| #ifndef _ASM_X86_IRQ_VECTORS_H |
| #define _ASM_X86_IRQ_VECTORS_H |
| |
| /* |
| * Linux IRQ vector layout. |
| * |
| * There are 256 IDT entries (per CPU - each entry is 8 bytes) which can |
| * be defined by Linux. They are used as a jump table by the CPU when a |
| * given vector is triggered - by a CPU-external, CPU-internal or |
| * software-triggered event. |
| * |
| * Linux sets the kernel code address each entry jumps to early during |
| * bootup, and never changes them. This is the general layout of the |
| * IDT entries: |
| * |
| * Vectors 0 ... 31 : system traps and exceptions - hardcoded events |
| * Vectors 32 ... 127 : device interrupts |
| * Vector 128 : legacy int80 syscall interface |
| * Vectors 129 ... 237 : device interrupts |
| * Vectors 238 ... 255 : special interrupts |
| * |
| * 64-bit x86 has per CPU IDT tables, 32-bit has one shared IDT table. |
| * |
| * This file enumerates the exact layout of them: |
| */ |
| |
| #define NMI_VECTOR 0x02 |
| #define MCE_VECTOR 0x12 |
| |
| /* |
| * IDT vectors usable for external interrupt sources start at 0x20. |
| * (0x80 is the syscall vector, 0x30-0x3f are for ISA) |
| */ |
| #define FIRST_EXTERNAL_VECTOR 0x20 |
| /* |
| * We start allocating at 0x21 to spread out vectors evenly between |
| * priority levels. (0x80 is the syscall vector) |
| */ |
| #define VECTOR_OFFSET_START 1 |
| |
| /* |
| * Reserve the lowest usable vector (and hence lowest priority) 0x20 for |
| * triggering cleanup after irq migration. 0x21-0x2f will still be used |
| * for device interrupts. |
| */ |
| #define IRQ_MOVE_CLEANUP_VECTOR FIRST_EXTERNAL_VECTOR |
| |
| #define IA32_SYSCALL_VECTOR 0x80 |
| #ifdef CONFIG_X86_32 |
| # define SYSCALL_VECTOR 0x80 |
| #endif |
| |
| /* |
| * Vectors 0x30-0x3f are used for ISA interrupts. |
| * round up to the next 16-vector boundary |
| */ |
| #define IRQ0_VECTOR ((FIRST_EXTERNAL_VECTOR + 16) & ~15) |
| |
| #define IRQ1_VECTOR (IRQ0_VECTOR + 1) |
| #define IRQ2_VECTOR (IRQ0_VECTOR + 2) |
| #define IRQ3_VECTOR (IRQ0_VECTOR + 3) |
| #define IRQ4_VECTOR (IRQ0_VECTOR + 4) |
| #define IRQ5_VECTOR (IRQ0_VECTOR + 5) |
| #define IRQ6_VECTOR (IRQ0_VECTOR + 6) |
| #define IRQ7_VECTOR (IRQ0_VECTOR + 7) |
| #define IRQ8_VECTOR (IRQ0_VECTOR + 8) |
| #define IRQ9_VECTOR (IRQ0_VECTOR + 9) |
| #define IRQ10_VECTOR (IRQ0_VECTOR + 10) |
| #define IRQ11_VECTOR (IRQ0_VECTOR + 11) |
| #define IRQ12_VECTOR (IRQ0_VECTOR + 12) |
| #define IRQ13_VECTOR (IRQ0_VECTOR + 13) |
| #define IRQ14_VECTOR (IRQ0_VECTOR + 14) |
| #define IRQ15_VECTOR (IRQ0_VECTOR + 15) |
| |
| /* |
| * Special IRQ vectors used by the SMP architecture, 0xf0-0xff |
| * |
| * some of the following vectors are 'rare', they are merged |
| * into a single vector (CALL_FUNCTION_VECTOR) to save vector space. |
| * TLB, reschedule and local APIC vectors are performance-critical. |
| */ |
| |
| #define SPURIOUS_APIC_VECTOR 0xff |
| /* |
| * Sanity check |
| */ |
| #if ((SPURIOUS_APIC_VECTOR & 0x0F) != 0x0F) |
| # error SPURIOUS_APIC_VECTOR definition error |
| #endif |
| |
| #define ERROR_APIC_VECTOR 0xfe |
| #define RESCHEDULE_VECTOR 0xfd |
| #define CALL_FUNCTION_VECTOR 0xfc |
| #define CALL_FUNCTION_SINGLE_VECTOR 0xfb |
| #define THERMAL_APIC_VECTOR 0xfa |
| #define THRESHOLD_APIC_VECTOR 0xf9 |
| #define REBOOT_VECTOR 0xf8 |
| |
| /* f0-f7 used for spreading out TLB flushes: */ |
| #define INVALIDATE_TLB_VECTOR_END 0xf7 |
| #define INVALIDATE_TLB_VECTOR_START 0xf0 |
| #define NUM_INVALIDATE_TLB_VECTORS 8 |
| |
| /* |
| * Local APIC timer IRQ vector is on a different priority level, |
| * to work around the 'lost local interrupt if more than 2 IRQ |
| * sources per level' errata. |
| */ |
| #define LOCAL_TIMER_VECTOR 0xef |
| |
| /* |
| * Generic system vector for platform specific use |
| */ |
| #define X86_PLATFORM_IPI_VECTOR 0xed |
| |
| /* |
| * Performance monitoring pending work vector: |
| */ |
| #define LOCAL_PENDING_VECTOR 0xec |
| |
| #define UV_BAU_MESSAGE 0xea |
| |
| /* |
| * Self IPI vector for machine checks |
| */ |
| #define MCE_SELF_VECTOR 0xeb |
| |
| /* Xen vector callback to receive events in a HVM domain */ |
| #define XEN_HVM_EVTCHN_CALLBACK 0xe9 |
| |
| #define NR_VECTORS 256 |
| |
| #define FPU_IRQ 13 |
| |
| #define FIRST_VM86_IRQ 3 |
| #define LAST_VM86_IRQ 15 |
| |
| #ifndef __ASSEMBLY__ |
| static inline int invalid_vm86_irq(int irq) |
| { |
| return irq < FIRST_VM86_IRQ || irq > LAST_VM86_IRQ; |
| } |
| #endif |
| |
| /* |
| * Size the maximum number of interrupts. |
| * |
| * If the irq_desc[] array has a sparse layout, we can size things |
| * generously - it scales up linearly with the maximum number of CPUs, |
| * and the maximum number of IO-APICs, whichever is higher. |
| * |
| * In other cases we size more conservatively, to not create too large |
| * static arrays. |
| */ |
| |
| #define NR_IRQS_LEGACY 16 |
| |
| #define IO_APIC_VECTOR_LIMIT ( 32 * MAX_IO_APICS ) |
| |
| #ifdef CONFIG_X86_IO_APIC |
| # ifdef CONFIG_SPARSE_IRQ |
| # define CPU_VECTOR_LIMIT (64 * NR_CPUS) |
| # define NR_IRQS \ |
| (CPU_VECTOR_LIMIT > IO_APIC_VECTOR_LIMIT ? \ |
| (NR_VECTORS + CPU_VECTOR_LIMIT) : \ |
| (NR_VECTORS + IO_APIC_VECTOR_LIMIT)) |
| # else |
| # define CPU_VECTOR_LIMIT (32 * NR_CPUS) |
| # define NR_IRQS \ |
| (CPU_VECTOR_LIMIT < IO_APIC_VECTOR_LIMIT ? \ |
| (NR_VECTORS + CPU_VECTOR_LIMIT) : \ |
| (NR_VECTORS + IO_APIC_VECTOR_LIMIT)) |
| # endif |
| #else /* !CONFIG_X86_IO_APIC: */ |
| # define NR_IRQS NR_IRQS_LEGACY |
| #endif |
| |
| #endif /* _ASM_X86_IRQ_VECTORS_H */ |