NULL; |
| } |
| |
| #ifdef ES_DEBUG__ |
| static void ext4_es_print_tree(struct inode *inode) |
| { |
| struct ext4_es_tree *tree; |
| struct rb_node *node; |
| |
| printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); |
| tree = &EXT4_I(inode)->i_es_tree; |
| node = rb_first(&tree->root); |
| while (node) { |
| struct extent_status *es; |
| es = rb_entry(node, struct extent_status, rb_node); |
| printk(KERN_DEBUG " [%u/%u) %llu %llx", |
| es->es_lblk, es->es_len, |
| ext4_es_pblock(es), ext4_es_status(es)); |
| node = rb_next(node); |
| } |
| printk(KERN_DEBUG "\n"); |
| } |
| #else |
| #define ext4_es_print_tree(inode) |
| #endif |
| |
| static inline ext4_lblk_t ext4_es_end(struct extent_status *es) |
| { |
| BUG_ON(es->es_lblk + es->es_len < es->es_lblk); |
| return es->es_lblk + es->es_len - 1; |
| } |
| |
| /* |
| * search through the tree for an delayed extent with a given offset. If |
| * it can't be found, try to find next extent. |
| */ |
| static struct extent_status *__es_tree_search(struct rb_root *root, |
| ext4_lblk_t lblk) |
| { |
| struct rb_node *node = root->rb_node; |
| struct extent_status *es = NULL; |
| |
| while (node) { |
| es = rb_entry(node, struct extent_status, rb_node); |
| if (lblk < es->es_lblk) |
| node = node->rb_left; |
| else if (lblk > ext4_es_end(es)) |
| node = node->rb_right; |
| else |
| return es; |
| } |
| |
| if (es && lblk < es->es_lblk) |
| return es; |
| |
| if (es && lblk > ext4_es_end(es)) { |
| node = rb_next(&es->rb_node); |
| return node ? rb_entry(node, struct extent_status, rb_node) : |
| NULL; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering |
| * @es->lblk if it exists, otherwise, the next extent after @es->lblk. |
| * |
| * @inode: the inode which owns delayed extents |
| * @lblk: the offset where we start to search |
| * @end: the offset where we stop to search |
| * @es: delayed extent that we found |
| */ |
| void ext4_es_find_delayed_extent_range(struct inode *inode, |
| ext4_lblk_t lblk, ext4_lblk_t end, |
| struct extent_status *es) |
| { |
| struct ext4_es_tree *tree = NULL; |
| struct extent_status *es1 = NULL; |
| struct rb_node *node; |
| |
| BUG_ON(es == NULL); |
| BUG_ON(end < lblk); |
| trace_ext4_es_find_delayed_extent_range_enter(inode, lblk); |
| |
| read_lock(&EXT4_I(inode)->i_es_lock); |
| tree = &EXT4_I(inode)->i_es_tree; |
| |
| /* find extent in cache firstly */ |
| es->es_lblk = es->es_len = es->es_pblk = 0; |
| if (tree->cache_es) { |
| es1 = tree->cache_es; |
| if (in_range(lblk, es1->es_lblk, es1->es_len)) { |
| es_debug("%u cached by [%u/%u) %llu %llx\n", |
| lblk, es1->es_lblk, es1->es_len, |
| ext4_es_pblock(es1), ext4_es_status(es1)); |
| goto out; |
| } |
| } |
| |
| es1 = __es_tree_search(&tree->root, lblk); |
| |
| out: |
| if (es1 && !ext4_es_is_delayed(es1)) { |
| while ((node = rb_next(&es1->rb_node)) != NULL) { |
| es1 = rb_entry(node, struct extent_status, rb_node); |
| if (es1->es_lblk > end) { |
| es1 = NULL; |
| break; |
| } |
| if (ext4_es_is_delayed(es1)) |
| break; |
| } |
| } |
| |
| if (es1 && ext4_es_is_delayed(es1)) { |
| tree->cache_es = es1; |
| es->es_lblk = es1->es_lblk; |
| es->es_len = es1->es_len; |
| es->es_pblk = es1->es_pblk; |
| } |
| |
| read_unlock(&EXT4_I(inode)->i_es_lock); |
| |
| trace_ext4_es_find_delayed_extent_range_exit(inode, es); |
| } |
| |
| static struct extent_status * |
| ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, |
| ext4_fsblk_t pblk) |
| { |
| struct extent_status *es; |
| es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); |
| if (es == NULL) |
| return NULL; |
| es->es_lblk = lblk; |
| es->es_len = len; |
| es->es_pblk = pblk; |
| |
| /* |
| * We don't count delayed extent because we never try to reclaim them |
| */ |
| if (!ext4_es_is_delayed(es)) { |
| EXT4_I(inode)->i_es_lru_nr++; |
| percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt); |
| } |
| |
| return es; |
| } |
| |
| static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) |
| { |
| /* Decrease the lru counter when this es is not delayed */ |
| if (!ext4_es_is_delayed(es)) { |
| BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0); |
| EXT4_I(inode)->i_es_lru_nr--; |
| percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt); |
| } |
| |
| kmem_cache_free(ext4_es_cachep, es); |
| } |
| |
| /* |
| * Check whether or not two extents can be merged |
| * Condition: |
| * - logical block number is contiguous |
| * - physical block number is contiguous |
| * - status is equal |
| */ |
| static int ext4_es_can_be_merged(struct extent_status *es1, |
| struct extent_status *es2) |
| { |
| if (ext4_es_status(es1) != ext4_es_status(es2)) |
| return 0; |
| |
| if (((__u64) es1->es_len) + es2->es_len > 0xFFFFFFFFULL) |
| return 0; |
| |
| if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) |
| return 0; |
| |
| if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && |
| (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) |
| return 1; |
| |
| if (ext4_es_is_hole(es1)) |
| return 1; |
| |
| /* we need to check delayed extent is without unwritten status */ |
| if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static struct extent_status * |
| ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) |
| { |
| struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; |
| struct extent_status *es1; |
| struct rb_node *node; |
| |
| node = rb_prev(&es->rb_node); |
| if (!node) |
| return es; |
| |
| es1 = rb_entry(node, struct extent_status, rb_node); |
| if (ext4_es_can_be_merged(es1, es)) { |
| es1->es_len += es->es_len; |
| rb_erase(&es->rb_node, &tree->root); |
| ext4_es_free_extent(inode, es); |
| es = es1; |
| } |
| |
| return es; |
| } |
| |
| static struct extent_status * |
| ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) |
| { |
| struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; |
| struct extent_status *es1; |
| struct rb_node *node; |
| |
| node = rb_next(&es->rb_node); |
| if (!node) |
| return es; |
| |
| es1 = rb_entry(node, struct extent_status, rb_node); |
| if (ext4_es_can_be_merged(es, es1)) { |
| es->es_len += es1->es_len; |
| rb_erase(node, &tree->root); |
| ext4_es_free_extent(inode, es1); |
| } |
| |
| return es; |
| } |
| |
| #ifdef ES_AGGRESSIVE_TEST |
| static void ext4_es_insert_extent_ext_check(struct inode *inode, |
| struct extent_status *es) |
| { |
| struct ext4_ext_path *path = NULL; |
| struct ext4_extent *ex; |
| ext4_lblk_t ee_block; |
| ext4_fsblk_t ee_start; |
| unsigned short ee_len; |
| int depth, ee_status, es_status; |
| |
| path = ext4_ext_find_extent(inode, es->es_lblk, NULL); |
| if (IS_ERR(path)) |
| return; |
| |
| depth = ext_depth(inode); |
| ex = path[depth].p_ext; |
| |
| if (ex) { |
| |
| ee_block = le32_to_cpu(ex->ee_block); |
| ee_start = ext4_ext_pblock(ex); |
| ee_len = ext4_ext_get_actual_len(ex); |
| |
| ee_status = ext4_ext_is_uninitialized(ex) ? 1 : 0; |
| es_status = ext4_es_is_unwritten(es) ? 1 : 0; |
| |
| /* |
| * Make sure ex and es are not overlap when we try to insert |
| * a delayed/hole extent. |
| */ |
| if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { |
| if (in_range(es->es_lblk, ee_block, ee_len)) { |
| pr_warn("ES insert assertation failed for " |
| "inode: %lu we can find an extent " |
| "at block [%d/%d/%llu/%c], but we " |
| "want to add an delayed/hole extent " |
| "[%d/%d/%llu/%llx]\n", |
| inode->i_ino, ee_block, ee_len, |
| ee_start, ee_status ? 'u' : 'w', |
| es->es_lblk, es->es_len, |
| ext4_es_pblock(es), ext4_es_status(es)); |
| } |
| goto out; |
| } |
| |
| /* |
| * We don't check ee_block == es->es_lblk, etc. because es |
| * might be a part of whole extent, vice versa. |
| */ |
| if (es->es_lblk < ee_block || |
| ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { |
| pr_warn("ES insert assertation failed for inode: %lu " |
| "ex_status [%d/%d/%llu/%c] != " |
| "es_status [%d/%d/%llu/%c]\n", inode->i_ino, |
| ee_block, ee_len, ee_start, |
| ee_status ? 'u' : 'w', es->es_lblk, es->es_len, |
| ext4_es_pblock(es), es_status ? 'u' : 'w'); |
| goto out; |
| } |
| |
| if (ee_status ^ es_status) { |
| pr_warn("ES insert assertation failed for inode: %lu " |
| "ex_status [%d/%d/%llu/%c] != " |
| "es_status [%d/%d/%llu/%c]\n", inode->i_ino, |
| ee_block, ee_len, ee_start, |
| ee_status ? 'u' : 'w', es->es_lblk, es->es_len, |
| ext4_es_pblock(es), es_status ? 'u' : 'w'); |
| } |
| } else { |
| /* |
| * We can't find an extent on disk. So we need to make sure |
| * that we don't want to add an written/unwritten extent. |
| */ |
| if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { |
| pr_warn("ES insert assertation failed for inode: %lu " |
| "can't find an extent at block %d but we want " |
| "to add an written/unwritten extent " |
| "[%d/%d/%llu/%llx]\n", inode->i_ino, |
| es->es_lblk, es->es_lblk, es->es_len, |
| ext4_es_pblock(es), ext4_es_status(es)); |
| } |
| } |
| out: |
| if (path) { |
| ext4_ext_drop_refs(path); |
| kfree(path); |
| } |
| } |
| |
| static void ext4_es_insert_extent_ind_check(struct inode *inode, |
| struct extent_status *es) |
| { |
| struct ext4_map_blocks map; |
| int retval; |
| |
| /* |
| * Here we call ext4_ind_map_blocks to lookup a block mapping because |
| * 'Indirect' structure is defined in indirect.c. So we couldn't |
| * access direct/indirect tree from outside. It is too dirty to define |
| * this function in indirect.c file. |
| */ |
| |
| map.m_lblk = es->es_lblk; |
| map.m_len = es->es_len; |
| |
| retval = ext4_ind_map_blocks(NULL, inode, &map, 0); |
| if (retval > 0) { |
| if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { |
| /* |
| * We want to add a delayed/hole extent but this |
| * block has been allocated. |
| */ |
| pr_warn("ES insert assertation failed for inode: %lu " |
| "We can find blocks but we want to add a " |
| "delayed/hole extent [%d/%d/%llu/%llx]\n", |
| inode->i_ino, es->es_lblk, es->es_len, |
| ext4_es_pblock(es), ext4_es_status(es)); |
| return; |
| } else if (ext4_es_is_written(es)) { |
| if (retval != es->es_len) { |
| pr_warn("ES insert assertation failed for " |
| "inode: %lu retval %d != es_len %d\n", |
| inode->i_ino, retval, es->es_len); |
| return; |
| } |
| if (map.m_pblk != ext4_es_pblock(es)) { |
| pr_warn("ES insert assertation failed for " |
| "inode: %lu m_pblk %llu != " |
| "es_pblk %llu\n", |
| inode->i_ino, map.m_pblk, |
| ext4_es_pblock(es)); |
| return; |
| } |
| } else { |
| /* |
| * We don't need to check unwritten extent because |
| * indirect-based file doesn't have it. |
| */ |
| BUG_ON(1); |
| } |
| } else if (retval == 0) { |
| if (ext4_es_is_written(es)) { |
| pr_warn("ES insert assertation failed for inode: %lu " |
| "We can't find the block but we want to add " |
| "an written extent [%d/%d/%llu/%llx]\n", |
| inode->i_ino, es->es_lblk, es->es_len, |
| ext4_es_pblock(es), ext4_es_status(es)); |
| return; |
| } |
| } |
| } |
| |
| static inline void ext4_es_insert_extent_check(struct inode *inode, |
| struct extent_status *es) |
| { |
| /* |
| * We don't need to worry about the race condition because |
| * caller takes i_data_sem locking. |
| */ |
| BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); |
| if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) |
| ext4_es_insert_extent_ext_check(inode, es); |
| else |
| ext4_es_insert_extent_ind_check(inode, es); |
| } |
| #else |
| static inline void ext4_es_insert_extent_check(struct inode *inode, |
| struct extent_status *es) |
| { |
| } |
| #endif |
| |
| static int __es_insert_extent(struct inode *inode, struct extent_status *newes) |
| { |
| struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; |
| struct rb_node **p = &tree->root.rb_node; |
| struct rb_node *parent = NULL; |
| struct extent_status *es; |
| |
| while (*p) { |
| parent = *p; |
| es = rb_entry(parent, struct extent_status, rb_node); |
| |
| if (newes->es_lblk < es->es_lblk) { |
| if (ext4_es_can_be_merged(newes, es)) { |
| /* |
| * Here we can modify es_lblk directly |
| * because it isn't overlapped. |
| */ |
| es->es_lblk = newes->es_lblk; |
| es->es_len += newes->es_len; |
| if (ext4_es_is_written(es) || |
| ext4_es_is_unwritten(es)) |
| ext4_es_store_pblock(es, |
| newes->es_pblk); |
| es = ext4_es_try_to_merge_left(inode, es); |
| goto out; |
| } |
| p = &(*p)->rb_left; |
| } else if (newes->es_lblk > ext4_es_end(es)) { |
| if (ext4_es_can_be_merged(es, newes)) { |
| es->es_len += newes->es_len; |
| es = ext4_es_try_to_merge_right(inode, es); |
| goto out; |
| } |
| p = &(*p)->rb_right; |
| } else { |
| BUG_ON(1); |
| return -EINVAL; |
| } |
| } |
| |
| es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len, |
| newes->es_pblk); |
| if (!es) |
| return -ENOMEM; |
| rb_link_node(&es->rb_node, parent, p); |
| rb_insert_color(&es->rb_node, &tree->root); |
| |
| out: |
| tree->cache_es = es; |
| return 0; |
| } |
| |
| /* |
| * ext4_es_insert_extent() adds a space to a extent status tree. |
| * |
| * ext4_es_insert_extent is called by ext4_da_write_begin and |
| * ext4_es_remove_extent. |
| * |
| * Return 0 on success, error code on failure. |
| */ |
| int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, |
| ext4_lblk_t len, ext4_fsblk_t pblk, |
| unsigned long long status) |
| { |
| struct extent_status newes; |
| ext4_lblk_t end = lblk + len - 1; |
| int err = 0; |
| |
| es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n", |
| lblk, len, pblk, status, inode->i_ino); |
| |
| if (!len) |
| return 0; |
| |
| BUG_ON(end < lblk); |
| |
| newes.es_lblk = lblk; |
| newes.es_len = len; |
| ext4_es_store_pblock(&newes, pblk); |
| ext4_es_store_status(&newes, status); |
| trace_ext4_es_insert_extent(inode, &newes); |
| |
| ext4_es_insert_extent_check(inode, &newes); |
| |
| write_lock(&EXT4_I(inode)->i_es_lock); |
| err = __es_remove_extent(inode, lblk, end); |
| if (err != 0) |
| goto error; |
| err = __es_insert_extent(inode, &newes); |
| |
| error: |
| write_unlock(&EXT4_I(inode)->i_es_lock); |
| |
| ext4_es_print_tree(inode); |
| |
| return err; |
| } |
| |
| /* |
| * ext4_es_lookup_extent() looks up an extent in extent status tree. |
| * |
| * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. |
| * |
| * Return: 1 on found, 0 on not |
| */ |
| int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, |
| struct extent_status *es) |
| { |
| struct ext4_es_tree *tree; |
| struct extent_status *es1 = NULL; |
| struct rb_node *node; |
| int found = 0; |
| |
| trace_ext4_es_lookup_extent_enter(inode, lblk); |
| es_debug("lookup extent in block %u\n", lblk); |
| |
| tree = &EXT4_I(inode)->i_es_tree; |
| read_lock(&EXT4_I(inode)->i_es_lock); |
| |
| /* find extent in cache firstly */ |
| es->es_lblk = es->es_len = es->es_pblk = 0; |
| if (tree->cache_es) { |
| es1 = tree->cache_es; |
| if (in_range(lblk, es1->es_lblk, es1->es_len)) { |
| es_debug("%u cached by [%u/%u)\n", |
| lblk, es1->es_lblk, es1->es_len); |
| found = 1; |
| goto out; |
| } |
| } |
| |
| node = tree->root.rb_node; |
| while (node) { |
| es1 = rb_entry(node, struct extent_status, rb_node); |
| if (lblk < es1->es_lblk) |
| node = node->rb_left; |
| else if (lblk > ext4_es_end(es1)) |
| node = node->rb_right; |
| else { |
| found = 1; |
| break; |
| } |
| } |
| |
| out: |
| if (found) { |
| BUG_ON(!es1); |
| es->es_lblk = es1->es_lblk; |
| es->es_len = es1->es_len; |
| es->es_pblk = es1->es_pblk; |
| } |
| |
| read_unlock(&EXT4_I(inode)->i_es_lock); |
| |
| trace_ext4_es_lookup_extent_exit(inode, es, found); |
| return found; |
| } |
| |
| static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, |
| ext4_lblk_t end) |
| { |
| struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; |
| struct rb_node *node; |
| struct extent_status *es; |
| struct extent_status orig_es; |
| ext4_lblk_t len1, len2; |
| ext4_fsblk_t block; |
| int err = 0; |
| |
| es = __es_tree_search(&tree->root, lblk); |
| if (!es) |
| goto out; |
| if (es->es_lblk > end) |
| goto out; |
| |
| /* Simply invalidate cache_es. */ |
| tree->cache_es = NULL; |
| |
| orig_es.es_lblk = es->es_lblk; |
| orig_es.es_len = es->es_len; |
| orig_es.es_pblk = es->es_pblk; |
| |
| len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; |
| len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; |
| if (len1 > 0) |
| es->es_len = len1; |
| if (len2 > 0) { |
| if (len1 > 0) { |
| struct extent_status newes; |
| |
| newes.es_lblk = end + 1; |
| newes.es_len = len2; |
| if (ext4_es_is_written(&orig_es) || |
| ext4_es_is_unwritten(&orig_es)) { |
| block = ext4_es_pblock(&orig_es) + |
| orig_es.es_len - len2; |
| ext4_es_store_pblock(&newes, block); |
| } |
| ext4_es_store_status(&newes, ext4_es_status(&orig_es)); |
| err = __es_insert_extent(inode, &newes); |
| if (err) { |
| es->es_lblk = orig_es.es_lblk; |
| es->es_len = orig_es.es_len; |
| goto out; |
| } |
| } else { |
| es->es_lblk = end + 1; |
| es->es_len = len2; |
| if (ext4_es_is_written(es) || |
| ext4_es_is_unwritten(es)) { |
| block = orig_es.es_pblk + orig_es.es_len - len2; |
| ext4_es_store_pblock(es, block); |
| } |
| } |
| goto out; |
| } |
| |
| if (len1 > 0) { |
| node = rb_next(&es->rb_node); |
| if (node) |
| es = rb_entry(node, struct extent_status, rb_node); |
| else |
| es = NULL; |
| } |
| |
| while (es && ext4_es_end(es) <= end) { |
| node = rb_next(&es->rb_node); |
| rb_erase(&es->rb_node, &tree->root); |
| ext4_es_free_extent(inode, es); |
| if (!node) { |
| es = NULL; |
| break; |
| } |
| es = rb_entry(node, struct extent_status, rb_node); |
| } |
| |
| if (es && es->es_lblk < end + 1) { |
| ext4_lblk_t orig_len = es->es_len; |
| |
| len1 = ext4_es_end(es) - end; |
| es->es_lblk = end + 1; |
| es->es_len = len1; |
| if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { |
| block = es->es_pblk + orig_len - len1; |
| ext4_es_store_pblock(es, block); |
| } |
| } |
| |
| out: |
| return err; |
| } |
| |
| /* |
| * ext4_es_remove_extent() removes a space from a extent status tree. |
| * |
| * Return 0 on success, error code on failure. |
| */ |
| int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, |
| ext4_lblk_t len) |
| { |
| ext4_lblk_t end; |
| int err = 0; |
| |
| trace_ext4_es_remove_extent(inode, lblk, len); |
| es_debug("remove [%u/%u) from extent status tree of inode %lu\n", |
| lblk, len, inode->i_ino); |
| |
| if (!len) |
| return err; |
| |
| end = lblk + len - 1; |
| BUG_ON(end < lblk); |
| |
| write_lock(&EXT4_I(inode)->i_es_lock); |
| err = __es_remove_extent(inode, lblk, end); |
| write_unlock(&EXT4_I(inode)->i_es_lock); |
| ext4_es_print_tree(inode); |
| return err; |
| } |
| |
| int ext4_es_zeroout(struct inode *inode, struct ext4_extent *ex) |
| { |
| ext4_lblk_t ee_block; |
| ext4_fsblk_t ee_pblock; |
| unsigned int ee_len; |
| |
| ee_block = le32_to_cpu(ex->ee_block); |
| ee_len = ext4_ext_get_actual_len(ex); |
| ee_pblock = ext4_ext_pblock(ex); |
| |
| if (ee_len == 0) |
| return 0; |
| |
| return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, |
| EXTENT_STATUS_WRITTEN); |
| } |
| |
| static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a, |
| struct list_head *b) |
| { |
| struct ext4_inode_info *eia, *eib; |
| eia = list_entry(a, struct ext4_inode_info, i_es_lru); |
| eib = list_entry(b, struct ext4_inode_info, i_es_lru); |
| |
| if (eia->i_touch_when == eib->i_touch_when) |
| return 0; |
| if (time_after(eia->i_touch_when, eib->i_touch_when)) |
| return 1; |
| else |
| return -1; |
| } |
| |
| static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| struct ext4_sb_info *sbi = container_of(shrink, |
| struct ext4_sb_info, s_es_shrinker); |
| struct ext4_inode_info *ei; |
| struct list_head *cur, *tmp; |
| LIST_HEAD(skiped); |
| int nr_to_scan = sc->nr_to_scan; |
| int ret, nr_shrunk = 0; |
| |
| ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt); |
| trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret); |
| |
| if (!nr_to_scan) |
| return ret; |
| |
| spin_lock(&sbi->s_es_lru_lock); |
| |
| /* |
| * If the inode that is at the head of LRU list is newer than |
| * last_sorted time, that means that we need to sort this list. |
| */ |
| ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info, i_es_lru); |
| if (sbi->s_es_last_sorted < ei->i_touch_when) { |
| list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp); |
| sbi->s_es_last_sorted = jiffies; |
| } |
| |
| list_for_each_safe(cur, tmp, &sbi->s_es_lru) { |
| /* |
| * If we have already reclaimed all extents from extent |
| * status tree, just stop the loop immediately. |
| */ |
| if (percpu_counter_read_positive(&sbi->s_extent_cache_cnt) == 0) |
| break; |
| |
| ei = list_entry(cur, struct ext4_inode_info, i_es_lru); |
| |
| /* Skip the inode that is newer than the last_sorted time */ |
| if (sbi->s_es_last_sorted < ei->i_touch_when) { |
| list_move_tail(cur, &skiped); |
| continue; |
| } |
| |
| if (ei->i_es_lru_nr == 0) |
| continue; |
| |
| write_lock(&ei->i_es_lock); |
| ret = __es_try_to_reclaim_extents(ei, nr_to_scan); |
| if (ei->i_es_lru_nr == 0) |
| list_del_init(&ei->i_es_lru); |
| write_unlock(&ei->i_es_lock); |
| |
| nr_shrunk += ret; |
| nr_to_scan -= ret; |
| if (nr_to_scan == 0) |
| break; |
| } |
| |
| /* Move the newer inodes into the tail of the LRU list. */ |
| list_splice_tail(&skiped, &sbi->s_es_lru); |
| spin_unlock(&sbi->s_es_lru_lock); |
| |
| ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt); |
| trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret); |
| return ret; |
| } |
| |
| void ext4_es_register_shrinker(struct ext4_sb_info *sbi) |
| { |
| INIT_LIST_HEAD(&sbi->s_es_lru); |
| spin_lock_init(&sbi->s_es_lru_lock); |
| sbi->s_es_last_sorted = 0; |
| sbi->s_es_shrinker.shrink = ext4_es_shrink; |
| sbi->s_es_shrinker.seeks = DEFAULT_SEEKS; |
| register_shrinker(&sbi->s_es_shrinker); |
| } |
| |
| void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) |
| { |
| unregister_shrinker(&sbi->s_es_shrinker); |
| } |
| |
| void ext4_es_lru_add(struct inode *inode) |
| { |
| struct ext4_inode_info *ei = EXT4_I(inode); |
| struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); |
| |
| ei->i_touch_when = jiffies; |
| |
| if (!list_empty(&ei->i_es_lru)) |
| return; |
| |
| spin_lock(&sbi->s_es_lru_lock); |
| if (list_empty(&ei->i_es_lru)) |
| list_add_tail(&ei->i_es_lru, &sbi->s_es_lru); |
| spin_unlock(&sbi->s_es_lru_lock); |
| } |
| |
| void ext4_es_lru_del(struct inode *inode) |
| { |
| struct ext4_inode_info *ei = EXT4_I(inode); |
| struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); |
| |
| spin_lock(&sbi->s_es_lru_lock); |
| if (!list_empty(&ei->i_es_lru)) |
| list_del_init(&ei->i_es_lru); |
| spin_unlock(&sbi->s_es_lru_lock); |
| } |
| |
| static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, |
| int nr_to_scan) |
| { |
| struct inode *inode = &ei->vfs_inode; |
| struct ext4_es_tree *tree = &ei->i_es_tree; |
| struct rb_node *node; |
| struct extent_status *es; |
| int nr_shrunk = 0; |
| |
| if (ei->i_es_lru_nr == 0) |
| return 0; |
| |
| node = rb_first(&tree->root); |
| while (node != NULL) { |
| es = rb_entry(node, struct extent_status, rb_node); |
| node = rb_next(&es->rb_node); |
| /* |
| * We can't reclaim delayed extent from status tree because |
| * fiemap, bigallic, and seek_data/hole need to use it. |
| */ |
| if (!ext4_es_is_delayed(es)) { |
| rb_erase(&es->rb_node, &tree->root); |
| ext4_es_free_extent(inode, es); |
| nr_shrunk++; |
| if (--nr_to_scan == 0) |
| break; |
| } |
| } |
| tree->cache_es = NULL; |
| return nr_shrunk; |
| } |