blob: 2d24354046144870370d26c054fea3b6a7e57774 [file] [log] [blame]
/*
* Copyright 2000, 2001 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* stevel@mvista.com or source@mvista.com
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* Ethernet driver for the MIPS GT96100 Advanced Communication Controller.
*
* Revision history
*
* 11.11.2001 Moved to 2.4.14, ppopov@mvista.com. Modified driver to add
* proper gt96100A support.
* 12.05.2001 Moved eth port 0 to irq 3 (mapped to GT_SERINT0 on EV96100A)
* in order for both ports to work. Also cleaned up boot
* option support (mac address string parsing), fleshed out
* gt96100_cleanup_module(), and other general code cleanups
* <stevel@mvista.com>.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/bitops.h>
#include <asm/irq.h>
#include <asm/io.h>
#define DESC_BE 1
#define DESC_DATA_BE 1
#define GT96100_DEBUG 2
#include "gt96100eth.h"
// prototypes
static void* dmaalloc(size_t size, dma_addr_t *dma_handle);
static void dmafree(size_t size, void *vaddr);
static void gt96100_delay(int msec);
static int gt96100_add_hash_entry(struct net_device *dev,
unsigned char* addr);
static void read_mib_counters(struct gt96100_private *gp);
static int read_MII(int phy_addr, u32 reg);
static int write_MII(int phy_addr, u32 reg, u16 data);
static int gt96100_init_module(void);
static void gt96100_cleanup_module(void);
static void dump_MII(int dbg_lvl, struct net_device *dev);
static void dump_tx_desc(int dbg_lvl, struct net_device *dev, int i);
static void dump_rx_desc(int dbg_lvl, struct net_device *dev, int i);
static void dump_skb(int dbg_lvl, struct net_device *dev,
struct sk_buff *skb);
static void update_stats(struct gt96100_private *gp);
static void abort(struct net_device *dev, u32 abort_bits);
static void hard_stop(struct net_device *dev);
static void enable_ether_irq(struct net_device *dev);
static void disable_ether_irq(struct net_device *dev);
static int gt96100_probe1(struct pci_dev *pci, int port_num);
static void reset_tx(struct net_device *dev);
static void reset_rx(struct net_device *dev);
static int gt96100_check_tx_consistent(struct gt96100_private *gp);
static int gt96100_init(struct net_device *dev);
static int gt96100_open(struct net_device *dev);
static int gt96100_close(struct net_device *dev);
static int gt96100_tx(struct sk_buff *skb, struct net_device *dev);
static int gt96100_rx(struct net_device *dev, u32 status);
static irqreturn_t gt96100_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void gt96100_tx_timeout(struct net_device *dev);
static void gt96100_set_rx_mode(struct net_device *dev);
static struct net_device_stats* gt96100_get_stats(struct net_device *dev);
extern char * __init prom_getcmdline(void);
static int max_interrupt_work = 32;
#define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0))
#define RUN_AT(x) (jiffies + (x))
// For reading/writing 32-bit words and half-words from/to DMA memory
#ifdef DESC_BE
#define cpu_to_dma32 cpu_to_be32
#define dma32_to_cpu be32_to_cpu
#define cpu_to_dma16 cpu_to_be16
#define dma16_to_cpu be16_to_cpu
#else
#define cpu_to_dma32 cpu_to_le32
#define dma32_to_cpu le32_to_cpu
#define cpu_to_dma16 cpu_to_le16
#define dma16_to_cpu le16_to_cpu
#endif
static char mac0[18] = "00.02.03.04.05.06";
static char mac1[18] = "00.01.02.03.04.05";
module_param_string(mac0, mac0, 18, 0);
module_param_string(mac1, mac0, 18, 0);
MODULE_PARM_DESC(mac0, "MAC address for GT96100 ethernet port 0");
MODULE_PARM_DESC(mac1, "MAC address for GT96100 ethernet port 1");
/*
* Info for the GT96100 ethernet controller's ports.
*/
static struct gt96100_if_t {
struct net_device *dev;
unsigned int iobase; // IO Base address of this port
int irq; // IRQ number of this port
char *mac_str;
} gt96100_iflist[NUM_INTERFACES] = {
{
NULL,
GT96100_ETH0_BASE, GT96100_ETHER0_IRQ,
mac0
},
{
NULL,
GT96100_ETH1_BASE, GT96100_ETHER1_IRQ,
mac1
}
};
static inline const char*
chip_name(int chip_rev)
{
switch (chip_rev) {
case REV_GT96100:
return "GT96100";
case REV_GT96100A_1:
case REV_GT96100A:
return "GT96100A";
default:
return "Unknown GT96100";
}
}
/*
DMA memory allocation, derived from pci_alloc_consistent.
*/
static void * dmaalloc(size_t size, dma_addr_t *dma_handle)
{
void *ret;
ret = (void *)__get_free_pages(GFP_ATOMIC | GFP_DMA, get_order(size));
if (ret != NULL) {
dma_cache_inv((unsigned long)ret, size);
if (dma_handle != NULL)
*dma_handle = virt_to_phys(ret);
/* bump virtual address up to non-cached area */
ret = (void*)KSEG1ADDR(ret);
}
return ret;
}
static void dmafree(size_t size, void *vaddr)
{
vaddr = (void*)KSEG0ADDR(vaddr);
free_pages((unsigned long)vaddr, get_order(size));
}
static void gt96100_delay(int ms)
{
if (in_interrupt())
return;
else
msleep_interruptible(ms);
}
static int
parse_mac_addr(struct net_device *dev, char* macstr)
{
int i, j;
unsigned char result, value;
for (i=0; i<6; i++) {
result = 0;
if (i != 5 && *(macstr+2) != '.') {
err(__FILE__ "invalid mac address format: %d %c\n",
i, *(macstr+2));
return -EINVAL;
}
for (j=0; j<2; j++) {
if (isxdigit(*macstr) &&
(value = isdigit(*macstr) ? *macstr-'0' :
toupper(*macstr)-'A'+10) < 16) {
result = result*16 + value;
macstr++;
} else {
err(__FILE__ "invalid mac address "
"character: %c\n", *macstr);
return -EINVAL;
}
}
macstr++; // step over '.'
dev->dev_addr[i] = result;
}
return 0;
}
static int
read_MII(int phy_addr, u32 reg)
{
int timedout = 20;
u32 smir = smirOpCode | (phy_addr << smirPhyAdBit) |
(reg << smirRegAdBit);
// wait for last operation to complete
while (GT96100_READ(GT96100_ETH_SMI_REG) & smirBusy) {
// snooze for 1 msec and check again
gt96100_delay(1);
if (--timedout == 0) {
printk(KERN_ERR "%s: busy timeout!!\n", __FUNCTION__);
return -ENODEV;
}
}
GT96100_WRITE(GT96100_ETH_SMI_REG, smir);
timedout = 20;
// wait for read to complete
while (!((smir = GT96100_READ(GT96100_ETH_SMI_REG)) & smirReadValid)) {
// snooze for 1 msec and check again
gt96100_delay(1);
if (--timedout == 0) {
printk(KERN_ERR "%s: timeout!!\n", __FUNCTION__);
return -ENODEV;
}
}
return (int)(smir & smirDataMask);
}
static void
dump_tx_desc(int dbg_lvl, struct net_device *dev, int i)
{
struct gt96100_private *gp = netdev_priv(dev);
gt96100_td_t *td = &gp->tx_ring[i];
dbg(dbg_lvl, "Tx descriptor at 0x%08lx:\n", virt_to_phys(td));
dbg(dbg_lvl,
" cmdstat=%04x, byte_cnt=%04x, buff_ptr=%04x, next=%04x\n",
dma32_to_cpu(td->cmdstat),
dma16_to_cpu(td->byte_cnt),
dma32_to_cpu(td->buff_ptr),
dma32_to_cpu(td->next));
}
static void
dump_rx_desc(int dbg_lvl, struct net_device *dev, int i)
{
struct gt96100_private *gp = netdev_priv(dev);
gt96100_rd_t *rd = &gp->rx_ring[i];
dbg(dbg_lvl, "Rx descriptor at 0x%08lx:\n", virt_to_phys(rd));
dbg(dbg_lvl, " cmdstat=%04x, buff_sz=%04x, byte_cnt=%04x, "
"buff_ptr=%04x, next=%04x\n",
dma32_to_cpu(rd->cmdstat),
dma16_to_cpu(rd->buff_sz),
dma16_to_cpu(rd->byte_cnt),
dma32_to_cpu(rd->buff_ptr),
dma32_to_cpu(rd->next));
}
static int
write_MII(int phy_addr, u32 reg, u16 data)
{
int timedout = 20;
u32 smir = (phy_addr << smirPhyAdBit) |
(reg << smirRegAdBit) | data;
// wait for last operation to complete
while (GT96100_READ(GT96100_ETH_SMI_REG) & smirBusy) {
// snooze for 1 msec and check again
gt96100_delay(1);
if (--timedout == 0) {
printk(KERN_ERR "%s: busy timeout!!\n", __FUNCTION__);
return -1;
}
}
GT96100_WRITE(GT96100_ETH_SMI_REG, smir);
return 0;
}
static void
dump_MII(int dbg_lvl, struct net_device *dev)
{
int i, val;
struct gt96100_private *gp = netdev_priv(dev);
if (dbg_lvl <= GT96100_DEBUG) {
for (i=0; i<7; i++) {
if ((val = read_MII(gp->phy_addr, i)) >= 0)
printk("MII Reg %d=%x\n", i, val);
}
for (i=16; i<21; i++) {
if ((val = read_MII(gp->phy_addr, i)) >= 0)
printk("MII Reg %d=%x\n", i, val);
}
}
}
static void
dump_hw_addr(int dbg_lvl, struct net_device *dev, const char* pfx,
const char* func, unsigned char* addr_str)
{
int i;
char buf[100], octet[5];
if (dbg_lvl <= GT96100_DEBUG) {
sprintf(buf, pfx, func);
for (i = 0; i < 6; i++) {
sprintf(octet, "%2.2x%s",
addr_str[i], i<5 ? ":" : "\n");
strcat(buf, octet);
}
info("%s", buf);
}
}
static void
dump_skb(int dbg_lvl, struct net_device *dev, struct sk_buff *skb)
{
int i;
unsigned char* skbdata;
if (dbg_lvl <= GT96100_DEBUG) {
dbg(dbg_lvl, "%s: skb=%p, skb->data=%p, skb->len=%d\n",
__FUNCTION__, skb, skb->data, skb->len);
skbdata = (unsigned char*)KSEG1ADDR(skb->data);
for (i=0; i<skb->len; i++) {
if (!(i % 16))
printk(KERN_DEBUG "\n %3.3x: %2.2x,",
i, skbdata[i]);
else
printk(KERN_DEBUG "%2.2x,", skbdata[i]);
}
printk(KERN_DEBUG "\n");
}
}
static int
gt96100_add_hash_entry(struct net_device *dev, unsigned char* addr)
{
struct gt96100_private *gp = netdev_priv(dev);
//u16 hashResult, stmp;
//unsigned char ctmp, hash_ea[6];
u32 tblEntry1, tblEntry0, *tblEntryAddr;
int i;
tblEntry1 = hteValid | hteRD;
tblEntry1 |= (u32)addr[5] << 3;
tblEntry1 |= (u32)addr[4] << 11;
tblEntry1 |= (u32)addr[3] << 19;
tblEntry1 |= ((u32)addr[2] & 0x1f) << 27;
dbg(3, "%s: tblEntry1=%x\n", __FUNCTION__, tblEntry1);
tblEntry0 = ((u32)addr[2] >> 5) & 0x07;
tblEntry0 |= (u32)addr[1] << 3;
tblEntry0 |= (u32)addr[0] << 11;
dbg(3, "%s: tblEntry0=%x\n", __FUNCTION__, tblEntry0);
#if 0
for (i=0; i<6; i++) {
// nibble swap
ctmp = nibswap(addr[i]);
// invert every nibble
hash_ea[i] = ((ctmp&1)<<3) | ((ctmp&8)>>3) |
((ctmp&2)<<1) | ((ctmp&4)>>1);
hash_ea[i] |= ((ctmp&0x10)<<3) | ((ctmp&0x80)>>3) |
((ctmp&0x20)<<1) | ((ctmp&0x40)>>1);
}
dump_hw_addr(3, dev, "%s: nib swap/invt addr=", __FUNCTION__, hash_ea);
if (gp->hash_mode == 0) {
hashResult = ((u16)hash_ea[0] & 0xfc) << 7;
stmp = ((u16)hash_ea[0] & 0x03) |
(((u16)hash_ea[1] & 0x7f) << 2);
stmp ^= (((u16)hash_ea[1] >> 7) & 0x01) |
((u16)hash_ea[2] << 1);
stmp ^= (u16)hash_ea[3] | (((u16)hash_ea[4] & 1) << 8);
hashResult |= stmp;
} else {
return -1; // don't support hash mode 1
}
dbg(3, "%s: hashResult=%x\n", __FUNCTION__, hashResult);
tblEntryAddr =
(u32 *)(&gp->hash_table[((u32)hashResult & 0x7ff) << 3]);
dbg(3, "%s: tblEntryAddr=%p\n", tblEntryAddr, __FUNCTION__);
for (i=0; i<HASH_HOP_NUMBER; i++) {
if ((*tblEntryAddr & hteValid) &&
!(*tblEntryAddr & hteSkip)) {
// This entry is already occupied, go to next entry
tblEntryAddr += 2;
dbg(3, "%s: skipping to %p\n", __FUNCTION__,
tblEntryAddr);
} else {
memset(tblEntryAddr, 0, 8);
tblEntryAddr[1] = cpu_to_dma32(tblEntry1);
tblEntryAddr[0] = cpu_to_dma32(tblEntry0);
break;
}
}
if (i >= HASH_HOP_NUMBER) {
err("%s: expired!\n", __FUNCTION__);
return -1; // Couldn't find an unused entry
}
#else
tblEntryAddr = (u32 *)gp->hash_table;
for (i=0; i<RX_HASH_TABLE_SIZE/4; i+=2) {
tblEntryAddr[i+1] = cpu_to_dma32(tblEntry1);
tblEntryAddr[i] = cpu_to_dma32(tblEntry0);
}
#endif
return 0;
}
static void
read_mib_counters(struct gt96100_private *gp)
{
u32* mib_regs = (u32*)&gp->mib;
int i;
for (i=0; i<sizeof(mib_counters_t)/sizeof(u32); i++)
mib_regs[i] = GT96100ETH_READ(gp, GT96100_ETH_MIB_COUNT_BASE +
i*sizeof(u32));
}
static void
update_stats(struct gt96100_private *gp)
{
mib_counters_t *mib = &gp->mib;
struct net_device_stats *stats = &gp->stats;
read_mib_counters(gp);
stats->rx_packets = mib->totalFramesReceived;
stats->tx_packets = mib->framesSent;
stats->rx_bytes = mib->totalByteReceived;
stats->tx_bytes = mib->byteSent;
stats->rx_errors = mib->totalFramesReceived - mib->framesReceived;
//the tx error counters are incremented by the ISR
//rx_dropped incremented by gt96100_rx
//tx_dropped incremented by gt96100_tx
stats->multicast = mib->multicastFramesReceived;
// collisions incremented by gt96100_tx_complete
stats->rx_length_errors = mib->oversizeFrames + mib->fragments;
// The RxError condition means the Rx DMA encountered a
// CPU owned descriptor, which, if things are working as
// they should, means the Rx ring has overflowed.
stats->rx_over_errors = mib->macRxError;
stats->rx_crc_errors = mib->cRCError;
}
static void
abort(struct net_device *dev, u32 abort_bits)
{
struct gt96100_private *gp = netdev_priv(dev);
int timedout = 100; // wait up to 100 msec for hard stop to complete
dbg(3, "%s\n", __FUNCTION__);
// Return if neither Rx or Tx abort bits are set
if (!(abort_bits & (sdcmrAR | sdcmrAT)))
return;
// make sure only the Rx/Tx abort bits are set
abort_bits &= (sdcmrAR | sdcmrAT);
spin_lock(&gp->lock);
// abort any Rx/Tx DMA immediately
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, abort_bits);
dbg(3, "%s: SDMA comm = %x\n", __FUNCTION__,
GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM));
// wait for abort to complete
while (GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM) & abort_bits) {
// snooze for 1 msec and check again
gt96100_delay(1);
if (--timedout == 0) {
err("%s: timeout!!\n", __FUNCTION__);
break;
}
}
spin_unlock(&gp->lock);
}
static void
hard_stop(struct net_device *dev)
{
struct gt96100_private *gp = netdev_priv(dev);
dbg(3, "%s\n", __FUNCTION__);
disable_ether_irq(dev);
abort(dev, sdcmrAR | sdcmrAT);
// disable port
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG, 0);
}
static void
enable_ether_irq(struct net_device *dev)
{
struct gt96100_private *gp = netdev_priv(dev);
u32 intMask;
/*
* route ethernet interrupt to GT_SERINT0 for port 0,
* GT_INT0 for port 1.
*/
int intr_mask_reg = (gp->port_num == 0) ?
GT96100_SERINT0_MASK : GT96100_INT0_HIGH_MASK;
if (gp->chip_rev >= REV_GT96100A_1) {
intMask = icrTxBufferLow | icrTxEndLow |
icrTxErrorLow | icrRxOVR | icrTxUdr |
icrRxBufferQ0 | icrRxErrorQ0 |
icrMIIPhySTC | icrEtherIntSum;
}
else {
intMask = icrTxBufferLow | icrTxEndLow |
icrTxErrorLow | icrRxOVR | icrTxUdr |
icrRxBuffer | icrRxError |
icrMIIPhySTC | icrEtherIntSum;
}
// unmask interrupts
GT96100ETH_WRITE(gp, GT96100_ETH_INT_MASK, intMask);
intMask = GT96100_READ(intr_mask_reg);
intMask |= 1<<gp->port_num;
GT96100_WRITE(intr_mask_reg, intMask);
}
static void
disable_ether_irq(struct net_device *dev)
{
struct gt96100_private *gp = netdev_priv(dev);
u32 intMask;
int intr_mask_reg = (gp->port_num == 0) ?
GT96100_SERINT0_MASK : GT96100_INT0_HIGH_MASK;
intMask = GT96100_READ(intr_mask_reg);
intMask &= ~(1<<gp->port_num);
GT96100_WRITE(intr_mask_reg, intMask);
GT96100ETH_WRITE(gp, GT96100_ETH_INT_MASK, 0);
}
/*
* Init GT96100 ethernet controller driver
*/
static int gt96100_init_module(void)
{
struct pci_dev *pci;
int i, retval=0;
u32 cpuConfig;
/*
* Stupid probe because this really isn't a PCI device
*/
if (!(pci = pci_find_device(PCI_VENDOR_ID_MARVELL,
PCI_DEVICE_ID_MARVELL_GT96100, NULL)) &&
!(pci = pci_find_device(PCI_VENDOR_ID_MARVELL,
PCI_DEVICE_ID_MARVELL_GT96100A, NULL))) {
printk(KERN_ERR __FILE__ ": GT96100 not found!\n");
return -ENODEV;
}
cpuConfig = GT96100_READ(GT96100_CPU_INTERF_CONFIG);
if (cpuConfig & (1<<12)) {
printk(KERN_ERR __FILE__
": must be in Big Endian mode!\n");
return -ENODEV;
}
for (i=0; i < NUM_INTERFACES; i++)
retval |= gt96100_probe1(pci, i);
return retval;
}
static int __init gt96100_probe1(struct pci_dev *pci, int port_num)
{
struct gt96100_private *gp = NULL;
struct gt96100_if_t *gtif = &gt96100_iflist[port_num];
int phy_addr, phy_id1, phy_id2;
u32 phyAD;
int retval;
unsigned char chip_rev;
struct net_device *dev = NULL;
if (gtif->irq < 0) {
printk(KERN_ERR "%s: irq unknown - probing not supported\n",
__FUNCTION__);
return -ENODEV;
}
pci_read_config_byte(pci, PCI_REVISION_ID, &chip_rev);
if (chip_rev >= REV_GT96100A_1) {
phyAD = GT96100_READ(GT96100_ETH_PHY_ADDR_REG);
phy_addr = (phyAD >> (5*port_num)) & 0x1f;
} else {
/*
* not sure what's this about -- probably a gt bug
*/
phy_addr = port_num;
phyAD = GT96100_READ(GT96100_ETH_PHY_ADDR_REG);
phyAD &= ~(0x1f << (port_num*5));
phyAD |= phy_addr << (port_num*5);
GT96100_WRITE(GT96100_ETH_PHY_ADDR_REG, phyAD);
}
// probe for the external PHY
if ((phy_id1 = read_MII(phy_addr, 2)) <= 0 ||
(phy_id2 = read_MII(phy_addr, 3)) <= 0) {
printk(KERN_ERR "%s: no PHY found on MII%d\n", __FUNCTION__, port_num);
return -ENODEV;
}
if (!request_region(gtif->iobase, GT96100_ETH_IO_SIZE, "GT96100ETH")) {
printk(KERN_ERR "%s: request_region failed\n", __FUNCTION__);
return -EBUSY;
}
dev = alloc_etherdev(sizeof(struct gt96100_private));
if (!dev)
goto out;
gtif->dev = dev;
/* private struct aligned and zeroed by alloc_etherdev */
/* Fill in the 'dev' fields. */
dev->base_addr = gtif->iobase;
dev->irq = gtif->irq;
if ((retval = parse_mac_addr(dev, gtif->mac_str))) {
err("%s: MAC address parse failed\n", __FUNCTION__);
retval = -EINVAL;
goto out1;
}
gp = netdev_priv(dev);
memset(gp, 0, sizeof(*gp)); // clear it
gp->port_num = port_num;
gp->io_size = GT96100_ETH_IO_SIZE;
gp->port_offset = port_num * GT96100_ETH_IO_SIZE;
gp->phy_addr = phy_addr;
gp->chip_rev = chip_rev;
info("%s found at 0x%x, irq %d\n",
chip_name(gp->chip_rev), gtif->iobase, gtif->irq);
dump_hw_addr(0, dev, "%s: HW Address ", __FUNCTION__, dev->dev_addr);
info("%s chip revision=%d\n", chip_name(gp->chip_rev), gp->chip_rev);
info("%s ethernet port %d\n", chip_name(gp->chip_rev), gp->port_num);
info("external PHY ID1=0x%04x, ID2=0x%04x\n", phy_id1, phy_id2);
// Allocate Rx and Tx descriptor rings
if (gp->rx_ring == NULL) {
// All descriptors in ring must be 16-byte aligned
gp->rx_ring = dmaalloc(sizeof(gt96100_rd_t) * RX_RING_SIZE
+ sizeof(gt96100_td_t) * TX_RING_SIZE,
&gp->rx_ring_dma);
if (gp->rx_ring == NULL) {
retval = -ENOMEM;
goto out1;
}
gp->tx_ring = (gt96100_td_t *)(gp->rx_ring + RX_RING_SIZE);
gp->tx_ring_dma =
gp->rx_ring_dma + sizeof(gt96100_rd_t) * RX_RING_SIZE;
}
// Allocate the Rx Data Buffers
if (gp->rx_buff == NULL) {
gp->rx_buff = dmaalloc(PKT_BUF_SZ*RX_RING_SIZE,
&gp->rx_buff_dma);
if (gp->rx_buff == NULL) {
retval = -ENOMEM;
goto out2;
}
}
dbg(3, "%s: rx_ring=%p, tx_ring=%p\n", __FUNCTION__,
gp->rx_ring, gp->tx_ring);
// Allocate Rx Hash Table
if (gp->hash_table == NULL) {
gp->hash_table = (char*)dmaalloc(RX_HASH_TABLE_SIZE,
&gp->hash_table_dma);
if (gp->hash_table == NULL) {
retval = -ENOMEM;
goto out3;
}
}
dbg(3, "%s: hash=%p\n", __FUNCTION__, gp->hash_table);
spin_lock_init(&gp->lock);
dev->open = gt96100_open;
dev->hard_start_xmit = gt96100_tx;
dev->stop = gt96100_close;
dev->get_stats = gt96100_get_stats;
//dev->do_ioctl = gt96100_ioctl;
dev->set_multicast_list = gt96100_set_rx_mode;
dev->tx_timeout = gt96100_tx_timeout;
dev->watchdog_timeo = GT96100ETH_TX_TIMEOUT;
retval = register_netdev(dev);
if (retval)
goto out4;
return 0;
out4:
dmafree(RX_HASH_TABLE_SIZE, gp->hash_table_dma);
out3:
dmafree(PKT_BUF_SZ*RX_RING_SIZE, gp->rx_buff);
out2:
dmafree(sizeof(gt96100_rd_t) * RX_RING_SIZE
+ sizeof(gt96100_td_t) * TX_RING_SIZE,
gp->rx_ring);
out1:
free_netdev (dev);
out:
release_region(gtif->iobase, GT96100_ETH_IO_SIZE);
err("%s failed. Returns %d\n", __FUNCTION__, retval);
return retval;
}
static void
reset_tx(struct net_device *dev)
{
struct gt96100_private *gp = netdev_priv(dev);
int i;
abort(dev, sdcmrAT);
for (i=0; i<TX_RING_SIZE; i++) {
if (gp->tx_skbuff[i]) {
if (in_interrupt())
dev_kfree_skb_irq(gp->tx_skbuff[i]);
else
dev_kfree_skb(gp->tx_skbuff[i]);
gp->tx_skbuff[i] = NULL;
}
gp->tx_ring[i].cmdstat = 0; // CPU owns
gp->tx_ring[i].byte_cnt = 0;
gp->tx_ring[i].buff_ptr = 0;
gp->tx_ring[i].next =
cpu_to_dma32(gp->tx_ring_dma +
sizeof(gt96100_td_t) * (i+1));
dump_tx_desc(4, dev, i);
}
/* Wrap the ring. */
gp->tx_ring[i-1].next = cpu_to_dma32(gp->tx_ring_dma);
// setup only the lowest priority TxCDP reg
GT96100ETH_WRITE(gp, GT96100_ETH_CURR_TX_DESC_PTR0, gp->tx_ring_dma);
GT96100ETH_WRITE(gp, GT96100_ETH_CURR_TX_DESC_PTR1, 0);
// init Tx indeces and pkt counter
gp->tx_next_in = gp->tx_next_out = 0;
gp->tx_count = 0;
}
static void
reset_rx(struct net_device *dev)
{
struct gt96100_private *gp = netdev_priv(dev);
int i;
abort(dev, sdcmrAR);
for (i=0; i<RX_RING_SIZE; i++) {
gp->rx_ring[i].next =
cpu_to_dma32(gp->rx_ring_dma +
sizeof(gt96100_rd_t) * (i+1));
gp->rx_ring[i].buff_ptr =
cpu_to_dma32(gp->rx_buff_dma + i*PKT_BUF_SZ);
gp->rx_ring[i].buff_sz = cpu_to_dma16(PKT_BUF_SZ);
// Give ownership to device, set first and last, enable intr
gp->rx_ring[i].cmdstat =
cpu_to_dma32((u32)(rxFirst | rxLast | rxOwn | rxEI));
dump_rx_desc(4, dev, i);
}
/* Wrap the ring. */
gp->rx_ring[i-1].next = cpu_to_dma32(gp->rx_ring_dma);
// Setup only the lowest priority RxFDP and RxCDP regs
for (i=0; i<4; i++) {
if (i == 0) {
GT96100ETH_WRITE(gp, GT96100_ETH_1ST_RX_DESC_PTR0,
gp->rx_ring_dma);
GT96100ETH_WRITE(gp, GT96100_ETH_CURR_RX_DESC_PTR0,
gp->rx_ring_dma);
} else {
GT96100ETH_WRITE(gp,
GT96100_ETH_1ST_RX_DESC_PTR0 + i*4,
0);
GT96100ETH_WRITE(gp,
GT96100_ETH_CURR_RX_DESC_PTR0 + i*4,
0);
}
}
// init Rx NextOut index
gp->rx_next_out = 0;
}
// Returns 1 if the Tx counter and indeces don't gel
static int
gt96100_check_tx_consistent(struct gt96100_private *gp)
{
int diff = gp->tx_next_in - gp->tx_next_out;
diff = diff<0 ? TX_RING_SIZE + diff : diff;
diff = gp->tx_count == TX_RING_SIZE ? diff + TX_RING_SIZE : diff;
return (diff != gp->tx_count);
}
static int
gt96100_init(struct net_device *dev)
{
struct gt96100_private *gp = netdev_priv(dev);
u32 tmp;
u16 mii_reg;
dbg(3, "%s: dev=%p\n", __FUNCTION__, dev);
dbg(3, "%s: scs10_lo=%4x, scs10_hi=%4x\n", __FUNCTION__,
GT96100_READ(0x8), GT96100_READ(0x10));
dbg(3, "%s: scs32_lo=%4x, scs32_hi=%4x\n", __FUNCTION__,
GT96100_READ(0x18), GT96100_READ(0x20));
// Stop and disable Port
hard_stop(dev);
// Setup CIU Arbiter
tmp = GT96100_READ(GT96100_CIU_ARBITER_CONFIG);
tmp |= (0x0c << (gp->port_num*2)); // set Ether DMA req priority to hi
#ifndef DESC_BE
tmp &= ~(1<<31); // set desc endianess to little
#else
tmp |= (1<<31);
#endif
GT96100_WRITE(GT96100_CIU_ARBITER_CONFIG, tmp);
dbg(3, "%s: CIU Config=%x/%x\n", __FUNCTION__,
tmp, GT96100_READ(GT96100_CIU_ARBITER_CONFIG));
// Set routing.
tmp = GT96100_READ(GT96100_ROUTE_MAIN) & (0x3f << 18);
tmp |= (0x07 << (18 + gp->port_num*3));
GT96100_WRITE(GT96100_ROUTE_MAIN, tmp);
/* set MII as peripheral func */
tmp = GT96100_READ(GT96100_GPP_CONFIG2);
tmp |= 0x7fff << (gp->port_num*16);
GT96100_WRITE(GT96100_GPP_CONFIG2, tmp);
/* Set up MII port pin directions */
tmp = GT96100_READ(GT96100_GPP_IO2);
tmp |= 0x003d << (gp->port_num*16);
GT96100_WRITE(GT96100_GPP_IO2, tmp);
// Set-up hash table
memset(gp->hash_table, 0, RX_HASH_TABLE_SIZE); // clear it
gp->hash_mode = 0;
// Add a single entry to hash table - our ethernet address
gt96100_add_hash_entry(dev, dev->dev_addr);
// Set-up DMA ptr to hash table
GT96100ETH_WRITE(gp, GT96100_ETH_HASH_TBL_PTR, gp->hash_table_dma);
dbg(3, "%s: Hash Tbl Ptr=%x\n", __FUNCTION__,
GT96100ETH_READ(gp, GT96100_ETH_HASH_TBL_PTR));
// Setup Tx
reset_tx(dev);
dbg(3, "%s: Curr Tx Desc Ptr0=%x\n", __FUNCTION__,
GT96100ETH_READ(gp, GT96100_ETH_CURR_TX_DESC_PTR0));
// Setup Rx
reset_rx(dev);
dbg(3, "%s: 1st/Curr Rx Desc Ptr0=%x/%x\n", __FUNCTION__,
GT96100ETH_READ(gp, GT96100_ETH_1ST_RX_DESC_PTR0),
GT96100ETH_READ(gp, GT96100_ETH_CURR_RX_DESC_PTR0));
// eth port config register
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT,
pcxrFCTL | pcxrFCTLen | pcxrFLP | pcxrDPLXen);
mii_reg = read_MII(gp->phy_addr, 0x11); /* int enable register */
mii_reg |= 2; /* enable mii interrupt */
write_MII(gp->phy_addr, 0x11, mii_reg);
dbg(3, "%s: PhyAD=%x\n", __FUNCTION__,
GT96100_READ(GT96100_ETH_PHY_ADDR_REG));
// setup DMA
// We want the Rx/Tx DMA to write/read data to/from memory in
// Big Endian mode. Also set DMA Burst Size to 8 64Bit words.
#ifdef DESC_DATA_BE
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_CONFIG,
(0xf<<sdcrRCBit) | sdcrRIFB | (3<<sdcrBSZBit));
#else
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_CONFIG,
sdcrBLMR | sdcrBLMT |
(0xf<<sdcrRCBit) | sdcrRIFB | (3<<sdcrBSZBit));
#endif
dbg(3, "%s: SDMA Config=%x\n", __FUNCTION__,
GT96100ETH_READ(gp, GT96100_ETH_SDMA_CONFIG));
// start Rx DMA
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, sdcmrERD);
dbg(3, "%s: SDMA Comm=%x\n", __FUNCTION__,
GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM));
// enable this port (set hash size to 1/2K)
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG, pcrEN | pcrHS);
dbg(3, "%s: Port Config=%x\n", __FUNCTION__,
GT96100ETH_READ(gp, GT96100_ETH_PORT_CONFIG));
/*
* Disable all Type-of-Service queueing. All Rx packets will be
* treated normally and will be sent to the lowest priority
* queue.
*
* Disable flow-control for now. FIXME: support flow control?
*/
// clear all the MIB ctr regs
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT,
pcxrFCTL | pcxrFCTLen | pcxrFLP |
pcxrPRIOrxOverride);
read_mib_counters(gp);
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT,
pcxrFCTL | pcxrFCTLen | pcxrFLP |
pcxrPRIOrxOverride | pcxrMIBclrMode);
dbg(3, "%s: Port Config Ext=%x\n", __FUNCTION__,
GT96100ETH_READ(gp, GT96100_ETH_PORT_CONFIG_EXT));
netif_start_queue(dev);
dump_MII(4, dev);
// enable interrupts
enable_ether_irq(dev);
// we should now be receiving frames
return 0;
}
static int
gt96100_open(struct net_device *dev)
{
int retval;
dbg(2, "%s: dev=%p\n", __FUNCTION__, dev);
// Initialize and startup the GT-96100 ethernet port
if ((retval = gt96100_init(dev))) {
err("error in gt96100_init\n");
free_irq(dev->irq, dev);
return retval;
}
if ((retval = request_irq(dev->irq, &gt96100_interrupt,
SA_SHIRQ, dev->name, dev))) {
err("unable to get IRQ %d\n", dev->irq);
return retval;
}
dbg(2, "%s: Initialization done.\n", __FUNCTION__);
return 0;
}
static int
gt96100_close(struct net_device *dev)
{
dbg(3, "%s: dev=%p\n", __FUNCTION__, dev);
// stop the device
if (netif_device_present(dev)) {
netif_stop_queue(dev);
hard_stop(dev);
}
free_irq(dev->irq, dev);
return 0;
}
static int
gt96100_tx(struct sk_buff *skb, struct net_device *dev)
{
struct gt96100_private *gp = netdev_priv(dev);
unsigned long flags;
int nextIn;
spin_lock_irqsave(&gp->lock, flags);
nextIn = gp->tx_next_in;
dbg(3, "%s: nextIn=%d\n", __FUNCTION__, nextIn);
if (gp->tx_count >= TX_RING_SIZE) {
warn("Tx Ring full, pkt dropped.\n");
gp->stats.tx_dropped++;
spin_unlock_irqrestore(&gp->lock, flags);
return 1;
}
if (!(gp->last_psr & psrLink)) {
err("%s: Link down, pkt dropped.\n", __FUNCTION__);
gp->stats.tx_dropped++;
spin_unlock_irqrestore(&gp->lock, flags);
return 1;
}
if (dma32_to_cpu(gp->tx_ring[nextIn].cmdstat) & txOwn) {
err("%s: device owns descriptor, pkt dropped.\n", __FUNCTION__);
gp->stats.tx_dropped++;
// stop the queue, so Tx timeout can fix it
netif_stop_queue(dev);
spin_unlock_irqrestore(&gp->lock, flags);
return 1;
}
// Prepare the Descriptor at tx_next_in
gp->tx_skbuff[nextIn] = skb;
gp->tx_ring[nextIn].byte_cnt = cpu_to_dma16(skb->len);
gp->tx_ring[nextIn].buff_ptr = cpu_to_dma32(virt_to_phys(skb->data));
// make sure packet gets written back to memory
dma_cache_wback_inv((unsigned long)(skb->data), skb->len);
// Give ownership to device, set first and last desc, enable interrupt
// Setting of ownership bit must be *last*!
gp->tx_ring[nextIn].cmdstat =
cpu_to_dma32((u32)(txOwn | txGenCRC | txEI |
txPad | txFirst | txLast));
dump_tx_desc(4, dev, nextIn);
dump_skb(4, dev, skb);
// increment tx_next_in with wrap
gp->tx_next_in = (nextIn + 1) % TX_RING_SIZE;
// If DMA is stopped, restart
if (!(GT96100ETH_READ(gp, GT96100_ETH_PORT_STATUS) & psrTxLow))
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM,
sdcmrERD | sdcmrTXDL);
// increment count and stop queue if full
if (++gp->tx_count == TX_RING_SIZE) {
gp->tx_full = 1;
netif_stop_queue(dev);
dbg(2, "Tx Ring now full, queue stopped.\n");
}
dev->trans_start = jiffies;
spin_unlock_irqrestore(&gp->lock, flags);
return 0;
}
static int
gt96100_rx(struct net_device *dev, u32 status)
{
struct gt96100_private *gp = netdev_priv(dev);
struct sk_buff *skb;
int pkt_len, nextOut, cdp;
gt96100_rd_t *rd;
u32 cmdstat;
dbg(3, "%s: dev=%p, status=%x\n", __FUNCTION__, dev, status);
cdp = (GT96100ETH_READ(gp, GT96100_ETH_1ST_RX_DESC_PTR0)
- gp->rx_ring_dma) / sizeof(gt96100_rd_t);
// Continue until we reach 1st descriptor pointer
for (nextOut = gp->rx_next_out; nextOut != cdp;
nextOut = (nextOut + 1) % RX_RING_SIZE) {
if (--gp->intr_work_done == 0)
break;
rd = &gp->rx_ring[nextOut];
cmdstat = dma32_to_cpu(rd->cmdstat);
dbg(4, "%s: Rx desc cmdstat=%x, nextOut=%d\n", __FUNCTION__,
cmdstat, nextOut);
if (cmdstat & (u32)rxOwn) {
//err("%s: device owns descriptor!\n", __FUNCTION__);
// DMA is not finished updating descriptor???
// Leave and come back later to pick-up where
// we left off.
break;
}
// Drop this received pkt if there were any errors
if (((cmdstat & (u32)(rxErrorSummary)) &&
(cmdstat & (u32)(rxFirst))) || (status & icrRxError)) {
// update the detailed rx error counters that
// are not covered by the MIB counters.
if (cmdstat & (u32)rxOverrun)
gp->stats.rx_fifo_errors++;
cmdstat |= (u32)rxOwn;
rd->cmdstat = cpu_to_dma32(cmdstat);
continue;
}
/*
* Must be first and last (ie only) descriptor of packet. We
* ignore (drop) any packets that do not fit in one descriptor.
* Every descriptor's receive buffer is large enough to hold
* the maximum 802.3 frame size, so a multi-descriptor packet
* indicates an error. Most if not all corrupted packets will
* have already been dropped by the above check for the
* rxErrorSummary status bit.
*/
if (!(cmdstat & (u32)rxFirst) || !(cmdstat & (u32)rxLast)) {
if (cmdstat & (u32)rxFirst) {
/*
* This is the first descriptor of a
* multi-descriptor packet. It isn't corrupted
* because the above check for rxErrorSummary
* would have dropped it already, so what's
* the deal with this packet? Good question,
* let's dump it out.
*/
err("%s: desc not first and last!\n", __FUNCTION__);
dump_rx_desc(0, dev, nextOut);
}
cmdstat |= (u32)rxOwn;
rd->cmdstat = cpu_to_dma32(cmdstat);
// continue to drop every descriptor of this packet
continue;
}
pkt_len = dma16_to_cpu(rd->byte_cnt);
/* Create new skb. */
skb = dev_alloc_skb(pkt_len+2);
if (skb == NULL) {
err("%s: Memory squeeze, dropping packet.\n", __FUNCTION__);
gp->stats.rx_dropped++;
cmdstat |= (u32)rxOwn;
rd->cmdstat = cpu_to_dma32(cmdstat);
continue;
}
skb->dev = dev;
skb_reserve(skb, 2); /* 16 byte IP header align */
memcpy(skb_put(skb, pkt_len),
&gp->rx_buff[nextOut*PKT_BUF_SZ], pkt_len);
skb->protocol = eth_type_trans(skb, dev);
dump_skb(4, dev, skb);
netif_rx(skb); /* pass the packet to upper layers */
dev->last_rx = jiffies;
// now we can release ownership of this desc back to device
cmdstat |= (u32)rxOwn;
rd->cmdstat = cpu_to_dma32(cmdstat);
}
if (nextOut == gp->rx_next_out)
dbg(3, "%s: RxCDP did not increment?\n", __FUNCTION__);
gp->rx_next_out = nextOut;
return 0;
}
static void
gt96100_tx_complete(struct net_device *dev, u32 status)
{
struct gt96100_private *gp = netdev_priv(dev);
int nextOut, cdp;
gt96100_td_t *td;
u32 cmdstat;
cdp = (GT96100ETH_READ(gp, GT96100_ETH_CURR_TX_DESC_PTR0)
- gp->tx_ring_dma) / sizeof(gt96100_td_t);
// Continue until we reach the current descriptor pointer
for (nextOut = gp->tx_next_out; nextOut != cdp;
nextOut = (nextOut + 1) % TX_RING_SIZE) {
if (--gp->intr_work_done == 0)
break;
td = &gp->tx_ring[nextOut];
cmdstat = dma32_to_cpu(td->cmdstat);
dbg(3, "%s: Tx desc cmdstat=%x, nextOut=%d\n", __FUNCTION__,
cmdstat, nextOut);
if (cmdstat & (u32)txOwn) {
/*
* DMA is not finished writing descriptor???
* Leave and come back later to pick-up where
* we left off.
*/
break;
}
// increment Tx error stats
if (cmdstat & (u32)txErrorSummary) {
dbg(2, "%s: Tx error, cmdstat = %x\n", __FUNCTION__,
cmdstat);
gp->stats.tx_errors++;
if (cmdstat & (u32)txReTxLimit)
gp->stats.tx_aborted_errors++;
if (cmdstat & (u32)txUnderrun)
gp->stats.tx_fifo_errors++;
if (cmdstat & (u32)txLateCollision)
gp->stats.tx_window_errors++;
}
if (cmdstat & (u32)txCollision)
gp->stats.collisions +=
(u32)((cmdstat & txReTxCntMask) >>
txReTxCntBit);
// Wake the queue if the ring was full
if (gp->tx_full) {
gp->tx_full = 0;
if (gp->last_psr & psrLink) {
netif_wake_queue(dev);
dbg(2, "%s: Tx Ring was full, queue waked\n",
__FUNCTION__);
}
}
// decrement tx ring buffer count
if (gp->tx_count) gp->tx_count--;
// free the skb
if (gp->tx_skbuff[nextOut]) {
dbg(3, "%s: good Tx, skb=%p\n", __FUNCTION__,
gp->tx_skbuff[nextOut]);
dev_kfree_skb_irq(gp->tx_skbuff[nextOut]);
gp->tx_skbuff[nextOut] = NULL;
} else {
err("%s: no skb!\n", __FUNCTION__);
}
}
gp->tx_next_out = nextOut;
if (gt96100_check_tx_consistent(gp)) {
err("%s: Tx queue inconsistent!\n", __FUNCTION__);
}
if ((status & icrTxEndLow) && gp->tx_count != 0) {
// we must restart the DMA
dbg(3, "%s: Restarting Tx DMA\n", __FUNCTION__);
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM,
sdcmrERD | sdcmrTXDL);
}
}
static irqreturn_t
gt96100_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *)dev_id;
struct gt96100_private *gp = netdev_priv(dev);
u32 status;
int handled = 0;
if (dev == NULL) {
err("%s: null dev ptr\n", __FUNCTION__);
return IRQ_NONE;
}
dbg(3, "%s: entry, icr=%x\n", __FUNCTION__,
GT96100ETH_READ(gp, GT96100_ETH_INT_CAUSE));
spin_lock(&gp->lock);
gp->intr_work_done = max_interrupt_work;
while (gp->intr_work_done > 0) {
status = GT96100ETH_READ(gp, GT96100_ETH_INT_CAUSE);
// ACK interrupts
GT96100ETH_WRITE(gp, GT96100_ETH_INT_CAUSE, ~status);
if ((status & icrEtherIntSum) == 0 &&
!(status & (icrTxBufferLow|icrTxBufferHigh|icrRxBuffer)))
break;
handled = 1;
if (status & icrMIIPhySTC) {
u32 psr = GT96100ETH_READ(gp, GT96100_ETH_PORT_STATUS);
if (gp->last_psr != psr) {
dbg(0, "port status:\n");
dbg(0, " %s MBit/s, %s-duplex, "
"flow-control %s, link is %s,\n",
psr & psrSpeed ? "100":"10",
psr & psrDuplex ? "full":"half",
psr & psrFctl ? "disabled":"enabled",
psr & psrLink ? "up":"down");
dbg(0, " TxLowQ is %s, TxHighQ is %s, "
"Transmitter is %s\n",
psr & psrTxLow ? "running":"stopped",
psr & psrTxHigh ? "running":"stopped",
psr & psrTxInProg ? "on":"off");
if ((psr & psrLink) && !gp->tx_full &&
netif_queue_stopped(dev)) {
dbg(0, "%s: Link up, waking queue.\n",
__FUNCTION__);
netif_wake_queue(dev);
} else if (!(psr & psrLink) &&
!netif_queue_stopped(dev)) {
dbg(0, "%s: Link down, stopping queue.\n",
__FUNCTION__);
netif_stop_queue(dev);
}
gp->last_psr = psr;
}
if (--gp->intr_work_done == 0)
break;
}
if (status & (icrTxBufferLow | icrTxEndLow))
gt96100_tx_complete(dev, status);
if (status & (icrRxBuffer | icrRxError)) {
gt96100_rx(dev, status);
}
// Now check TX errors (RX errors were handled in gt96100_rx)
if (status & icrTxErrorLow) {
err("%s: Tx resource error\n", __FUNCTION__);
if (--gp->intr_work_done == 0)
break;
}
if (status & icrTxUdr) {
err("%s: Tx underrun error\n", __FUNCTION__);
if (--gp->intr_work_done == 0)
break;
}
}
if (gp->intr_work_done == 0) {
// ACK any remaining pending interrupts
GT96100ETH_WRITE(gp, GT96100_ETH_INT_CAUSE, 0);
dbg(3, "%s: hit max work\n", __FUNCTION__);
}
dbg(3, "%s: exit, icr=%x\n", __FUNCTION__,
GT96100ETH_READ(gp, GT96100_ETH_INT_CAUSE));
spin_unlock(&gp->lock);
return IRQ_RETVAL(handled);
}
static void
gt96100_tx_timeout(struct net_device *dev)
{
struct gt96100_private *gp = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&gp->lock, flags);
if (!(gp->last_psr & psrLink)) {
err("tx_timeout: link down.\n");
spin_unlock_irqrestore(&gp->lock, flags);
} else {
if (gt96100_check_tx_consistent(gp))
err("tx_timeout: Tx ring error.\n");
disable_ether_irq(dev);
spin_unlock_irqrestore(&gp->lock, flags);
reset_tx(dev);
enable_ether_irq(dev);
netif_wake_queue(dev);
}
}
static void
gt96100_set_rx_mode(struct net_device *dev)
{
struct gt96100_private *gp = netdev_priv(dev);
unsigned long flags;
//struct dev_mc_list *mcptr;
dbg(3, "%s: dev=%p, flags=%x\n", __FUNCTION__, dev, dev->flags);
// stop the Receiver DMA
abort(dev, sdcmrAR);
spin_lock_irqsave(&gp->lock, flags);
if (dev->flags & IFF_PROMISC) {
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG,
pcrEN | pcrHS | pcrPM);
}
#if 0
/*
FIXME: currently multicast doesn't work - need to get hash table
working first.
*/
if (dev->mc_count) {
// clear hash table
memset(gp->hash_table, 0, RX_HASH_TABLE_SIZE);
// Add our ethernet address
gt96100_add_hash_entry(dev, dev->dev_addr);
for (mcptr = dev->mc_list; mcptr; mcptr = mcptr->next) {
dump_hw_addr(2, dev, "%s: addr=", __FUNCTION__,
mcptr->dmi_addr);
gt96100_add_hash_entry(dev, mcptr->dmi_addr);
}
}
#endif
// restart Rx DMA
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, sdcmrERD);
spin_unlock_irqrestore(&gp->lock, flags);
}
static struct net_device_stats *
gt96100_get_stats(struct net_device *dev)
{
struct gt96100_private *gp = netdev_priv(dev);
unsigned long flags;
dbg(3, "%s: dev=%p\n", __FUNCTION__, dev);
if (netif_device_present(dev)) {
spin_lock_irqsave (&gp->lock, flags);
update_stats(gp);
spin_unlock_irqrestore (&gp->lock, flags);
}
return &gp->stats;
}
static void gt96100_cleanup_module(void)
{
int i;
for (i=0; i<NUM_INTERFACES; i++) {
struct gt96100_if_t *gtif = &gt96100_iflist[i];
if (gtif->dev != NULL) {
struct gt96100_private *gp = (struct gt96100_private *)
netdev_priv(gtif->dev);
unregister_netdev(gtif->dev);
dmafree(RX_HASH_TABLE_SIZE, gp->hash_table_dma);
dmafree(PKT_BUF_SZ*RX_RING_SIZE, gp->rx_buff);
dmafree(sizeof(gt96100_rd_t) * RX_RING_SIZE
+ sizeof(gt96100_td_t) * TX_RING_SIZE,
gp->rx_ring);
free_netdev(gtif->dev);
release_region(gtif->iobase, gp->io_size);
}
}
}
static int __init gt96100_setup(char *options)
{
char *this_opt;
if (!options || !*options)
return 0;
while ((this_opt = strsep (&options, ",")) != NULL) {
if (!*this_opt)
continue;
if (!strncmp(this_opt, "mac0:", 5)) {
memcpy(mac0, this_opt+5, 17);
mac0[17]= '\0';
} else if (!strncmp(this_opt, "mac1:", 5)) {
memcpy(mac1, this_opt+5, 17);
mac1[17]= '\0';
}
}
return 1;
}
__setup("gt96100eth=", gt96100_setup);
module_init(gt96100_init_module);
module_exit(gt96100_cleanup_module);
MODULE_AUTHOR("Steve Longerbeam <stevel@mvista.com>");
MODULE_DESCRIPTION("GT96100 Ethernet driver");