| #ifndef _ASM_X86_CMPXCHG_32_H |
| #define _ASM_X86_CMPXCHG_32_H |
| |
| #include <linux/bitops.h> /* for LOCK_PREFIX */ |
| |
| /* |
| * Note: if you use set64_bit(), __cmpxchg64(), or their variants, you |
| * you need to test for the feature in boot_cpu_data. |
| */ |
| |
| extern void __xchg_wrong_size(void); |
| |
| /* |
| * Note: no "lock" prefix even on SMP: xchg always implies lock anyway. |
| * Since this is generally used to protect other memory information, we |
| * use "asm volatile" and "memory" clobbers to prevent gcc from moving |
| * information around. |
| */ |
| #define __xchg(x, ptr, size) \ |
| ({ \ |
| __typeof(*(ptr)) __x = (x); \ |
| switch (size) { \ |
| case 1: \ |
| { \ |
| volatile u8 *__ptr = (volatile u8 *)(ptr); \ |
| asm volatile("xchgb %0,%1" \ |
| : "=q" (__x), "+m" (*__ptr) \ |
| : "0" (__x) \ |
| : "memory"); \ |
| break; \ |
| } \ |
| case 2: \ |
| { \ |
| volatile u16 *__ptr = (volatile u16 *)(ptr); \ |
| asm volatile("xchgw %0,%1" \ |
| : "=r" (__x), "+m" (*__ptr) \ |
| : "0" (__x) \ |
| : "memory"); \ |
| break; \ |
| } \ |
| case 4: \ |
| { \ |
| volatile u32 *__ptr = (volatile u32 *)(ptr); \ |
| asm volatile("xchgl %0,%1" \ |
| : "=r" (__x), "+m" (*__ptr) \ |
| : "0" (__x) \ |
| : "memory"); \ |
| break; \ |
| } \ |
| default: \ |
| __xchg_wrong_size(); \ |
| } \ |
| __x; \ |
| }) |
| |
| #define xchg(ptr, v) \ |
| __xchg((v), (ptr), sizeof(*ptr)) |
| |
| /* |
| * CMPXCHG8B only writes to the target if we had the previous |
| * value in registers, otherwise it acts as a read and gives us the |
| * "new previous" value. That is why there is a loop. Preloading |
| * EDX:EAX is a performance optimization: in the common case it means |
| * we need only one locked operation. |
| * |
| * A SIMD/3DNOW!/MMX/FPU 64-bit store here would require at the very |
| * least an FPU save and/or %cr0.ts manipulation. |
| * |
| * cmpxchg8b must be used with the lock prefix here to allow the |
| * instruction to be executed atomically. We need to have the reader |
| * side to see the coherent 64bit value. |
| */ |
| static inline void set_64bit(volatile u64 *ptr, u64 value) |
| { |
| u32 low = value; |
| u32 high = value >> 32; |
| u64 prev = *ptr; |
| |
| asm volatile("\n1:\t" |
| LOCK_PREFIX "cmpxchg8b %0\n\t" |
| "jnz 1b" |
| : "=m" (*ptr), "+A" (prev) |
| : "b" (low), "c" (high) |
| : "memory"); |
| } |
| |
| extern void __cmpxchg_wrong_size(void); |
| |
| /* |
| * Atomic compare and exchange. Compare OLD with MEM, if identical, |
| * store NEW in MEM. Return the initial value in MEM. Success is |
| * indicated by comparing RETURN with OLD. |
| */ |
| #define __raw_cmpxchg(ptr, old, new, size, lock) \ |
| ({ \ |
| __typeof__(*(ptr)) __ret; \ |
| __typeof__(*(ptr)) __old = (old); \ |
| __typeof__(*(ptr)) __new = (new); \ |
| switch (size) { \ |
| case 1: \ |
| { \ |
| volatile u8 *__ptr = (volatile u8 *)(ptr); \ |
| asm volatile(lock "cmpxchgb %2,%1" \ |
| : "=a" (__ret), "+m" (*__ptr) \ |
| : "q" (__new), "0" (__old) \ |
| : "memory"); \ |
| break; \ |
| } \ |
| case 2: \ |
| { \ |
| volatile u16 *__ptr = (volatile u16 *)(ptr); \ |
| asm volatile(lock "cmpxchgw %2,%1" \ |
| : "=a" (__ret), "+m" (*__ptr) \ |
| : "r" (__new), "0" (__old) \ |
| : "memory"); \ |
| break; \ |
| } \ |
| case 4: \ |
| { \ |
| volatile u32 *__ptr = (volatile u32 *)(ptr); \ |
| asm volatile(lock "cmpxchgl %2,%1" \ |
| : "=a" (__ret), "+m" (*__ptr) \ |
| : "r" (__new), "0" (__old) \ |
| : "memory"); \ |
| break; \ |
| } \ |
| default: \ |
| __cmpxchg_wrong_size(); \ |
| } \ |
| __ret; \ |
| }) |
| |
| #define __cmpxchg(ptr, old, new, size) \ |
| __raw_cmpxchg((ptr), (old), (new), (size), LOCK_PREFIX) |
| |
| #define __sync_cmpxchg(ptr, old, new, size) \ |
| __raw_cmpxchg((ptr), (old), (new), (size), "lock; ") |
| |
| #define __cmpxchg_local(ptr, old, new, size) \ |
| __raw_cmpxchg((ptr), (old), (new), (size), "") |
| |
| #ifdef CONFIG_X86_CMPXCHG |
| #define __HAVE_ARCH_CMPXCHG 1 |
| |
| #define cmpxchg(ptr, old, new) \ |
| __cmpxchg((ptr), (old), (new), sizeof(*ptr)) |
| |
| #define sync_cmpxchg(ptr, old, new) \ |
| __sync_cmpxchg((ptr), (old), (new), sizeof(*ptr)) |
| |
| #define cmpxchg_local(ptr, old, new) \ |
| __cmpxchg_local((ptr), (old), (new), sizeof(*ptr)) |
| #endif |
| |
| #ifdef CONFIG_X86_CMPXCHG64 |
| #define cmpxchg64(ptr, o, n) \ |
| ((__typeof__(*(ptr)))__cmpxchg64((ptr), (unsigned long long)(o), \ |
| (unsigned long long)(n))) |
| #define cmpxchg64_local(ptr, o, n) \ |
| ((__typeof__(*(ptr)))__cmpxchg64_local((ptr), (unsigned long long)(o), \ |
| (unsigned long long)(n))) |
| #endif |
| |
| static inline u64 __cmpxchg64(volatile u64 *ptr, u64 old, u64 new) |
| { |
| u64 prev; |
| asm volatile(LOCK_PREFIX "cmpxchg8b %1" |
| : "=A" (prev), |
| "+m" (*ptr) |
| : "b" ((u32)new), |
| "c" ((u32)(new >> 32)), |
| "0" (old) |
| : "memory"); |
| return prev; |
| } |
| |
| static inline u64 __cmpxchg64_local(volatile u64 *ptr, u64 old, u64 new) |
| { |
| u64 prev; |
| asm volatile("cmpxchg8b %1" |
| : "=A" (prev), |
| "+m" (*ptr) |
| : "b" ((u32)new), |
| "c" ((u32)(new >> 32)), |
| "0" (old) |
| : "memory"); |
| return prev; |
| } |
| |
| #ifndef CONFIG_X86_CMPXCHG |
| /* |
| * Building a kernel capable running on 80386. It may be necessary to |
| * simulate the cmpxchg on the 80386 CPU. For that purpose we define |
| * a function for each of the sizes we support. |
| */ |
| |
| extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8); |
| extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16); |
| extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32); |
| |
| static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old, |
| unsigned long new, int size) |
| { |
| switch (size) { |
| case 1: |
| return cmpxchg_386_u8(ptr, old, new); |
| case 2: |
| return cmpxchg_386_u16(ptr, old, new); |
| case 4: |
| return cmpxchg_386_u32(ptr, old, new); |
| } |
| return old; |
| } |
| |
| #define cmpxchg(ptr, o, n) \ |
| ({ \ |
| __typeof__(*(ptr)) __ret; \ |
| if (likely(boot_cpu_data.x86 > 3)) \ |
| __ret = (__typeof__(*(ptr)))__cmpxchg((ptr), \ |
| (unsigned long)(o), (unsigned long)(n), \ |
| sizeof(*(ptr))); \ |
| else \ |
| __ret = (__typeof__(*(ptr)))cmpxchg_386((ptr), \ |
| (unsigned long)(o), (unsigned long)(n), \ |
| sizeof(*(ptr))); \ |
| __ret; \ |
| }) |
| #define cmpxchg_local(ptr, o, n) \ |
| ({ \ |
| __typeof__(*(ptr)) __ret; \ |
| if (likely(boot_cpu_data.x86 > 3)) \ |
| __ret = (__typeof__(*(ptr)))__cmpxchg_local((ptr), \ |
| (unsigned long)(o), (unsigned long)(n), \ |
| sizeof(*(ptr))); \ |
| else \ |
| __ret = (__typeof__(*(ptr)))cmpxchg_386((ptr), \ |
| (unsigned long)(o), (unsigned long)(n), \ |
| sizeof(*(ptr))); \ |
| __ret; \ |
| }) |
| #endif |
| |
| #ifndef CONFIG_X86_CMPXCHG64 |
| /* |
| * Building a kernel capable running on 80386 and 80486. It may be necessary |
| * to simulate the cmpxchg8b on the 80386 and 80486 CPU. |
| */ |
| |
| #define cmpxchg64(ptr, o, n) \ |
| ({ \ |
| __typeof__(*(ptr)) __ret; \ |
| __typeof__(*(ptr)) __old = (o); \ |
| __typeof__(*(ptr)) __new = (n); \ |
| alternative_io(LOCK_PREFIX_HERE \ |
| "call cmpxchg8b_emu", \ |
| "lock; cmpxchg8b (%%esi)" , \ |
| X86_FEATURE_CX8, \ |
| "=A" (__ret), \ |
| "S" ((ptr)), "0" (__old), \ |
| "b" ((unsigned int)__new), \ |
| "c" ((unsigned int)(__new>>32)) \ |
| : "memory"); \ |
| __ret; }) |
| |
| |
| #define cmpxchg64_local(ptr, o, n) \ |
| ({ \ |
| __typeof__(*(ptr)) __ret; \ |
| __typeof__(*(ptr)) __old = (o); \ |
| __typeof__(*(ptr)) __new = (n); \ |
| alternative_io("call cmpxchg8b_emu", \ |
| "cmpxchg8b (%%esi)" , \ |
| X86_FEATURE_CX8, \ |
| "=A" (__ret), \ |
| "S" ((ptr)), "0" (__old), \ |
| "b" ((unsigned int)__new), \ |
| "c" ((unsigned int)(__new>>32)) \ |
| : "memory"); \ |
| __ret; }) |
| |
| #endif |
| |
| #endif /* _ASM_X86_CMPXCHG_32_H */ |