| /* |
| * mm/kmemleak.c |
| * |
| * Copyright (C) 2008 ARM Limited |
| * Written by Catalin Marinas <catalin.marinas@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * |
| * For more information on the algorithm and kmemleak usage, please see |
| * Documentation/kmemleak.txt. |
| * |
| * Notes on locking |
| * ---------------- |
| * |
| * The following locks and mutexes are used by kmemleak: |
| * |
| * - kmemleak_lock (rwlock): protects the object_list modifications and |
| * accesses to the object_tree_root. The object_list is the main list |
| * holding the metadata (struct kmemleak_object) for the allocated memory |
| * blocks. The object_tree_root is a priority search tree used to look-up |
| * metadata based on a pointer to the corresponding memory block. The |
| * kmemleak_object structures are added to the object_list and |
| * object_tree_root in the create_object() function called from the |
| * kmemleak_alloc() callback and removed in delete_object() called from the |
| * kmemleak_free() callback |
| * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to |
| * the metadata (e.g. count) are protected by this lock. Note that some |
| * members of this structure may be protected by other means (atomic or |
| * kmemleak_lock). This lock is also held when scanning the corresponding |
| * memory block to avoid the kernel freeing it via the kmemleak_free() |
| * callback. This is less heavyweight than holding a global lock like |
| * kmemleak_lock during scanning |
| * - scan_mutex (mutex): ensures that only one thread may scan the memory for |
| * unreferenced objects at a time. The gray_list contains the objects which |
| * are already referenced or marked as false positives and need to be |
| * scanned. This list is only modified during a scanning episode when the |
| * scan_mutex is held. At the end of a scan, the gray_list is always empty. |
| * Note that the kmemleak_object.use_count is incremented when an object is |
| * added to the gray_list and therefore cannot be freed |
| * - kmemleak_mutex (mutex): prevents multiple users of the "kmemleak" debugfs |
| * file together with modifications to the memory scanning parameters |
| * including the scan_thread pointer |
| * |
| * The kmemleak_object structures have a use_count incremented or decremented |
| * using the get_object()/put_object() functions. When the use_count becomes |
| * 0, this count can no longer be incremented and put_object() schedules the |
| * kmemleak_object freeing via an RCU callback. All calls to the get_object() |
| * function must be protected by rcu_read_lock() to avoid accessing a freed |
| * structure. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/sched.h> |
| #include <linux/jiffies.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/kthread.h> |
| #include <linux/prio_tree.h> |
| #include <linux/gfp.h> |
| #include <linux/fs.h> |
| #include <linux/debugfs.h> |
| #include <linux/seq_file.h> |
| #include <linux/cpumask.h> |
| #include <linux/spinlock.h> |
| #include <linux/mutex.h> |
| #include <linux/rcupdate.h> |
| #include <linux/stacktrace.h> |
| #include <linux/cache.h> |
| #include <linux/percpu.h> |
| #include <linux/hardirq.h> |
| #include <linux/mmzone.h> |
| #include <linux/slab.h> |
| #include <linux/thread_info.h> |
| #include <linux/err.h> |
| #include <linux/uaccess.h> |
| #include <linux/string.h> |
| #include <linux/nodemask.h> |
| #include <linux/mm.h> |
| |
| #include <asm/sections.h> |
| #include <asm/processor.h> |
| #include <asm/atomic.h> |
| |
| #include <linux/kmemleak.h> |
| |
| /* |
| * Kmemleak configuration and common defines. |
| */ |
| #define MAX_TRACE 16 /* stack trace length */ |
| #define REPORTS_NR 50 /* maximum number of reported leaks */ |
| #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ |
| #define MSECS_SCAN_YIELD 10 /* CPU yielding period */ |
| #define SECS_FIRST_SCAN 60 /* delay before the first scan */ |
| #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ |
| |
| #define BYTES_PER_POINTER sizeof(void *) |
| |
| /* GFP bitmask for kmemleak internal allocations */ |
| #define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC) |
| |
| /* scanning area inside a memory block */ |
| struct kmemleak_scan_area { |
| struct hlist_node node; |
| unsigned long offset; |
| size_t length; |
| }; |
| |
| /* |
| * Structure holding the metadata for each allocated memory block. |
| * Modifications to such objects should be made while holding the |
| * object->lock. Insertions or deletions from object_list, gray_list or |
| * tree_node are already protected by the corresponding locks or mutex (see |
| * the notes on locking above). These objects are reference-counted |
| * (use_count) and freed using the RCU mechanism. |
| */ |
| struct kmemleak_object { |
| spinlock_t lock; |
| unsigned long flags; /* object status flags */ |
| struct list_head object_list; |
| struct list_head gray_list; |
| struct prio_tree_node tree_node; |
| struct rcu_head rcu; /* object_list lockless traversal */ |
| /* object usage count; object freed when use_count == 0 */ |
| atomic_t use_count; |
| unsigned long pointer; |
| size_t size; |
| /* minimum number of a pointers found before it is considered leak */ |
| int min_count; |
| /* the total number of pointers found pointing to this object */ |
| int count; |
| /* memory ranges to be scanned inside an object (empty for all) */ |
| struct hlist_head area_list; |
| unsigned long trace[MAX_TRACE]; |
| unsigned int trace_len; |
| unsigned long jiffies; /* creation timestamp */ |
| pid_t pid; /* pid of the current task */ |
| char comm[TASK_COMM_LEN]; /* executable name */ |
| }; |
| |
| /* flag representing the memory block allocation status */ |
| #define OBJECT_ALLOCATED (1 << 0) |
| /* flag set after the first reporting of an unreference object */ |
| #define OBJECT_REPORTED (1 << 1) |
| /* flag set to not scan the object */ |
| #define OBJECT_NO_SCAN (1 << 2) |
| |
| /* the list of all allocated objects */ |
| static LIST_HEAD(object_list); |
| /* the list of gray-colored objects (see color_gray comment below) */ |
| static LIST_HEAD(gray_list); |
| /* prio search tree for object boundaries */ |
| static struct prio_tree_root object_tree_root; |
| /* rw_lock protecting the access to object_list and prio_tree_root */ |
| static DEFINE_RWLOCK(kmemleak_lock); |
| |
| /* allocation caches for kmemleak internal data */ |
| static struct kmem_cache *object_cache; |
| static struct kmem_cache *scan_area_cache; |
| |
| /* set if tracing memory operations is enabled */ |
| static atomic_t kmemleak_enabled = ATOMIC_INIT(0); |
| /* set in the late_initcall if there were no errors */ |
| static atomic_t kmemleak_initialized = ATOMIC_INIT(0); |
| /* enables or disables early logging of the memory operations */ |
| static atomic_t kmemleak_early_log = ATOMIC_INIT(1); |
| /* set if a fata kmemleak error has occurred */ |
| static atomic_t kmemleak_error = ATOMIC_INIT(0); |
| |
| /* minimum and maximum address that may be valid pointers */ |
| static unsigned long min_addr = ULONG_MAX; |
| static unsigned long max_addr; |
| |
| /* used for yielding the CPU to other tasks during scanning */ |
| static unsigned long next_scan_yield; |
| static struct task_struct *scan_thread; |
| static unsigned long jiffies_scan_yield; |
| static unsigned long jiffies_min_age; |
| /* delay between automatic memory scannings */ |
| static signed long jiffies_scan_wait; |
| /* enables or disables the task stacks scanning */ |
| static int kmemleak_stack_scan; |
| /* mutex protecting the memory scanning */ |
| static DEFINE_MUTEX(scan_mutex); |
| /* mutex protecting the access to the /sys/kernel/debug/kmemleak file */ |
| static DEFINE_MUTEX(kmemleak_mutex); |
| |
| /* number of leaks reported (for limitation purposes) */ |
| static int reported_leaks; |
| |
| /* |
| * Early object allocation/freeing logging. Kmemleak is initialized after the |
| * kernel allocator. However, both the kernel allocator and kmemleak may |
| * allocate memory blocks which need to be tracked. Kmemleak defines an |
| * arbitrary buffer to hold the allocation/freeing information before it is |
| * fully initialized. |
| */ |
| |
| /* kmemleak operation type for early logging */ |
| enum { |
| KMEMLEAK_ALLOC, |
| KMEMLEAK_FREE, |
| KMEMLEAK_NOT_LEAK, |
| KMEMLEAK_IGNORE, |
| KMEMLEAK_SCAN_AREA, |
| KMEMLEAK_NO_SCAN |
| }; |
| |
| /* |
| * Structure holding the information passed to kmemleak callbacks during the |
| * early logging. |
| */ |
| struct early_log { |
| int op_type; /* kmemleak operation type */ |
| const void *ptr; /* allocated/freed memory block */ |
| size_t size; /* memory block size */ |
| int min_count; /* minimum reference count */ |
| unsigned long offset; /* scan area offset */ |
| size_t length; /* scan area length */ |
| }; |
| |
| /* early logging buffer and current position */ |
| static struct early_log early_log[200]; |
| static int crt_early_log; |
| |
| static void kmemleak_disable(void); |
| |
| /* |
| * Print a warning and dump the stack trace. |
| */ |
| #define kmemleak_warn(x...) do { \ |
| pr_warning(x); \ |
| dump_stack(); \ |
| } while (0) |
| |
| /* |
| * Macro invoked when a serious kmemleak condition occured and cannot be |
| * recovered from. Kmemleak will be disabled and further allocation/freeing |
| * tracing no longer available. |
| */ |
| #define kmemleak_stop(x...) do { \ |
| kmemleak_warn(x); \ |
| kmemleak_disable(); \ |
| } while (0) |
| |
| /* |
| * Object colors, encoded with count and min_count: |
| * - white - orphan object, not enough references to it (count < min_count) |
| * - gray - not orphan, not marked as false positive (min_count == 0) or |
| * sufficient references to it (count >= min_count) |
| * - black - ignore, it doesn't contain references (e.g. text section) |
| * (min_count == -1). No function defined for this color. |
| * Newly created objects don't have any color assigned (object->count == -1) |
| * before the next memory scan when they become white. |
| */ |
| static int color_white(const struct kmemleak_object *object) |
| { |
| return object->count != -1 && object->count < object->min_count; |
| } |
| |
| static int color_gray(const struct kmemleak_object *object) |
| { |
| return object->min_count != -1 && object->count >= object->min_count; |
| } |
| |
| /* |
| * Objects are considered referenced if their color is gray and they have not |
| * been deleted. |
| */ |
| static int referenced_object(struct kmemleak_object *object) |
| { |
| return (object->flags & OBJECT_ALLOCATED) && color_gray(object); |
| } |
| |
| /* |
| * Objects are considered unreferenced only if their color is white, they have |
| * not be deleted and have a minimum age to avoid false positives caused by |
| * pointers temporarily stored in CPU registers. |
| */ |
| static int unreferenced_object(struct kmemleak_object *object) |
| { |
| return (object->flags & OBJECT_ALLOCATED) && color_white(object) && |
| time_is_before_eq_jiffies(object->jiffies + jiffies_min_age); |
| } |
| |
| /* |
| * Printing of the (un)referenced objects information, either to the seq file |
| * or to the kernel log. The print_referenced/print_unreferenced functions |
| * must be called with the object->lock held. |
| */ |
| #define print_helper(seq, x...) do { \ |
| struct seq_file *s = (seq); \ |
| if (s) \ |
| seq_printf(s, x); \ |
| else \ |
| pr_info(x); \ |
| } while (0) |
| |
| static void print_referenced(struct kmemleak_object *object) |
| { |
| pr_info("referenced object 0x%08lx (size %zu)\n", |
| object->pointer, object->size); |
| } |
| |
| static void print_unreferenced(struct seq_file *seq, |
| struct kmemleak_object *object) |
| { |
| int i; |
| |
| print_helper(seq, "unreferenced object 0x%08lx (size %zu):\n", |
| object->pointer, object->size); |
| print_helper(seq, " comm \"%s\", pid %d, jiffies %lu\n", |
| object->comm, object->pid, object->jiffies); |
| print_helper(seq, " backtrace:\n"); |
| |
| for (i = 0; i < object->trace_len; i++) { |
| void *ptr = (void *)object->trace[i]; |
| print_helper(seq, " [<%p>] %pS\n", ptr, ptr); |
| } |
| } |
| |
| /* |
| * Print the kmemleak_object information. This function is used mainly for |
| * debugging special cases when kmemleak operations. It must be called with |
| * the object->lock held. |
| */ |
| static void dump_object_info(struct kmemleak_object *object) |
| { |
| struct stack_trace trace; |
| |
| trace.nr_entries = object->trace_len; |
| trace.entries = object->trace; |
| |
| pr_notice("Object 0x%08lx (size %zu):\n", |
| object->tree_node.start, object->size); |
| pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", |
| object->comm, object->pid, object->jiffies); |
| pr_notice(" min_count = %d\n", object->min_count); |
| pr_notice(" count = %d\n", object->count); |
| pr_notice(" backtrace:\n"); |
| print_stack_trace(&trace, 4); |
| } |
| |
| /* |
| * Look-up a memory block metadata (kmemleak_object) in the priority search |
| * tree based on a pointer value. If alias is 0, only values pointing to the |
| * beginning of the memory block are allowed. The kmemleak_lock must be held |
| * when calling this function. |
| */ |
| static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) |
| { |
| struct prio_tree_node *node; |
| struct prio_tree_iter iter; |
| struct kmemleak_object *object; |
| |
| prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr); |
| node = prio_tree_next(&iter); |
| if (node) { |
| object = prio_tree_entry(node, struct kmemleak_object, |
| tree_node); |
| if (!alias && object->pointer != ptr) { |
| kmemleak_warn("Found object by alias"); |
| object = NULL; |
| } |
| } else |
| object = NULL; |
| |
| return object; |
| } |
| |
| /* |
| * Increment the object use_count. Return 1 if successful or 0 otherwise. Note |
| * that once an object's use_count reached 0, the RCU freeing was already |
| * registered and the object should no longer be used. This function must be |
| * called under the protection of rcu_read_lock(). |
| */ |
| static int get_object(struct kmemleak_object *object) |
| { |
| return atomic_inc_not_zero(&object->use_count); |
| } |
| |
| /* |
| * RCU callback to free a kmemleak_object. |
| */ |
| static void free_object_rcu(struct rcu_head *rcu) |
| { |
| struct hlist_node *elem, *tmp; |
| struct kmemleak_scan_area *area; |
| struct kmemleak_object *object = |
| container_of(rcu, struct kmemleak_object, rcu); |
| |
| /* |
| * Once use_count is 0 (guaranteed by put_object), there is no other |
| * code accessing this object, hence no need for locking. |
| */ |
| hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) { |
| hlist_del(elem); |
| kmem_cache_free(scan_area_cache, area); |
| } |
| kmem_cache_free(object_cache, object); |
| } |
| |
| /* |
| * Decrement the object use_count. Once the count is 0, free the object using |
| * an RCU callback. Since put_object() may be called via the kmemleak_free() -> |
| * delete_object() path, the delayed RCU freeing ensures that there is no |
| * recursive call to the kernel allocator. Lock-less RCU object_list traversal |
| * is also possible. |
| */ |
| static void put_object(struct kmemleak_object *object) |
| { |
| if (!atomic_dec_and_test(&object->use_count)) |
| return; |
| |
| /* should only get here after delete_object was called */ |
| WARN_ON(object->flags & OBJECT_ALLOCATED); |
| |
| call_rcu(&object->rcu, free_object_rcu); |
| } |
| |
| /* |
| * Look up an object in the prio search tree and increase its use_count. |
| */ |
| static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object = NULL; |
| |
| rcu_read_lock(); |
| read_lock_irqsave(&kmemleak_lock, flags); |
| if (ptr >= min_addr && ptr < max_addr) |
| object = lookup_object(ptr, alias); |
| read_unlock_irqrestore(&kmemleak_lock, flags); |
| |
| /* check whether the object is still available */ |
| if (object && !get_object(object)) |
| object = NULL; |
| rcu_read_unlock(); |
| |
| return object; |
| } |
| |
| /* |
| * Create the metadata (struct kmemleak_object) corresponding to an allocated |
| * memory block and add it to the object_list and object_tree_root. |
| */ |
| static void create_object(unsigned long ptr, size_t size, int min_count, |
| gfp_t gfp) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| struct prio_tree_node *node; |
| struct stack_trace trace; |
| |
| object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK); |
| if (!object) { |
| kmemleak_stop("Cannot allocate a kmemleak_object structure\n"); |
| return; |
| } |
| |
| INIT_LIST_HEAD(&object->object_list); |
| INIT_LIST_HEAD(&object->gray_list); |
| INIT_HLIST_HEAD(&object->area_list); |
| spin_lock_init(&object->lock); |
| atomic_set(&object->use_count, 1); |
| object->flags = OBJECT_ALLOCATED; |
| object->pointer = ptr; |
| object->size = size; |
| object->min_count = min_count; |
| object->count = -1; /* no color initially */ |
| object->jiffies = jiffies; |
| |
| /* task information */ |
| if (in_irq()) { |
| object->pid = 0; |
| strncpy(object->comm, "hardirq", sizeof(object->comm)); |
| } else if (in_softirq()) { |
| object->pid = 0; |
| strncpy(object->comm, "softirq", sizeof(object->comm)); |
| } else { |
| object->pid = current->pid; |
| /* |
| * There is a small chance of a race with set_task_comm(), |
| * however using get_task_comm() here may cause locking |
| * dependency issues with current->alloc_lock. In the worst |
| * case, the command line is not correct. |
| */ |
| strncpy(object->comm, current->comm, sizeof(object->comm)); |
| } |
| |
| /* kernel backtrace */ |
| trace.max_entries = MAX_TRACE; |
| trace.nr_entries = 0; |
| trace.entries = object->trace; |
| trace.skip = 1; |
| save_stack_trace(&trace); |
| object->trace_len = trace.nr_entries; |
| |
| INIT_PRIO_TREE_NODE(&object->tree_node); |
| object->tree_node.start = ptr; |
| object->tree_node.last = ptr + size - 1; |
| |
| write_lock_irqsave(&kmemleak_lock, flags); |
| min_addr = min(min_addr, ptr); |
| max_addr = max(max_addr, ptr + size); |
| node = prio_tree_insert(&object_tree_root, &object->tree_node); |
| /* |
| * The code calling the kernel does not yet have the pointer to the |
| * memory block to be able to free it. However, we still hold the |
| * kmemleak_lock here in case parts of the kernel started freeing |
| * random memory blocks. |
| */ |
| if (node != &object->tree_node) { |
| unsigned long flags; |
| |
| kmemleak_stop("Cannot insert 0x%lx into the object search tree " |
| "(already existing)\n", ptr); |
| object = lookup_object(ptr, 1); |
| spin_lock_irqsave(&object->lock, flags); |
| dump_object_info(object); |
| spin_unlock_irqrestore(&object->lock, flags); |
| |
| goto out; |
| } |
| list_add_tail_rcu(&object->object_list, &object_list); |
| out: |
| write_unlock_irqrestore(&kmemleak_lock, flags); |
| } |
| |
| /* |
| * Remove the metadata (struct kmemleak_object) for a memory block from the |
| * object_list and object_tree_root and decrement its use_count. |
| */ |
| static void delete_object(unsigned long ptr) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| |
| write_lock_irqsave(&kmemleak_lock, flags); |
| object = lookup_object(ptr, 0); |
| if (!object) { |
| kmemleak_warn("Freeing unknown object at 0x%08lx\n", |
| ptr); |
| write_unlock_irqrestore(&kmemleak_lock, flags); |
| return; |
| } |
| prio_tree_remove(&object_tree_root, &object->tree_node); |
| list_del_rcu(&object->object_list); |
| write_unlock_irqrestore(&kmemleak_lock, flags); |
| |
| WARN_ON(!(object->flags & OBJECT_ALLOCATED)); |
| WARN_ON(atomic_read(&object->use_count) < 1); |
| |
| /* |
| * Locking here also ensures that the corresponding memory block |
| * cannot be freed when it is being scanned. |
| */ |
| spin_lock_irqsave(&object->lock, flags); |
| if (object->flags & OBJECT_REPORTED) |
| print_referenced(object); |
| object->flags &= ~OBJECT_ALLOCATED; |
| spin_unlock_irqrestore(&object->lock, flags); |
| put_object(object); |
| } |
| |
| /* |
| * Make a object permanently as gray-colored so that it can no longer be |
| * reported as a leak. This is used in general to mark a false positive. |
| */ |
| static void make_gray_object(unsigned long ptr) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| |
| object = find_and_get_object(ptr, 0); |
| if (!object) { |
| kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr); |
| return; |
| } |
| |
| spin_lock_irqsave(&object->lock, flags); |
| object->min_count = 0; |
| spin_unlock_irqrestore(&object->lock, flags); |
| put_object(object); |
| } |
| |
| /* |
| * Mark the object as black-colored so that it is ignored from scans and |
| * reporting. |
| */ |
| static void make_black_object(unsigned long ptr) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| |
| object = find_and_get_object(ptr, 0); |
| if (!object) { |
| kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr); |
| return; |
| } |
| |
| spin_lock_irqsave(&object->lock, flags); |
| object->min_count = -1; |
| spin_unlock_irqrestore(&object->lock, flags); |
| put_object(object); |
| } |
| |
| /* |
| * Add a scanning area to the object. If at least one such area is added, |
| * kmemleak will only scan these ranges rather than the whole memory block. |
| */ |
| static void add_scan_area(unsigned long ptr, unsigned long offset, |
| size_t length, gfp_t gfp) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| struct kmemleak_scan_area *area; |
| |
| object = find_and_get_object(ptr, 0); |
| if (!object) { |
| kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", |
| ptr); |
| return; |
| } |
| |
| area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK); |
| if (!area) { |
| kmemleak_warn("Cannot allocate a scan area\n"); |
| goto out; |
| } |
| |
| spin_lock_irqsave(&object->lock, flags); |
| if (offset + length > object->size) { |
| kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); |
| dump_object_info(object); |
| kmem_cache_free(scan_area_cache, area); |
| goto out_unlock; |
| } |
| |
| INIT_HLIST_NODE(&area->node); |
| area->offset = offset; |
| area->length = length; |
| |
| hlist_add_head(&area->node, &object->area_list); |
| out_unlock: |
| spin_unlock_irqrestore(&object->lock, flags); |
| out: |
| put_object(object); |
| } |
| |
| /* |
| * Set the OBJECT_NO_SCAN flag for the object corresponding to the give |
| * pointer. Such object will not be scanned by kmemleak but references to it |
| * are searched. |
| */ |
| static void object_no_scan(unsigned long ptr) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| |
| object = find_and_get_object(ptr, 0); |
| if (!object) { |
| kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); |
| return; |
| } |
| |
| spin_lock_irqsave(&object->lock, flags); |
| object->flags |= OBJECT_NO_SCAN; |
| spin_unlock_irqrestore(&object->lock, flags); |
| put_object(object); |
| } |
| |
| /* |
| * Log an early kmemleak_* call to the early_log buffer. These calls will be |
| * processed later once kmemleak is fully initialized. |
| */ |
| static void log_early(int op_type, const void *ptr, size_t size, |
| int min_count, unsigned long offset, size_t length) |
| { |
| unsigned long flags; |
| struct early_log *log; |
| |
| if (crt_early_log >= ARRAY_SIZE(early_log)) { |
| kmemleak_stop("Early log buffer exceeded\n"); |
| return; |
| } |
| |
| /* |
| * There is no need for locking since the kernel is still in UP mode |
| * at this stage. Disabling the IRQs is enough. |
| */ |
| local_irq_save(flags); |
| log = &early_log[crt_early_log]; |
| log->op_type = op_type; |
| log->ptr = ptr; |
| log->size = size; |
| log->min_count = min_count; |
| log->offset = offset; |
| log->length = length; |
| crt_early_log++; |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Memory allocation function callback. This function is called from the |
| * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc, |
| * vmalloc etc.). |
| */ |
| void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp) |
| { |
| pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); |
| |
| if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) |
| create_object((unsigned long)ptr, size, min_count, gfp); |
| else if (atomic_read(&kmemleak_early_log)) |
| log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0); |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_alloc); |
| |
| /* |
| * Memory freeing function callback. This function is called from the kernel |
| * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.). |
| */ |
| void kmemleak_free(const void *ptr) |
| { |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) |
| delete_object((unsigned long)ptr); |
| else if (atomic_read(&kmemleak_early_log)) |
| log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0); |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_free); |
| |
| /* |
| * Mark an already allocated memory block as a false positive. This will cause |
| * the block to no longer be reported as leak and always be scanned. |
| */ |
| void kmemleak_not_leak(const void *ptr) |
| { |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) |
| make_gray_object((unsigned long)ptr); |
| else if (atomic_read(&kmemleak_early_log)) |
| log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0); |
| } |
| EXPORT_SYMBOL(kmemleak_not_leak); |
| |
| /* |
| * Ignore a memory block. This is usually done when it is known that the |
| * corresponding block is not a leak and does not contain any references to |
| * other allocated memory blocks. |
| */ |
| void kmemleak_ignore(const void *ptr) |
| { |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) |
| make_black_object((unsigned long)ptr); |
| else if (atomic_read(&kmemleak_early_log)) |
| log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0); |
| } |
| EXPORT_SYMBOL(kmemleak_ignore); |
| |
| /* |
| * Limit the range to be scanned in an allocated memory block. |
| */ |
| void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length, |
| gfp_t gfp) |
| { |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) |
| add_scan_area((unsigned long)ptr, offset, length, gfp); |
| else if (atomic_read(&kmemleak_early_log)) |
| log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length); |
| } |
| EXPORT_SYMBOL(kmemleak_scan_area); |
| |
| /* |
| * Inform kmemleak not to scan the given memory block. |
| */ |
| void kmemleak_no_scan(const void *ptr) |
| { |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) |
| object_no_scan((unsigned long)ptr); |
| else if (atomic_read(&kmemleak_early_log)) |
| log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0); |
| } |
| EXPORT_SYMBOL(kmemleak_no_scan); |
| |
| /* |
| * Yield the CPU so that other tasks get a chance to run. The yielding is |
| * rate-limited to avoid excessive number of calls to the schedule() function |
| * during memory scanning. |
| */ |
| static void scan_yield(void) |
| { |
| might_sleep(); |
| |
| if (time_is_before_eq_jiffies(next_scan_yield)) { |
| schedule(); |
| next_scan_yield = jiffies + jiffies_scan_yield; |
| } |
| } |
| |
| /* |
| * Memory scanning is a long process and it needs to be interruptable. This |
| * function checks whether such interrupt condition occured. |
| */ |
| static int scan_should_stop(void) |
| { |
| if (!atomic_read(&kmemleak_enabled)) |
| return 1; |
| |
| /* |
| * This function may be called from either process or kthread context, |
| * hence the need to check for both stop conditions. |
| */ |
| if (current->mm) |
| return signal_pending(current); |
| else |
| return kthread_should_stop(); |
| |
| return 0; |
| } |
| |
| /* |
| * Scan a memory block (exclusive range) for valid pointers and add those |
| * found to the gray list. |
| */ |
| static void scan_block(void *_start, void *_end, |
| struct kmemleak_object *scanned) |
| { |
| unsigned long *ptr; |
| unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); |
| unsigned long *end = _end - (BYTES_PER_POINTER - 1); |
| |
| for (ptr = start; ptr < end; ptr++) { |
| unsigned long flags; |
| unsigned long pointer = *ptr; |
| struct kmemleak_object *object; |
| |
| if (scan_should_stop()) |
| break; |
| |
| /* |
| * When scanning a memory block with a corresponding |
| * kmemleak_object, the CPU yielding is handled in the calling |
| * code since it holds the object->lock to avoid the block |
| * freeing. |
| */ |
| if (!scanned) |
| scan_yield(); |
| |
| object = find_and_get_object(pointer, 1); |
| if (!object) |
| continue; |
| if (object == scanned) { |
| /* self referenced, ignore */ |
| put_object(object); |
| continue; |
| } |
| |
| /* |
| * Avoid the lockdep recursive warning on object->lock being |
| * previously acquired in scan_object(). These locks are |
| * enclosed by scan_mutex. |
| */ |
| spin_lock_irqsave_nested(&object->lock, flags, |
| SINGLE_DEPTH_NESTING); |
| if (!color_white(object)) { |
| /* non-orphan, ignored or new */ |
| spin_unlock_irqrestore(&object->lock, flags); |
| put_object(object); |
| continue; |
| } |
| |
| /* |
| * Increase the object's reference count (number of pointers |
| * to the memory block). If this count reaches the required |
| * minimum, the object's color will become gray and it will be |
| * added to the gray_list. |
| */ |
| object->count++; |
| if (color_gray(object)) |
| list_add_tail(&object->gray_list, &gray_list); |
| else |
| put_object(object); |
| spin_unlock_irqrestore(&object->lock, flags); |
| } |
| } |
| |
| /* |
| * Scan a memory block corresponding to a kmemleak_object. A condition is |
| * that object->use_count >= 1. |
| */ |
| static void scan_object(struct kmemleak_object *object) |
| { |
| struct kmemleak_scan_area *area; |
| struct hlist_node *elem; |
| unsigned long flags; |
| |
| /* |
| * Once the object->lock is aquired, the corresponding memory block |
| * cannot be freed (the same lock is aquired in delete_object). |
| */ |
| spin_lock_irqsave(&object->lock, flags); |
| if (object->flags & OBJECT_NO_SCAN) |
| goto out; |
| if (!(object->flags & OBJECT_ALLOCATED)) |
| /* already freed object */ |
| goto out; |
| if (hlist_empty(&object->area_list)) |
| scan_block((void *)object->pointer, |
| (void *)(object->pointer + object->size), object); |
| else |
| hlist_for_each_entry(area, elem, &object->area_list, node) |
| scan_block((void *)(object->pointer + area->offset), |
| (void *)(object->pointer + area->offset |
| + area->length), object); |
| out: |
| spin_unlock_irqrestore(&object->lock, flags); |
| } |
| |
| /* |
| * Scan data sections and all the referenced memory blocks allocated via the |
| * kernel's standard allocators. This function must be called with the |
| * scan_mutex held. |
| */ |
| static void kmemleak_scan(void) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object, *tmp; |
| struct task_struct *task; |
| int i; |
| |
| /* prepare the kmemleak_object's */ |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| spin_lock_irqsave(&object->lock, flags); |
| #ifdef DEBUG |
| /* |
| * With a few exceptions there should be a maximum of |
| * 1 reference to any object at this point. |
| */ |
| if (atomic_read(&object->use_count) > 1) { |
| pr_debug("object->use_count = %d\n", |
| atomic_read(&object->use_count)); |
| dump_object_info(object); |
| } |
| #endif |
| /* reset the reference count (whiten the object) */ |
| object->count = 0; |
| if (color_gray(object) && get_object(object)) |
| list_add_tail(&object->gray_list, &gray_list); |
| |
| spin_unlock_irqrestore(&object->lock, flags); |
| } |
| rcu_read_unlock(); |
| |
| /* data/bss scanning */ |
| scan_block(_sdata, _edata, NULL); |
| scan_block(__bss_start, __bss_stop, NULL); |
| |
| #ifdef CONFIG_SMP |
| /* per-cpu sections scanning */ |
| for_each_possible_cpu(i) |
| scan_block(__per_cpu_start + per_cpu_offset(i), |
| __per_cpu_end + per_cpu_offset(i), NULL); |
| #endif |
| |
| /* |
| * Struct page scanning for each node. The code below is not yet safe |
| * with MEMORY_HOTPLUG. |
| */ |
| for_each_online_node(i) { |
| pg_data_t *pgdat = NODE_DATA(i); |
| unsigned long start_pfn = pgdat->node_start_pfn; |
| unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; |
| unsigned long pfn; |
| |
| for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
| struct page *page; |
| |
| if (!pfn_valid(pfn)) |
| continue; |
| page = pfn_to_page(pfn); |
| /* only scan if page is in use */ |
| if (page_count(page) == 0) |
| continue; |
| scan_block(page, page + 1, NULL); |
| } |
| } |
| |
| /* |
| * Scanning the task stacks may introduce false negatives and it is |
| * not enabled by default. |
| */ |
| if (kmemleak_stack_scan) { |
| read_lock(&tasklist_lock); |
| for_each_process(task) |
| scan_block(task_stack_page(task), |
| task_stack_page(task) + THREAD_SIZE, NULL); |
| read_unlock(&tasklist_lock); |
| } |
| |
| /* |
| * Scan the objects already referenced from the sections scanned |
| * above. More objects will be referenced and, if there are no memory |
| * leaks, all the objects will be scanned. The list traversal is safe |
| * for both tail additions and removals from inside the loop. The |
| * kmemleak objects cannot be freed from outside the loop because their |
| * use_count was increased. |
| */ |
| object = list_entry(gray_list.next, typeof(*object), gray_list); |
| while (&object->gray_list != &gray_list) { |
| scan_yield(); |
| |
| /* may add new objects to the list */ |
| if (!scan_should_stop()) |
| scan_object(object); |
| |
| tmp = list_entry(object->gray_list.next, typeof(*object), |
| gray_list); |
| |
| /* remove the object from the list and release it */ |
| list_del(&object->gray_list); |
| put_object(object); |
| |
| object = tmp; |
| } |
| WARN_ON(!list_empty(&gray_list)); |
| } |
| |
| /* |
| * Thread function performing automatic memory scanning. Unreferenced objects |
| * at the end of a memory scan are reported but only the first time. |
| */ |
| static int kmemleak_scan_thread(void *arg) |
| { |
| static int first_run = 1; |
| |
| pr_info("Automatic memory scanning thread started\n"); |
| |
| /* |
| * Wait before the first scan to allow the system to fully initialize. |
| */ |
| if (first_run) { |
| first_run = 0; |
| ssleep(SECS_FIRST_SCAN); |
| } |
| |
| while (!kthread_should_stop()) { |
| struct kmemleak_object *object; |
| signed long timeout = jiffies_scan_wait; |
| |
| mutex_lock(&scan_mutex); |
| |
| kmemleak_scan(); |
| reported_leaks = 0; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| unsigned long flags; |
| |
| if (reported_leaks >= REPORTS_NR) |
| break; |
| spin_lock_irqsave(&object->lock, flags); |
| if (!(object->flags & OBJECT_REPORTED) && |
| unreferenced_object(object)) { |
| print_unreferenced(NULL, object); |
| object->flags |= OBJECT_REPORTED; |
| reported_leaks++; |
| } else if ((object->flags & OBJECT_REPORTED) && |
| referenced_object(object)) { |
| print_referenced(object); |
| object->flags &= ~OBJECT_REPORTED; |
| } |
| spin_unlock_irqrestore(&object->lock, flags); |
| } |
| rcu_read_unlock(); |
| |
| mutex_unlock(&scan_mutex); |
| /* wait before the next scan */ |
| while (timeout && !kthread_should_stop()) |
| timeout = schedule_timeout_interruptible(timeout); |
| } |
| |
| pr_info("Automatic memory scanning thread ended\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * Start the automatic memory scanning thread. This function must be called |
| * with the kmemleak_mutex held. |
| */ |
| void start_scan_thread(void) |
| { |
| if (scan_thread) |
| return; |
| scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); |
| if (IS_ERR(scan_thread)) { |
| pr_warning("Failed to create the scan thread\n"); |
| scan_thread = NULL; |
| } |
| } |
| |
| /* |
| * Stop the automatic memory scanning thread. This function must be called |
| * with the kmemleak_mutex held. |
| */ |
| void stop_scan_thread(void) |
| { |
| if (scan_thread) { |
| kthread_stop(scan_thread); |
| scan_thread = NULL; |
| } |
| } |
| |
| /* |
| * Iterate over the object_list and return the first valid object at or after |
| * the required position with its use_count incremented. The function triggers |
| * a memory scanning when the pos argument points to the first position. |
| */ |
| static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| struct kmemleak_object *object; |
| loff_t n = *pos; |
| |
| if (!n) { |
| kmemleak_scan(); |
| reported_leaks = 0; |
| } |
| if (reported_leaks >= REPORTS_NR) |
| return NULL; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| if (n-- > 0) |
| continue; |
| if (get_object(object)) |
| goto out; |
| } |
| object = NULL; |
| out: |
| rcu_read_unlock(); |
| return object; |
| } |
| |
| /* |
| * Return the next object in the object_list. The function decrements the |
| * use_count of the previous object and increases that of the next one. |
| */ |
| static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| struct kmemleak_object *prev_obj = v; |
| struct kmemleak_object *next_obj = NULL; |
| struct list_head *n = &prev_obj->object_list; |
| |
| ++(*pos); |
| if (reported_leaks >= REPORTS_NR) |
| goto out; |
| |
| rcu_read_lock(); |
| list_for_each_continue_rcu(n, &object_list) { |
| next_obj = list_entry(n, struct kmemleak_object, object_list); |
| if (get_object(next_obj)) |
| break; |
| } |
| rcu_read_unlock(); |
| out: |
| put_object(prev_obj); |
| return next_obj; |
| } |
| |
| /* |
| * Decrement the use_count of the last object required, if any. |
| */ |
| static void kmemleak_seq_stop(struct seq_file *seq, void *v) |
| { |
| if (v) |
| put_object(v); |
| } |
| |
| /* |
| * Print the information for an unreferenced object to the seq file. |
| */ |
| static int kmemleak_seq_show(struct seq_file *seq, void *v) |
| { |
| struct kmemleak_object *object = v; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&object->lock, flags); |
| if (!unreferenced_object(object)) |
| goto out; |
| print_unreferenced(seq, object); |
| reported_leaks++; |
| out: |
| spin_unlock_irqrestore(&object->lock, flags); |
| return 0; |
| } |
| |
| static const struct seq_operations kmemleak_seq_ops = { |
| .start = kmemleak_seq_start, |
| .next = kmemleak_seq_next, |
| .stop = kmemleak_seq_stop, |
| .show = kmemleak_seq_show, |
| }; |
| |
| static int kmemleak_open(struct inode *inode, struct file *file) |
| { |
| int ret = 0; |
| |
| if (!atomic_read(&kmemleak_enabled)) |
| return -EBUSY; |
| |
| ret = mutex_lock_interruptible(&kmemleak_mutex); |
| if (ret < 0) |
| goto out; |
| if (file->f_mode & FMODE_READ) { |
| ret = mutex_lock_interruptible(&scan_mutex); |
| if (ret < 0) |
| goto kmemleak_unlock; |
| ret = seq_open(file, &kmemleak_seq_ops); |
| if (ret < 0) |
| goto scan_unlock; |
| } |
| return ret; |
| |
| scan_unlock: |
| mutex_unlock(&scan_mutex); |
| kmemleak_unlock: |
| mutex_unlock(&kmemleak_mutex); |
| out: |
| return ret; |
| } |
| |
| static int kmemleak_release(struct inode *inode, struct file *file) |
| { |
| int ret = 0; |
| |
| if (file->f_mode & FMODE_READ) { |
| seq_release(inode, file); |
| mutex_unlock(&scan_mutex); |
| } |
| mutex_unlock(&kmemleak_mutex); |
| |
| return ret; |
| } |
| |
| /* |
| * File write operation to configure kmemleak at run-time. The following |
| * commands can be written to the /sys/kernel/debug/kmemleak file: |
| * off - disable kmemleak (irreversible) |
| * stack=on - enable the task stacks scanning |
| * stack=off - disable the tasks stacks scanning |
| * scan=on - start the automatic memory scanning thread |
| * scan=off - stop the automatic memory scanning thread |
| * scan=... - set the automatic memory scanning period in seconds (0 to |
| * disable it) |
| */ |
| static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, |
| size_t size, loff_t *ppos) |
| { |
| char buf[64]; |
| int buf_size; |
| |
| if (!atomic_read(&kmemleak_enabled)) |
| return -EBUSY; |
| |
| buf_size = min(size, (sizeof(buf) - 1)); |
| if (strncpy_from_user(buf, user_buf, buf_size) < 0) |
| return -EFAULT; |
| buf[buf_size] = 0; |
| |
| if (strncmp(buf, "off", 3) == 0) |
| kmemleak_disable(); |
| else if (strncmp(buf, "stack=on", 8) == 0) |
| kmemleak_stack_scan = 1; |
| else if (strncmp(buf, "stack=off", 9) == 0) |
| kmemleak_stack_scan = 0; |
| else if (strncmp(buf, "scan=on", 7) == 0) |
| start_scan_thread(); |
| else if (strncmp(buf, "scan=off", 8) == 0) |
| stop_scan_thread(); |
| else if (strncmp(buf, "scan=", 5) == 0) { |
| unsigned long secs; |
| int err; |
| |
| err = strict_strtoul(buf + 5, 0, &secs); |
| if (err < 0) |
| return err; |
| stop_scan_thread(); |
| if (secs) { |
| jiffies_scan_wait = msecs_to_jiffies(secs * 1000); |
| start_scan_thread(); |
| } |
| } else |
| return -EINVAL; |
| |
| /* ignore the rest of the buffer, only one command at a time */ |
| *ppos += size; |
| return size; |
| } |
| |
| static const struct file_operations kmemleak_fops = { |
| .owner = THIS_MODULE, |
| .open = kmemleak_open, |
| .read = seq_read, |
| .write = kmemleak_write, |
| .llseek = seq_lseek, |
| .release = kmemleak_release, |
| }; |
| |
| /* |
| * Perform the freeing of the kmemleak internal objects after waiting for any |
| * current memory scan to complete. |
| */ |
| static int kmemleak_cleanup_thread(void *arg) |
| { |
| struct kmemleak_object *object; |
| |
| mutex_lock(&kmemleak_mutex); |
| stop_scan_thread(); |
| mutex_unlock(&kmemleak_mutex); |
| |
| mutex_lock(&scan_mutex); |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) |
| delete_object(object->pointer); |
| rcu_read_unlock(); |
| mutex_unlock(&scan_mutex); |
| |
| return 0; |
| } |
| |
| /* |
| * Start the clean-up thread. |
| */ |
| static void kmemleak_cleanup(void) |
| { |
| struct task_struct *cleanup_thread; |
| |
| cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL, |
| "kmemleak-clean"); |
| if (IS_ERR(cleanup_thread)) |
| pr_warning("Failed to create the clean-up thread\n"); |
| } |
| |
| /* |
| * Disable kmemleak. No memory allocation/freeing will be traced once this |
| * function is called. Disabling kmemleak is an irreversible operation. |
| */ |
| static void kmemleak_disable(void) |
| { |
| /* atomically check whether it was already invoked */ |
| if (atomic_cmpxchg(&kmemleak_error, 0, 1)) |
| return; |
| |
| /* stop any memory operation tracing */ |
| atomic_set(&kmemleak_early_log, 0); |
| atomic_set(&kmemleak_enabled, 0); |
| |
| /* check whether it is too early for a kernel thread */ |
| if (atomic_read(&kmemleak_initialized)) |
| kmemleak_cleanup(); |
| |
| pr_info("Kernel memory leak detector disabled\n"); |
| } |
| |
| /* |
| * Allow boot-time kmemleak disabling (enabled by default). |
| */ |
| static int kmemleak_boot_config(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| if (strcmp(str, "off") == 0) |
| kmemleak_disable(); |
| else if (strcmp(str, "on") != 0) |
| return -EINVAL; |
| return 0; |
| } |
| early_param("kmemleak", kmemleak_boot_config); |
| |
| /* |
| * Kmemleak initialization. |
| */ |
| void __init kmemleak_init(void) |
| { |
| int i; |
| unsigned long flags; |
| |
| jiffies_scan_yield = msecs_to_jiffies(MSECS_SCAN_YIELD); |
| jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); |
| jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); |
| |
| object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); |
| scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); |
| INIT_PRIO_TREE_ROOT(&object_tree_root); |
| |
| /* the kernel is still in UP mode, so disabling the IRQs is enough */ |
| local_irq_save(flags); |
| if (!atomic_read(&kmemleak_error)) { |
| atomic_set(&kmemleak_enabled, 1); |
| atomic_set(&kmemleak_early_log, 0); |
| } |
| local_irq_restore(flags); |
| |
| /* |
| * This is the point where tracking allocations is safe. Automatic |
| * scanning is started during the late initcall. Add the early logged |
| * callbacks to the kmemleak infrastructure. |
| */ |
| for (i = 0; i < crt_early_log; i++) { |
| struct early_log *log = &early_log[i]; |
| |
| switch (log->op_type) { |
| case KMEMLEAK_ALLOC: |
| kmemleak_alloc(log->ptr, log->size, log->min_count, |
| GFP_KERNEL); |
| break; |
| case KMEMLEAK_FREE: |
| kmemleak_free(log->ptr); |
| break; |
| case KMEMLEAK_NOT_LEAK: |
| kmemleak_not_leak(log->ptr); |
| break; |
| case KMEMLEAK_IGNORE: |
| kmemleak_ignore(log->ptr); |
| break; |
| case KMEMLEAK_SCAN_AREA: |
| kmemleak_scan_area(log->ptr, log->offset, log->length, |
| GFP_KERNEL); |
| break; |
| case KMEMLEAK_NO_SCAN: |
| kmemleak_no_scan(log->ptr); |
| break; |
| default: |
| WARN_ON(1); |
| } |
| } |
| } |
| |
| /* |
| * Late initialization function. |
| */ |
| static int __init kmemleak_late_init(void) |
| { |
| struct dentry *dentry; |
| |
| atomic_set(&kmemleak_initialized, 1); |
| |
| if (atomic_read(&kmemleak_error)) { |
| /* |
| * Some error occured and kmemleak was disabled. There is a |
| * small chance that kmemleak_disable() was called immediately |
| * after setting kmemleak_initialized and we may end up with |
| * two clean-up threads but serialized by scan_mutex. |
| */ |
| kmemleak_cleanup(); |
| return -ENOMEM; |
| } |
| |
| dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, |
| &kmemleak_fops); |
| if (!dentry) |
| pr_warning("Failed to create the debugfs kmemleak file\n"); |
| mutex_lock(&kmemleak_mutex); |
| start_scan_thread(); |
| mutex_unlock(&kmemleak_mutex); |
| |
| pr_info("Kernel memory leak detector initialized\n"); |
| |
| return 0; |
| } |
| late_initcall(kmemleak_late_init); |