| /* |
| * |
| * Copyright (C) 2001, 2006, 2008 MontaVista Software, <source@mvista.com> |
| * Copied and modified Carsten Langgaard's time.c |
| * |
| * Carsten Langgaard, carstenl@mips.com |
| * Copyright (C) 1999,2000 MIPS Technologies, Inc. All rights reserved. |
| * |
| * ######################################################################## |
| * |
| * This program is free software; you can distribute it and/or modify it |
| * under the terms of the GNU General Public License (Version 2) as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| * |
| * ######################################################################## |
| * |
| * Setting up the clock on the MIPS boards. |
| * |
| * We provide the clock interrupt processing and the timer offset compute |
| * functions. If CONFIG_PM is selected, we also ensure the 32KHz timer is |
| * available. -- Dan |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| |
| #include <asm/mipsregs.h> |
| #include <asm/time.h> |
| #include <asm/mach-au1x00/au1000.h> |
| |
| static int no_au1xxx_32khz; |
| extern int allow_au1k_wait; /* default off for CP0 Counter */ |
| |
| #ifdef CONFIG_PM |
| #if HZ < 100 || HZ > 1000 |
| #error "unsupported HZ value! Must be in [100,1000]" |
| #endif |
| #define MATCH20_INC (328 * 100 / HZ) /* magic number 328 is for HZ=100... */ |
| static unsigned long last_pc0, last_match20; |
| #endif |
| |
| static DEFINE_SPINLOCK(time_lock); |
| |
| unsigned long wtimer; |
| |
| #ifdef CONFIG_PM |
| static irqreturn_t counter0_irq(int irq, void *dev_id) |
| { |
| unsigned long pc0; |
| int time_elapsed; |
| static int jiffie_drift; |
| |
| if (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20) { |
| /* should never happen! */ |
| printk(KERN_WARNING "counter 0 w status error\n"); |
| return IRQ_NONE; |
| } |
| |
| pc0 = au_readl(SYS_TOYREAD); |
| if (pc0 < last_match20) |
| /* counter overflowed */ |
| time_elapsed = (0xffffffff - last_match20) + pc0; |
| else |
| time_elapsed = pc0 - last_match20; |
| |
| while (time_elapsed > 0) { |
| do_timer(1); |
| #ifndef CONFIG_SMP |
| update_process_times(user_mode(get_irq_regs())); |
| #endif |
| time_elapsed -= MATCH20_INC; |
| last_match20 += MATCH20_INC; |
| jiffie_drift++; |
| } |
| |
| last_pc0 = pc0; |
| au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2); |
| au_sync(); |
| |
| /* |
| * Our counter ticks at 10.009765625 ms/tick, we we're running |
| * almost 10 uS too slow per tick. |
| */ |
| |
| if (jiffie_drift >= 999) { |
| jiffie_drift -= 999; |
| do_timer(1); /* increment jiffies by one */ |
| #ifndef CONFIG_SMP |
| update_process_times(user_mode(get_irq_regs())); |
| #endif |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| struct irqaction counter0_action = { |
| .handler = counter0_irq, |
| .flags = IRQF_DISABLED, |
| .name = "alchemy-toy", |
| .dev_id = NULL, |
| }; |
| |
| /* When we wakeup from sleep, we have to "catch up" on all of the |
| * timer ticks we have missed. |
| */ |
| void wakeup_counter0_adjust(void) |
| { |
| unsigned long pc0; |
| int time_elapsed; |
| |
| pc0 = au_readl(SYS_TOYREAD); |
| if (pc0 < last_match20) |
| /* counter overflowed */ |
| time_elapsed = (0xffffffff - last_match20) + pc0; |
| else |
| time_elapsed = pc0 - last_match20; |
| |
| while (time_elapsed > 0) { |
| time_elapsed -= MATCH20_INC; |
| last_match20 += MATCH20_INC; |
| } |
| |
| last_pc0 = pc0; |
| au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2); |
| au_sync(); |
| |
| } |
| |
| /* This is just for debugging to set the timer for a sleep delay. */ |
| void wakeup_counter0_set(int ticks) |
| { |
| unsigned long pc0; |
| |
| pc0 = au_readl(SYS_TOYREAD); |
| last_pc0 = pc0; |
| au_writel(last_match20 + (MATCH20_INC * ticks), SYS_TOYMATCH2); |
| au_sync(); |
| } |
| #endif |
| |
| /* |
| * I haven't found anyone that doesn't use a 12 MHz source clock, |
| * but just in case..... |
| */ |
| #define AU1000_SRC_CLK 12000000 |
| |
| /* |
| * We read the real processor speed from the PLL. This is important |
| * because it is more accurate than computing it from the 32 KHz |
| * counter, if it exists. If we don't have an accurate processor |
| * speed, all of the peripherals that derive their clocks based on |
| * this advertised speed will introduce error and sometimes not work |
| * properly. This function is futher convoluted to still allow configurations |
| * to do that in case they have really, really old silicon with a |
| * write-only PLL register, that we need the 32 KHz when power management |
| * "wait" is enabled, and we need to detect if the 32 KHz isn't present |
| * but requested......got it? :-) -- Dan |
| */ |
| unsigned long calc_clock(void) |
| { |
| unsigned long cpu_speed; |
| unsigned long flags; |
| unsigned long counter; |
| |
| spin_lock_irqsave(&time_lock, flags); |
| |
| /* Power management cares if we don't have a 32 KHz counter. */ |
| no_au1xxx_32khz = 0; |
| counter = au_readl(SYS_COUNTER_CNTRL); |
| if (counter & SYS_CNTRL_E0) { |
| int trim_divide = 16; |
| |
| au_writel(counter | SYS_CNTRL_EN1, SYS_COUNTER_CNTRL); |
| |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S); |
| /* RTC now ticks at 32.768/16 kHz */ |
| au_writel(trim_divide - 1, SYS_RTCTRIM); |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S); |
| |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S); |
| au_writel(0, SYS_TOYWRITE); |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S); |
| } else |
| no_au1xxx_32khz = 1; |
| |
| /* |
| * On early Au1000, sys_cpupll was write-only. Since these |
| * silicon versions of Au1000 are not sold by AMD, we don't bend |
| * over backwards trying to determine the frequency. |
| */ |
| if (cur_cpu_spec[0]->cpu_pll_wo) |
| #ifdef CONFIG_SOC_AU1000_FREQUENCY |
| cpu_speed = CONFIG_SOC_AU1000_FREQUENCY; |
| #else |
| cpu_speed = 396000000; |
| #endif |
| else |
| cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) * AU1000_SRC_CLK; |
| /* On Alchemy CPU:counter ratio is 1:1 */ |
| mips_hpt_frequency = cpu_speed; |
| /* Equation: Baudrate = CPU / (SD * 2 * CLKDIV * 16) */ |
| set_au1x00_uart_baud_base(cpu_speed / (2 * ((int)(au_readl(SYS_POWERCTRL) |
| & 0x03) + 2) * 16)); |
| spin_unlock_irqrestore(&time_lock, flags); |
| return cpu_speed; |
| } |
| |
| void __init plat_time_init(void) |
| { |
| unsigned int est_freq = calc_clock(); |
| |
| est_freq += 5000; /* round */ |
| est_freq -= est_freq%10000; |
| printk(KERN_INFO "CPU frequency %u.%02u MHz\n", |
| est_freq / 1000000, ((est_freq % 1000000) * 100) / 1000000); |
| set_au1x00_speed(est_freq); |
| |
| #ifdef CONFIG_PM |
| /* |
| * setup counter 0, since it keeps ticking after a |
| * 'wait' instruction has been executed. The CP0 timer and |
| * counter 1 do NOT continue running after 'wait' |
| * |
| * It's too early to call request_irq() here, so we handle |
| * counter 0 interrupt as a special irq and it doesn't show |
| * up under /proc/interrupts. |
| * |
| * Check to ensure we really have a 32 KHz oscillator before |
| * we do this. |
| */ |
| if (no_au1xxx_32khz) |
| printk(KERN_WARNING "WARNING: no 32KHz clock found.\n"); |
| else { |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S); |
| au_writel(0, SYS_TOYWRITE); |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S); |
| |
| au_writel(au_readl(SYS_WAKEMSK) | (1 << 8), SYS_WAKEMSK); |
| au_writel(~0, SYS_WAKESRC); |
| au_sync(); |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20); |
| |
| /* Setup match20 to interrupt once every HZ */ |
| last_pc0 = last_match20 = au_readl(SYS_TOYREAD); |
| au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2); |
| au_sync(); |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20); |
| setup_irq(AU1000_TOY_MATCH2_INT, &counter0_action); |
| |
| /* We can use the real 'wait' instruction. */ |
| allow_au1k_wait = 1; |
| } |
| |
| #endif |
| } |