blob: b30e41c0c0335cf2ab79e716c9c41c0ebced18e8 [file] [log] [blame]
/*
* Contains common pci routines for ALL ppc platform
* (based on pci_32.c and pci_64.c)
*
* Port for PPC64 David Engebretsen, IBM Corp.
* Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
*
* Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
* Rework, based on alpha PCI code.
*
* Common pmac/prep/chrp pci routines. -- Cort
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mm.h>
#include <linux/list.h>
#include <linux/syscalls.h>
#include <linux/irq.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_pci.h>
#include <linux/export.h>
#include <asm/processor.h>
#include <linux/io.h>
#include <asm/pci-bridge.h>
#include <asm/byteorder.h>
static DEFINE_SPINLOCK(hose_spinlock);
LIST_HEAD(hose_list);
/* XXX kill that some day ... */
static int global_phb_number; /* Global phb counter */
/* ISA Memory physical address */
resource_size_t isa_mem_base;
unsigned long isa_io_base;
static int pci_bus_count;
struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
{
struct pci_controller *phb;
phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
if (!phb)
return NULL;
spin_lock(&hose_spinlock);
phb->global_number = global_phb_number++;
list_add_tail(&phb->list_node, &hose_list);
spin_unlock(&hose_spinlock);
phb->dn = dev;
phb->is_dynamic = mem_init_done;
return phb;
}
void pcibios_free_controller(struct pci_controller *phb)
{
spin_lock(&hose_spinlock);
list_del(&phb->list_node);
spin_unlock(&hose_spinlock);
if (phb->is_dynamic)
kfree(phb);
}
static resource_size_t pcibios_io_size(const struct pci_controller *hose)
{
return resource_size(&hose->io_resource);
}
int pcibios_vaddr_is_ioport(void __iomem *address)
{
int ret = 0;
struct pci_controller *hose;
resource_size_t size;
spin_lock(&hose_spinlock);
list_for_each_entry(hose, &hose_list, list_node) {
size = pcibios_io_size(hose);
if (address >= hose->io_base_virt &&
address < (hose->io_base_virt + size)) {
ret = 1;
break;
}
}
spin_unlock(&hose_spinlock);
return ret;
}
unsigned long pci_address_to_pio(phys_addr_t address)
{
struct pci_controller *hose;
resource_size_t size;
unsigned long ret = ~0;
spin_lock(&hose_spinlock);
list_for_each_entry(hose, &hose_list, list_node) {
size = pcibios_io_size(hose);
if (address >= hose->io_base_phys &&
address < (hose->io_base_phys + size)) {
unsigned long base =
(unsigned long)hose->io_base_virt - _IO_BASE;
ret = base + (address - hose->io_base_phys);
break;
}
}
spin_unlock(&hose_spinlock);
return ret;
}
EXPORT_SYMBOL_GPL(pci_address_to_pio);
/*
* Return the domain number for this bus.
*/
int pci_domain_nr(struct pci_bus *bus)
{
struct pci_controller *hose = pci_bus_to_host(bus);
return hose->global_number;
}
EXPORT_SYMBOL(pci_domain_nr);
/* This routine is meant to be used early during boot, when the
* PCI bus numbers have not yet been assigned, and you need to
* issue PCI config cycles to an OF device.
* It could also be used to "fix" RTAS config cycles if you want
* to set pci_assign_all_buses to 1 and still use RTAS for PCI
* config cycles.
*/
struct pci_controller *pci_find_hose_for_OF_device(struct device_node *node)
{
while (node) {
struct pci_controller *hose, *tmp;
list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
if (hose->dn == node)
return hose;
node = node->parent;
}
return NULL;
}
void pcibios_set_master(struct pci_dev *dev)
{
/* No special bus mastering setup handling */
}
/*
* Platform support for /proc/bus/pci/X/Y mmap()s,
* modelled on the sparc64 implementation by Dave Miller.
* -- paulus.
*/
/*
* Adjust vm_pgoff of VMA such that it is the physical page offset
* corresponding to the 32-bit pci bus offset for DEV requested by the user.
*
* Basically, the user finds the base address for his device which he wishes
* to mmap. They read the 32-bit value from the config space base register,
* add whatever PAGE_SIZE multiple offset they wish, and feed this into the
* offset parameter of mmap on /proc/bus/pci/XXX for that device.
*
* Returns negative error code on failure, zero on success.
*/
static struct resource *__pci_mmap_make_offset(struct pci_dev *dev,
resource_size_t *offset,
enum pci_mmap_state mmap_state)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
unsigned long io_offset = 0;
int i, res_bit;
if (!hose)
return NULL; /* should never happen */
/* If memory, add on the PCI bridge address offset */
if (mmap_state == pci_mmap_mem) {
#if 0 /* See comment in pci_resource_to_user() for why this is disabled */
*offset += hose->pci_mem_offset;
#endif
res_bit = IORESOURCE_MEM;
} else {
io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
*offset += io_offset;
res_bit = IORESOURCE_IO;
}
/*
* Check that the offset requested corresponds to one of the
* resources of the device.
*/
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
struct resource *rp = &dev->resource[i];
int flags = rp->flags;
/* treat ROM as memory (should be already) */
if (i == PCI_ROM_RESOURCE)
flags |= IORESOURCE_MEM;
/* Active and same type? */
if ((flags & res_bit) == 0)
continue;
/* In the range of this resource? */
if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end)
continue;
/* found it! construct the final physical address */
if (mmap_state == pci_mmap_io)
*offset += hose->io_base_phys - io_offset;
return rp;
}
return NULL;
}
/*
* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
* device mapping.
*/
static pgprot_t __pci_mmap_set_pgprot(struct pci_dev *dev, struct resource *rp,
pgprot_t protection,
enum pci_mmap_state mmap_state,
int write_combine)
{
pgprot_t prot = protection;
/* Write combine is always 0 on non-memory space mappings. On
* memory space, if the user didn't pass 1, we check for a
* "prefetchable" resource. This is a bit hackish, but we use
* this to workaround the inability of /sysfs to provide a write
* combine bit
*/
if (mmap_state != pci_mmap_mem)
write_combine = 0;
else if (write_combine == 0) {
if (rp->flags & IORESOURCE_PREFETCH)
write_combine = 1;
}
return pgprot_noncached(prot);
}
/*
* This one is used by /dev/mem and fbdev who have no clue about the
* PCI device, it tries to find the PCI device first and calls the
* above routine
*/
pgprot_t pci_phys_mem_access_prot(struct file *file,
unsigned long pfn,
unsigned long size,
pgprot_t prot)
{
struct pci_dev *pdev = NULL;
struct resource *found = NULL;
resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
int i;
if (page_is_ram(pfn))
return prot;
prot = pgprot_noncached(prot);
for_each_pci_dev(pdev) {
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
struct resource *rp = &pdev->resource[i];
int flags = rp->flags;
/* Active and same type? */
if ((flags & IORESOURCE_MEM) == 0)
continue;
/* In the range of this resource? */
if (offset < (rp->start & PAGE_MASK) ||
offset > rp->end)
continue;
found = rp;
break;
}
if (found)
break;
}
if (found) {
if (found->flags & IORESOURCE_PREFETCH)
prot = pgprot_noncached_wc(prot);
pci_dev_put(pdev);
}
pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
(unsigned long long)offset, pgprot_val(prot));
return prot;
}
/*
* Perform the actual remap of the pages for a PCI device mapping, as
* appropriate for this architecture. The region in the process to map
* is described by vm_start and vm_end members of VMA, the base physical
* address is found in vm_pgoff.
* The pci device structure is provided so that architectures may make mapping
* decisions on a per-device or per-bus basis.
*
* Returns a negative error code on failure, zero on success.
*/
int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state, int write_combine)
{
resource_size_t offset =
((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
struct resource *rp;
int ret;
rp = __pci_mmap_make_offset(dev, &offset, mmap_state);
if (rp == NULL)
return -EINVAL;
vma->vm_pgoff = offset >> PAGE_SHIFT;
vma->vm_page_prot = __pci_mmap_set_pgprot(dev, rp,
vma->vm_page_prot,
mmap_state, write_combine);
ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
vma->vm_end - vma->vm_start, vma->vm_page_prot);
return ret;
}
/* This provides legacy IO read access on a bus */
int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
{
unsigned long offset;
struct pci_controller *hose = pci_bus_to_host(bus);
struct resource *rp = &hose->io_resource;
void __iomem *addr;
/* Check if port can be supported by that bus. We only check
* the ranges of the PHB though, not the bus itself as the rules
* for forwarding legacy cycles down bridges are not our problem
* here. So if the host bridge supports it, we do it.
*/
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
offset += port;
if (!(rp->flags & IORESOURCE_IO))
return -ENXIO;
if (offset < rp->start || (offset + size) > rp->end)
return -ENXIO;
addr = hose->io_base_virt + port;
switch (size) {
case 1:
*((u8 *)val) = in_8(addr);
return 1;
case 2:
if (port & 1)
return -EINVAL;
*((u16 *)val) = in_le16(addr);
return 2;
case 4:
if (port & 3)
return -EINVAL;
*((u32 *)val) = in_le32(addr);
return 4;
}
return -EINVAL;
}
/* This provides legacy IO write access on a bus */
int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
{
unsigned long offset;
struct pci_controller *hose = pci_bus_to_host(bus);
struct resource *rp = &hose->io_resource;
void __iomem *addr;
/* Check if port can be supported by that bus. We only check
* the ranges of the PHB though, not the bus itself as the rules
* for forwarding legacy cycles down bridges are not our problem
* here. So if the host bridge supports it, we do it.
*/
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
offset += port;
if (!(rp->flags & IORESOURCE_IO))
return -ENXIO;
if (offset < rp->start || (offset + size) > rp->end)
return -ENXIO;
addr = hose->io_base_virt + port;
/* WARNING: The generic code is idiotic. It gets passed a pointer
* to what can be a 1, 2 or 4 byte quantity and always reads that
* as a u32, which means that we have to correct the location of
* the data read within those 32 bits for size 1 and 2
*/
switch (size) {
case 1:
out_8(addr, val >> 24);
return 1;
case 2:
if (port & 1)
return -EINVAL;
out_le16(addr, val >> 16);
return 2;
case 4:
if (port & 3)
return -EINVAL;
out_le32(addr, val);
return 4;
}
return -EINVAL;
}
/* This provides legacy IO or memory mmap access on a bus */
int pci_mmap_legacy_page_range(struct pci_bus *bus,
struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
struct pci_controller *hose = pci_bus_to_host(bus);
resource_size_t offset =
((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
resource_size_t size = vma->vm_end - vma->vm_start;
struct resource *rp;
pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
pci_domain_nr(bus), bus->number,
mmap_state == pci_mmap_mem ? "MEM" : "IO",
(unsigned long long)offset,
(unsigned long long)(offset + size - 1));
if (mmap_state == pci_mmap_mem) {
/* Hack alert !
*
* Because X is lame and can fail starting if it gets an error
* trying to mmap legacy_mem (instead of just moving on without
* legacy memory access) we fake it here by giving it anonymous
* memory, effectively behaving just like /dev/zero
*/
if ((offset + size) > hose->isa_mem_size) {
#ifdef CONFIG_MMU
pr_debug("Process %s (pid:%d) mapped non-existing PCI",
current->comm, current->pid);
pr_debug("legacy memory for 0%04x:%02x\n",
pci_domain_nr(bus), bus->number);
#endif
if (vma->vm_flags & VM_SHARED)
return shmem_zero_setup(vma);
return 0;
}
offset += hose->isa_mem_phys;
} else {
unsigned long io_offset = (unsigned long)hose->io_base_virt -
_IO_BASE;
unsigned long roffset = offset + io_offset;
rp = &hose->io_resource;
if (!(rp->flags & IORESOURCE_IO))
return -ENXIO;
if (roffset < rp->start || (roffset + size) > rp->end)
return -ENXIO;
offset += hose->io_base_phys;
}
pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
vma->vm_pgoff = offset >> PAGE_SHIFT;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
}
void pci_resource_to_user(const struct pci_dev *dev, int bar,
const struct resource *rsrc,
resource_size_t *start, resource_size_t *end)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
resource_size_t offset = 0;
if (hose == NULL)
return;
if (rsrc->flags & IORESOURCE_IO)
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
/* We pass a fully fixed up address to userland for MMIO instead of
* a BAR value because X is lame and expects to be able to use that
* to pass to /dev/mem !
*
* That means that we'll have potentially 64 bits values where some
* userland apps only expect 32 (like X itself since it thinks only
* Sparc has 64 bits MMIO) but if we don't do that, we break it on
* 32 bits CHRPs :-(
*
* Hopefully, the sysfs insterface is immune to that gunk. Once X
* has been fixed (and the fix spread enough), we can re-enable the
* 2 lines below and pass down a BAR value to userland. In that case
* we'll also have to re-enable the matching code in
* __pci_mmap_make_offset().
*
* BenH.
*/
#if 0
else if (rsrc->flags & IORESOURCE_MEM)
offset = hose->pci_mem_offset;
#endif
*start = rsrc->start - offset;
*end = rsrc->end - offset;
}
/**
* pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
* @hose: newly allocated pci_controller to be setup
* @dev: device node of the host bridge
* @primary: set if primary bus (32 bits only, soon to be deprecated)
*
* This function will parse the "ranges" property of a PCI host bridge device
* node and setup the resource mapping of a pci controller based on its
* content.
*
* Life would be boring if it wasn't for a few issues that we have to deal
* with here:
*
* - We can only cope with one IO space range and up to 3 Memory space
* ranges. However, some machines (thanks Apple !) tend to split their
* space into lots of small contiguous ranges. So we have to coalesce.
*
* - We can only cope with all memory ranges having the same offset
* between CPU addresses and PCI addresses. Unfortunately, some bridges
* are setup for a large 1:1 mapping along with a small "window" which
* maps PCI address 0 to some arbitrary high address of the CPU space in
* order to give access to the ISA memory hole.
* The way out of here that I've chosen for now is to always set the
* offset based on the first resource found, then override it if we
* have a different offset and the previous was set by an ISA hole.
*
* - Some busses have IO space not starting at 0, which causes trouble with
* the way we do our IO resource renumbering. The code somewhat deals with
* it for 64 bits but I would expect problems on 32 bits.
*
* - Some 32 bits platforms such as 4xx can have physical space larger than
* 32 bits so we need to use 64 bits values for the parsing
*/
void pci_process_bridge_OF_ranges(struct pci_controller *hose,
struct device_node *dev, int primary)
{
int memno = 0, isa_hole = -1;
unsigned long long isa_mb = 0;
struct resource *res;
struct of_pci_range range;
struct of_pci_range_parser parser;
pr_info("PCI host bridge %s %s ranges:\n",
dev->full_name, primary ? "(primary)" : "");
/* Check for ranges property */
if (of_pci_range_parser_init(&parser, dev))
return;
pr_debug("Parsing ranges property...\n");
for_each_of_pci_range(&parser, &range) {
/* Read next ranges element */
pr_debug("pci_space: 0x%08x pci_addr:0x%016llx ",
range.pci_space, range.pci_addr);
pr_debug("cpu_addr:0x%016llx size:0x%016llx\n",
range.cpu_addr, range.size);
/* If we failed translation or got a zero-sized region
* (some FW try to feed us with non sensical zero sized regions
* such as power3 which look like some kind of attempt
* at exposing the VGA memory hole)
*/
if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
continue;
/* Act based on address space type */
res = NULL;
switch (range.flags & IORESOURCE_TYPE_BITS) {
case IORESOURCE_IO:
pr_info(" IO 0x%016llx..0x%016llx -> 0x%016llx\n",
range.cpu_addr, range.cpu_addr + range.size - 1,
range.pci_addr);
/* We support only one IO range */
if (hose->pci_io_size) {
pr_info(" \\--> Skipped (too many) !\n");
continue;
}
/* On 32 bits, limit I/O space to 16MB */
if (range.size > 0x01000000)
range.size = 0x01000000;
/* 32 bits needs to map IOs here */
hose->io_base_virt = ioremap(range.cpu_addr,
range.size);
/* Expect trouble if pci_addr is not 0 */
if (primary)
isa_io_base =
(unsigned long)hose->io_base_virt;
/* pci_io_size and io_base_phys always represent IO
* space starting at 0 so we factor in pci_addr
*/
hose->pci_io_size = range.pci_addr + range.size;
hose->io_base_phys = range.cpu_addr - range.pci_addr;
/* Build resource */
res = &hose->io_resource;
range.cpu_addr = range.pci_addr;
break;
case IORESOURCE_MEM:
pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
range.cpu_addr, range.cpu_addr + range.size - 1,
range.pci_addr,
(range.pci_space & 0x40000000) ?
"Prefetch" : "");
/* We support only 3 memory ranges */
if (memno >= 3) {
pr_info(" \\--> Skipped (too many) !\n");
continue;
}
/* Handles ISA memory hole space here */
if (range.pci_addr == 0) {
isa_mb = range.cpu_addr;
isa_hole = memno;
if (primary || isa_mem_base == 0)
isa_mem_base = range.cpu_addr;
hose->isa_mem_phys = range.cpu_addr;
hose->isa_mem_size = range.size;
}
/* We get the PCI/Mem offset from the first range or
* the, current one if the offset came from an ISA
* hole. If they don't match, bugger.
*/
if (memno == 0 ||
(isa_hole >= 0 && range.pci_addr != 0 &&
hose->pci_mem_offset == isa_mb))
hose->pci_mem_offset = range.cpu_addr -
range.pci_addr;
else if (range.pci_addr != 0 &&
hose->pci_mem_offset != range.cpu_addr -
range.pci_addr) {
pr_info(" \\--> Skipped (offset mismatch) !\n");
continue;
}
/* Build resource */
res = &hose->mem_resources[memno++];
break;
}
if (res != NULL) {
res->name = dev->full_name;
res->flags = range.flags;
res->start = range.cpu_addr;
res->end = range.cpu_addr + range.size - 1;
res->parent = res->child = res->sibling = NULL;
}
}
/* If there's an ISA hole and the pci_mem_offset is -not- matching
* the ISA hole offset, then we need to remove the ISA hole from
* the resource list for that brige
*/
if (isa_hole >= 0 && hose->pci_mem_offset != isa_mb) {
unsigned int next = isa_hole + 1;
pr_info(" Removing ISA hole at 0x%016llx\n", isa_mb);
if (next < memno)
memmove(&hose->mem_resources[isa_hole],
&hose->mem_resources[next],
sizeof(struct resource) * (memno - next));
hose->mem_resources[--memno].flags = 0;
}
}
/* Decide whether to display the domain number in /proc */
int pci_proc_domain(struct pci_bus *bus)
{
return 0;
}
/* This header fixup will do the resource fixup for all devices as they are
* probed, but not for bridge ranges
*/
static void pcibios_fixup_resources(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
int i;
if (!hose) {
pr_err("No host bridge for PCI dev %s !\n",
pci_name(dev));
return;
}
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
struct resource *res = dev->resource + i;
if (!res->flags)
continue;
if (res->start == 0) {
pr_debug("PCI:%s Resource %d %016llx-%016llx [%x]",
pci_name(dev), i,
(unsigned long long)res->start,
(unsigned long long)res->end,
(unsigned int)res->flags);
pr_debug("is unassigned\n");
res->end -= res->start;
res->start = 0;
res->flags |= IORESOURCE_UNSET;
continue;
}
pr_debug("PCI:%s Resource %d %016llx-%016llx [%x]\n",
pci_name(dev), i,
(unsigned long long)res->start,
(unsigned long long)res->end,
(unsigned int)res->flags);
}
}
DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
/* This function tries to figure out if a bridge resource has been initialized
* by the firmware or not. It doesn't have to be absolutely bullet proof, but
* things go more smoothly when it gets it right. It should covers cases such
* as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
*/
static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
struct resource *res)
{
struct pci_controller *hose = pci_bus_to_host(bus);
struct pci_dev *dev = bus->self;
resource_size_t offset;
u16 command;
int i;
/* Job is a bit different between memory and IO */
if (res->flags & IORESOURCE_MEM) {
/* If the BAR is non-0 (res != pci_mem_offset) then it's
* probably been initialized by somebody
*/
if (res->start != hose->pci_mem_offset)
return 0;
/* The BAR is 0, let's check if memory decoding is enabled on
* the bridge. If not, we consider it unassigned
*/
pci_read_config_word(dev, PCI_COMMAND, &command);
if ((command & PCI_COMMAND_MEMORY) == 0)
return 1;
/* Memory decoding is enabled and the BAR is 0. If any of
* the bridge resources covers that starting address (0 then
* it's good enough for us for memory
*/
for (i = 0; i < 3; i++) {
if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
hose->mem_resources[i].start == hose->pci_mem_offset)
return 0;
}
/* Well, it starts at 0 and we know it will collide so we may as
* well consider it as unassigned. That covers the Apple case.
*/
return 1;
} else {
/* If the BAR is non-0, then we consider it assigned */
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
if (((res->start - offset) & 0xfffffffful) != 0)
return 0;
/* Here, we are a bit different than memory as typically IO
* space starting at low addresses -is- valid. What we do
* instead if that we consider as unassigned anything that
* doesn't have IO enabled in the PCI command register,
* and that's it.
*/
pci_read_config_word(dev, PCI_COMMAND, &command);
if (command & PCI_COMMAND_IO)
return 0;
/* It's starting at 0 and IO is disabled in the bridge, consider
* it unassigned
*/
return 1;
}
}
/* Fixup resources of a PCI<->PCI bridge */
static void pcibios_fixup_bridge(struct pci_bus *bus)
{
struct resource *res;
int i;
struct pci_dev *dev = bus->self;
pci_bus_for_each_resource(bus, res, i) {
if (!res)
continue;
if (!res->flags)
continue;
if (i >= 3 && bus->self->transparent)
continue;
pr_debug("PCI:%s Bus rsrc %d %016llx-%016llx [%x] fixup...\n",
pci_name(dev), i,
(unsigned long long)res->start,
(unsigned long long)res->end,
(unsigned int)res->flags);
/* Try to detect uninitialized P2P bridge resources,
* and clear them out so they get re-assigned later
*/
if (pcibios_uninitialized_bridge_resource(bus, res)) {
res->flags = 0;
pr_debug("PCI:%s (unassigned)\n",
pci_name(dev));
} else {
pr_debug("PCI:%s %016llx-%016llx\n",
pci_name(dev),
(unsigned long long)res->start,
(unsigned long long)res->end);
}
}
}
void pcibios_setup_bus_self(struct pci_bus *bus)
{
/* Fix up the bus resources for P2P bridges */
if (bus->self != NULL)
pcibios_fixup_bridge(bus);
}
void pcibios_setup_bus_devices(struct pci_bus *bus)
{
struct pci_dev *dev;
pr_debug("PCI: Fixup bus devices %d (%s)\n",
bus->number, bus->self ? pci_name(bus->self) : "PHB");
list_for_each_entry(dev, &bus->devices, bus_list) {
/* Setup OF node pointer in archdata */
dev->dev.of_node = pci_device_to_OF_node(dev);
/* Fixup NUMA node as it may not be setup yet by the generic
* code and is needed by the DMA init
*/
set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
/* Read default IRQs and fixup if necessary */
dev->irq = of_irq_parse_and_map_pci(dev, 0, 0);
}
}
void pcibios_fixup_bus(struct pci_bus *bus)
{
/* When called from the generic PCI probe, read PCI<->PCI bridge
* bases. This is -not- called when generating the PCI tree from
* the OF device-tree.
*/
if (bus->self != NULL)
pci_read_bridge_bases(bus);
/* Now fixup the bus bus */
pcibios_setup_bus_self(bus);
/* Now fixup devices on that bus */
pcibios_setup_bus_devices(bus);
}
EXPORT_SYMBOL(pcibios_fixup_bus);
static int skip_isa_ioresource_align(struct pci_dev *dev)
{
return 0;
}
/*
* We need to avoid collisions with `mirrored' VGA ports
* and other strange ISA hardware, so we always want the
* addresses to be allocated in the 0x000-0x0ff region
* modulo 0x400.
*
* Why? Because some silly external IO cards only decode
* the low 10 bits of the IO address. The 0x00-0xff region
* is reserved for motherboard devices that decode all 16
* bits, so it's ok to allocate at, say, 0x2800-0x28ff,
* but we want to try to avoid allocating at 0x2900-0x2bff
* which might have be mirrored at 0x0100-0x03ff..
*/
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
resource_size_t size, resource_size_t align)
{
struct pci_dev *dev = data;
resource_size_t start = res->start;
if (res->flags & IORESOURCE_IO) {
if (skip_isa_ioresource_align(dev))
return start;
if (start & 0x300)
start = (start + 0x3ff) & ~0x3ff;
}
return start;
}
EXPORT_SYMBOL(pcibios_align_resource);
/*
* Reparent resource children of pr that conflict with res
* under res, and make res replace those children.
*/
static int __init reparent_resources(struct resource *parent,
struct resource *res)
{
struct resource *p, **pp;
struct resource **firstpp = NULL;
for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
if (p->end < res->start)
continue;
if (res->end < p->start)
break;
if (p->start < res->start || p->end > res->end)
return -1; /* not completely contained */
if (firstpp == NULL)
firstpp = pp;
}
if (firstpp == NULL)
return -1; /* didn't find any conflicting entries? */
res->parent = parent;
res->child = *firstpp;
res->sibling = *pp;
*firstpp = res;
*pp = NULL;
for (p = res->child; p != NULL; p = p->sibling) {
p->parent = res;
pr_debug("PCI: Reparented %s [%llx..%llx] under %s\n",
p->name,
(unsigned long long)p->start,
(unsigned long long)p->end, res->name);
}
return 0;
}
/*
* Handle resources of PCI devices. If the world were perfect, we could
* just allocate all the resource regions and do nothing more. It isn't.
* On the other hand, we cannot just re-allocate all devices, as it would
* require us to know lots of host bridge internals. So we attempt to
* keep as much of the original configuration as possible, but tweak it
* when it's found to be wrong.
*
* Known BIOS problems we have to work around:
* - I/O or memory regions not configured
* - regions configured, but not enabled in the command register
* - bogus I/O addresses above 64K used
* - expansion ROMs left enabled (this may sound harmless, but given
* the fact the PCI specs explicitly allow address decoders to be
* shared between expansion ROMs and other resource regions, it's
* at least dangerous)
*
* Our solution:
* (1) Allocate resources for all buses behind PCI-to-PCI bridges.
* This gives us fixed barriers on where we can allocate.
* (2) Allocate resources for all enabled devices. If there is
* a collision, just mark the resource as unallocated. Also
* disable expansion ROMs during this step.
* (3) Try to allocate resources for disabled devices. If the
* resources were assigned correctly, everything goes well,
* if they weren't, they won't disturb allocation of other
* resources.
* (4) Assign new addresses to resources which were either
* not configured at all or misconfigured. If explicitly
* requested by the user, configure expansion ROM address
* as well.
*/
static void pcibios_allocate_bus_resources(struct pci_bus *bus)
{
struct pci_bus *b;
int i;
struct resource *res, *pr;
pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
pci_domain_nr(bus), bus->number);
pci_bus_for_each_resource(bus, res, i) {
if (!res || !res->flags
|| res->start > res->end || res->parent)
continue;
if (bus->parent == NULL)
pr = (res->flags & IORESOURCE_IO) ?
&ioport_resource : &iomem_resource;
else {
/* Don't bother with non-root busses when
* re-assigning all resources. We clear the
* resource flags as if they were colliding
* and as such ensure proper re-allocation
* later.
*/
pr = pci_find_parent_resource(bus->self, res);
if (pr == res) {
/* this happens when the generic PCI
* code (wrongly) decides that this
* bridge is transparent -- paulus
*/
continue;
}
}
pr_debug("PCI: %s (bus %d) bridge rsrc %d: %016llx-%016llx ",
bus->self ? pci_name(bus->self) : "PHB",
bus->number, i,
(unsigned long long)res->start,
(unsigned long long)res->end);
pr_debug("[0x%x], parent %p (%s)\n",
(unsigned int)res->flags,
pr, (pr && pr->name) ? pr->name : "nil");
if (pr && !(pr->flags & IORESOURCE_UNSET)) {
if (request_resource(pr, res) == 0)
continue;
/*
* Must be a conflict with an existing entry.
* Move that entry (or entries) under the
* bridge resource and try again.
*/
if (reparent_resources(pr, res) == 0)
continue;
}
pr_warn("PCI: Cannot allocate resource region ");
pr_cont("%d of PCI bridge %d, will remap\n", i, bus->number);
res->start = res->end = 0;
res->flags = 0;
}
list_for_each_entry(b, &bus->children, node)
pcibios_allocate_bus_resources(b);
}
static inline void alloc_resource(struct pci_dev *dev, int idx)
{
struct resource *pr, *r = &dev->resource[idx];
pr_debug("PCI: Allocating %s: Resource %d: %016llx..%016llx [%x]\n",
pci_name(dev), idx,
(unsigned long long)r->start,
(unsigned long long)r->end,
(unsigned int)r->flags);
pr = pci_find_parent_resource(dev, r);
if (!pr || (pr->flags & IORESOURCE_UNSET) ||
request_resource(pr, r) < 0) {
pr_warn("PCI: Cannot allocate resource region %d ", idx);
pr_cont("of device %s, will remap\n", pci_name(dev));
if (pr)
pr_debug("PCI: parent is %p: %016llx-%016llx [%x]\n",
pr,
(unsigned long long)pr->start,
(unsigned long long)pr->end,
(unsigned int)pr->flags);
/* We'll assign a new address later */
r->flags |= IORESOURCE_UNSET;
r->end -= r->start;
r->start = 0;
}
}
static void __init pcibios_allocate_resources(int pass)
{
struct pci_dev *dev = NULL;
int idx, disabled;
u16 command;
struct resource *r;
for_each_pci_dev(dev) {
pci_read_config_word(dev, PCI_COMMAND, &command);
for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
r = &dev->resource[idx];
if (r->parent) /* Already allocated */
continue;
if (!r->flags || (r->flags & IORESOURCE_UNSET))
continue; /* Not assigned at all */
/* We only allocate ROMs on pass 1 just in case they
* have been screwed up by firmware
*/
if (idx == PCI_ROM_RESOURCE)
disabled = 1;
if (r->flags & IORESOURCE_IO)
disabled = !(command & PCI_COMMAND_IO);
else
disabled = !(command & PCI_COMMAND_MEMORY);
if (pass == disabled)
alloc_resource(dev, idx);
}
if (pass)
continue;
r = &dev->resource[PCI_ROM_RESOURCE];
if (r->flags) {
/* Turn the ROM off, leave the resource region,
* but keep it unregistered.
*/
u32 reg;
pci_read_config_dword(dev, dev->rom_base_reg, &reg);
if (reg & PCI_ROM_ADDRESS_ENABLE) {
pr_debug("PCI: Switching off ROM of %s\n",
pci_name(dev));
r->flags &= ~IORESOURCE_ROM_ENABLE;
pci_write_config_dword(dev, dev->rom_base_reg,
reg & ~PCI_ROM_ADDRESS_ENABLE);
}
}
}
}
static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
{
struct pci_controller *hose = pci_bus_to_host(bus);
resource_size_t offset;
struct resource *res, *pres;
int i;
pr_debug("Reserving legacy ranges for domain %04x\n",
pci_domain_nr(bus));
/* Check for IO */
if (!(hose->io_resource.flags & IORESOURCE_IO))
goto no_io;
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
BUG_ON(res == NULL);
res->name = "Legacy IO";
res->flags = IORESOURCE_IO;
res->start = offset;
res->end = (offset + 0xfff) & 0xfffffffful;
pr_debug("Candidate legacy IO: %pR\n", res);
if (request_resource(&hose->io_resource, res)) {
pr_debug("PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
pci_domain_nr(bus), bus->number, res);
kfree(res);
}
no_io:
/* Check for memory */
offset = hose->pci_mem_offset;
pr_debug("hose mem offset: %016llx\n", (unsigned long long)offset);
for (i = 0; i < 3; i++) {
pres = &hose->mem_resources[i];
if (!(pres->flags & IORESOURCE_MEM))
continue;
pr_debug("hose mem res: %pR\n", pres);
if ((pres->start - offset) <= 0xa0000 &&
(pres->end - offset) >= 0xbffff)
break;
}
if (i >= 3)
return;
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
BUG_ON(res == NULL);
res->name = "Legacy VGA memory";
res->flags = IORESOURCE_MEM;
res->start = 0xa0000 + offset;
res->end = 0xbffff + offset;
pr_debug("Candidate VGA memory: %pR\n", res);
if (request_resource(pres, res)) {
pr_debug("PCI %04x:%02x Cannot reserve VGA memory %pR\n",
pci_domain_nr(bus), bus->number, res);
kfree(res);
}
}
void __init pcibios_resource_survey(void)
{
struct pci_bus *b;
/* Allocate and assign resources. If we re-assign everything, then
* we skip the allocate phase
*/
list_for_each_entry(b, &pci_root_buses, node)
pcibios_allocate_bus_resources(b);
pcibios_allocate_resources(0);
pcibios_allocate_resources(1);
/* Before we start assigning unassigned resource, we try to reserve
* the low IO area and the VGA memory area if they intersect the
* bus available resources to avoid allocating things on top of them
*/
list_for_each_entry(b, &pci_root_buses, node)
pcibios_reserve_legacy_regions(b);
/* Now proceed to assigning things that were left unassigned */
pr_debug("PCI: Assigning unassigned resources...\n");
pci_assign_unassigned_resources();
}
/* This is used by the PCI hotplug driver to allocate resource
* of newly plugged busses. We can try to consolidate with the
* rest of the code later, for now, keep it as-is as our main
* resource allocation function doesn't deal with sub-trees yet.
*/
void pcibios_claim_one_bus(struct pci_bus *bus)
{
struct pci_dev *dev;
struct pci_bus *child_bus;
list_for_each_entry(dev, &bus->devices, bus_list) {
int i;
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
struct resource *r = &dev->resource[i];
if (r->parent || !r->start || !r->flags)
continue;
pr_debug("PCI: Claiming %s: ", pci_name(dev));
pr_debug("Resource %d: %016llx..%016llx [%x]\n",
i, (unsigned long long)r->start,
(unsigned long long)r->end,
(unsigned int)r->flags);
pci_claim_resource(dev, i);
}
}
list_for_each_entry(child_bus, &bus->children, node)
pcibios_claim_one_bus(child_bus);
}
EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
/* pcibios_finish_adding_to_bus
*
* This is to be called by the hotplug code after devices have been
* added to a bus, this include calling it for a PHB that is just
* being added
*/
void pcibios_finish_adding_to_bus(struct pci_bus *bus)
{
pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
pci_domain_nr(bus), bus->number);
/* Allocate bus and devices resources */
pcibios_allocate_bus_resources(bus);
pcibios_claim_one_bus(bus);
/* Add new devices to global lists. Register in proc, sysfs. */
pci_bus_add_devices(bus);
/* Fixup EEH */
/* eeh_add_device_tree_late(bus); */
}
EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
static void pcibios_setup_phb_resources(struct pci_controller *hose,
struct list_head *resources)
{
unsigned long io_offset;
struct resource *res;
int i;
/* Hookup PHB IO resource */
res = &hose->io_resource;
/* Fixup IO space offset */
io_offset = (unsigned long)hose->io_base_virt - isa_io_base;
res->start = (res->start + io_offset) & 0xffffffffu;
res->end = (res->end + io_offset) & 0xffffffffu;
if (!res->flags) {
pr_warn("PCI: I/O resource not set for host ");
pr_cont("bridge %s (domain %d)\n",
hose->dn->full_name, hose->global_number);
/* Workaround for lack of IO resource only on 32-bit */
res->start = (unsigned long)hose->io_base_virt - isa_io_base;
res->end = res->start + IO_SPACE_LIMIT;
res->flags = IORESOURCE_IO;
}
pci_add_resource_offset(resources, res,
(__force resource_size_t)(hose->io_base_virt - _IO_BASE));
pr_debug("PCI: PHB IO resource = %016llx-%016llx [%lx]\n",
(unsigned long long)res->start,
(unsigned long long)res->end,
(unsigned long)res->flags);
/* Hookup PHB Memory resources */
for (i = 0; i < 3; ++i) {
res = &hose->mem_resources[i];
if (!res->flags) {
if (i > 0)
continue;
pr_err("PCI: Memory resource 0 not set for ");
pr_cont("host bridge %s (domain %d)\n",
hose->dn->full_name, hose->global_number);
/* Workaround for lack of MEM resource only on 32-bit */
res->start = hose->pci_mem_offset;
res->end = (resource_size_t)-1LL;
res->flags = IORESOURCE_MEM;
}
pci_add_resource_offset(resources, res, hose->pci_mem_offset);
pr_debug("PCI: PHB MEM resource %d = %016llx-%016llx [%lx]\n",
i, (unsigned long long)res->start,
(unsigned long long)res->end,
(unsigned long)res->flags);
}
pr_debug("PCI: PHB MEM offset = %016llx\n",
(unsigned long long)hose->pci_mem_offset);
pr_debug("PCI: PHB IO offset = %08lx\n",
(unsigned long)hose->io_base_virt - _IO_BASE);
}
struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
{
struct pci_controller *hose = bus->sysdata;
return of_node_get(hose->dn);
}
static void pcibios_scan_phb(struct pci_controller *hose)
{
LIST_HEAD(resources);
struct pci_bus *bus;
struct device_node *node = hose->dn;
pr_debug("PCI: Scanning PHB %s\n", of_node_full_name(node));
pcibios_setup_phb_resources(hose, &resources);
bus = pci_scan_root_bus(hose->parent, hose->first_busno,
hose->ops, hose, &resources);
if (bus == NULL) {
pr_err("Failed to create bus for PCI domain %04x\n",
hose->global_number);
pci_free_resource_list(&resources);
return;
}
bus->busn_res.start = hose->first_busno;
hose->bus = bus;
hose->last_busno = bus->busn_res.end;
}
static int __init pcibios_init(void)
{
struct pci_controller *hose, *tmp;
int next_busno = 0;
pr_info("PCI: Probing PCI hardware\n");
/* Scan all of the recorded PCI controllers. */
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
hose->last_busno = 0xff;
pcibios_scan_phb(hose);
if (next_busno <= hose->last_busno)
next_busno = hose->last_busno + 1;
}
pci_bus_count = next_busno;
/* Call common code to handle resource allocation */
pcibios_resource_survey();
return 0;
}
subsys_initcall(pcibios_init);
static struct pci_controller *pci_bus_to_hose(int bus)
{
struct pci_controller *hose, *tmp;
list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
if (bus >= hose->first_busno && bus <= hose->last_busno)
return hose;
return NULL;
}
/* Provide information on locations of various I/O regions in physical
* memory. Do this on a per-card basis so that we choose the right
* root bridge.
* Note that the returned IO or memory base is a physical address
*/
long sys_pciconfig_iobase(long which, unsigned long bus, unsigned long devfn)
{
struct pci_controller *hose;
long result = -EOPNOTSUPP;
hose = pci_bus_to_hose(bus);
if (!hose)
return -ENODEV;
switch (which) {
case IOBASE_BRIDGE_NUMBER:
return (long)hose->first_busno;
case IOBASE_MEMORY:
return (long)hose->pci_mem_offset;
case IOBASE_IO:
return (long)hose->io_base_phys;
case IOBASE_ISA_IO:
return (long)isa_io_base;
case IOBASE_ISA_MEM:
return (long)isa_mem_base;
}
return result;
}
/*
* Null PCI config access functions, for the case when we can't
* find a hose.
*/
#define NULL_PCI_OP(rw, size, type) \
static int \
null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \
{ \
return PCIBIOS_DEVICE_NOT_FOUND; \
}
static int
null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
int len, u32 *val)
{
return PCIBIOS_DEVICE_NOT_FOUND;
}
static int
null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
int len, u32 val)
{
return PCIBIOS_DEVICE_NOT_FOUND;
}
static struct pci_ops null_pci_ops = {
.read = null_read_config,
.write = null_write_config,
};
/*
* These functions are used early on before PCI scanning is done
* and all of the pci_dev and pci_bus structures have been created.
*/
static struct pci_bus *
fake_pci_bus(struct pci_controller *hose, int busnr)
{
static struct pci_bus bus;
if (!hose)
pr_err("Can't find hose for PCI bus %d!\n", busnr);
bus.number = busnr;
bus.sysdata = hose;
bus.ops = hose ? hose->ops : &null_pci_ops;
return &bus;
}
#define EARLY_PCI_OP(rw, size, type) \
int early_##rw##_config_##size(struct pci_controller *hose, int bus, \
int devfn, int offset, type value) \
{ \
return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \
devfn, offset, value); \
}
EARLY_PCI_OP(read, byte, u8 *)
EARLY_PCI_OP(read, word, u16 *)
EARLY_PCI_OP(read, dword, u32 *)
EARLY_PCI_OP(write, byte, u8)
EARLY_PCI_OP(write, word, u16)
EARLY_PCI_OP(write, dword, u32)
int early_find_capability(struct pci_controller *hose, int bus, int devfn,
int cap)
{
return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
}