blob: d58a7466b7e1a054f62fc5fc65962f9f97874e8f [file] [log] [blame]
/*
* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "msm-dsi-display:[%s] " fmt, __func__
#include <linux/list.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/of_gpio.h>
#include <linux/err.h>
#include "msm_drv.h"
#include "sde_connector.h"
#include "msm_mmu.h"
#include "dsi_display.h"
#include "dsi_panel.h"
#include "dsi_ctrl.h"
#include "dsi_ctrl_hw.h"
#include "dsi_drm.h"
#include "dsi_clk.h"
#include "dsi_pwr.h"
#include "sde_dbg.h"
#define to_dsi_display(x) container_of(x, struct dsi_display, host)
#define INT_BASE_10 10
#define NO_OVERRIDE -1
#define MISR_BUFF_SIZE 256
#define ESD_MODE_STRING_MAX_LEN 256
#define MAX_NAME_SIZE 64
#define DSI_CLOCK_BITRATE_RADIX 10
static DEFINE_MUTEX(dsi_display_list_lock);
static LIST_HEAD(dsi_display_list);
static char dsi_display_primary[MAX_CMDLINE_PARAM_LEN];
static char dsi_display_secondary[MAX_CMDLINE_PARAM_LEN];
static struct dsi_display_boot_param boot_displays[MAX_DSI_ACTIVE_DISPLAY];
static struct device_node *primary_active_node;
static struct device_node *secondary_active_node;
static const struct of_device_id dsi_display_dt_match[] = {
{.compatible = "qcom,dsi-display"},
{}
};
static struct dsi_display *primary_display;
static struct dsi_display *secondary_display;
static void dsi_display_mask_ctrl_error_interrupts(struct dsi_display *display,
u32 mask, bool enable)
{
int i;
struct dsi_display_ctrl *ctrl;
if (!display)
return;
for (i = 0; (i < display->ctrl_count) &&
(i < MAX_DSI_CTRLS_PER_DISPLAY); i++) {
ctrl = &display->ctrl[i];
if (!ctrl)
continue;
dsi_ctrl_mask_error_status_interrupts(ctrl->ctrl, mask, enable);
}
}
static void dsi_display_set_ctrl_esd_check_flag(struct dsi_display *display,
bool enable)
{
int i;
struct dsi_display_ctrl *ctrl;
if (!display)
return;
for (i = 0; (i < display->ctrl_count) &&
(i < MAX_DSI_CTRLS_PER_DISPLAY); i++) {
ctrl = &display->ctrl[i];
if (!ctrl)
continue;
ctrl->ctrl->esd_check_underway = enable;
}
}
static void dsi_display_ctrl_irq_update(struct dsi_display *display, bool en)
{
int i;
struct dsi_display_ctrl *ctrl;
if (!display)
return;
for (i = 0; (i < display->ctrl_count) &&
(i < MAX_DSI_CTRLS_PER_DISPLAY); i++) {
ctrl = &display->ctrl[i];
if (!ctrl)
continue;
dsi_ctrl_irq_update(ctrl->ctrl, en);
}
}
void dsi_rect_intersect(const struct dsi_rect *r1,
const struct dsi_rect *r2,
struct dsi_rect *result)
{
int l, t, r, b;
if (!r1 || !r2 || !result)
return;
l = max(r1->x, r2->x);
t = max(r1->y, r2->y);
r = min((r1->x + r1->w), (r2->x + r2->w));
b = min((r1->y + r1->h), (r2->y + r2->h));
if (r <= l || b <= t) {
memset(result, 0, sizeof(*result));
} else {
result->x = l;
result->y = t;
result->w = r - l;
result->h = b - t;
}
}
int dsi_display_set_backlight(void *display, u32 bl_lvl)
{
struct dsi_display *dsi_display = display;
struct dsi_panel *panel;
u32 bl_scale, bl_scale_ad;
u64 bl_temp;
int rc = 0;
if (dsi_display == NULL || dsi_display->panel == NULL)
return -EINVAL;
panel = dsi_display->panel;
mutex_lock(&panel->panel_lock);
if (!dsi_panel_initialized(panel)) {
rc = -EINVAL;
goto error;
}
panel->bl_config.bl_level = bl_lvl;
/* scale backlight */
bl_scale = panel->bl_config.bl_scale;
bl_temp = bl_lvl * bl_scale / MAX_BL_SCALE_LEVEL;
bl_scale_ad = panel->bl_config.bl_scale_ad;
bl_temp = (u32)bl_temp * bl_scale_ad / MAX_AD_BL_SCALE_LEVEL;
pr_debug("bl_scale = %u, bl_scale_ad = %u, bl_lvl = %u\n",
bl_scale, bl_scale_ad, (u32)bl_temp);
rc = dsi_display_clk_ctrl(dsi_display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_ON);
if (rc) {
pr_err("[%s] failed to enable DSI core clocks, rc=%d\n",
dsi_display->name, rc);
goto error;
}
rc = dsi_panel_set_backlight(panel, (u32)bl_temp);
if (rc)
pr_err("unable to set backlight\n");
rc = dsi_display_clk_ctrl(dsi_display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_OFF);
if (rc) {
pr_err("[%s] failed to disable DSI core clocks, rc=%d\n",
dsi_display->name, rc);
goto error;
}
error:
mutex_unlock(&panel->panel_lock);
return rc;
}
static int dsi_display_cmd_engine_enable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
m_ctrl = &display->ctrl[display->cmd_master_idx];
mutex_lock(&m_ctrl->ctrl->ctrl_lock);
if (display->cmd_engine_refcount > 0) {
display->cmd_engine_refcount++;
goto done;
}
rc = dsi_ctrl_set_cmd_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_ON);
if (rc) {
pr_err("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
goto done;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_cmd_engine_state(ctrl->ctrl,
DSI_CTRL_ENGINE_ON);
if (rc) {
pr_err("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
goto error_disable_master;
}
}
display->cmd_engine_refcount++;
goto done;
error_disable_master:
(void)dsi_ctrl_set_cmd_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF);
done:
mutex_unlock(&m_ctrl->ctrl->ctrl_lock);
return rc;
}
static int dsi_display_cmd_engine_disable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
m_ctrl = &display->ctrl[display->cmd_master_idx];
mutex_lock(&m_ctrl->ctrl->ctrl_lock);
if (display->cmd_engine_refcount == 0) {
pr_err("[%s] Invalid refcount\n", display->name);
goto done;
} else if (display->cmd_engine_refcount > 1) {
display->cmd_engine_refcount--;
goto done;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_cmd_engine_state(ctrl->ctrl,
DSI_CTRL_ENGINE_OFF);
if (rc)
pr_err("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
}
rc = dsi_ctrl_set_cmd_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF);
if (rc) {
pr_err("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
goto error;
}
error:
display->cmd_engine_refcount = 0;
done:
mutex_unlock(&m_ctrl->ctrl->ctrl_lock);
return rc;
}
static void dsi_display_aspace_cb_locked(void *cb_data, bool is_detach)
{
struct dsi_display *display;
struct dsi_display_ctrl *display_ctrl;
int rc, cnt;
if (!cb_data) {
pr_err("aspace cb called with invalid cb_data\n");
return;
}
display = (struct dsi_display *)cb_data;
/*
* acquire panel_lock to make sure no commands are in-progress
* while detaching the non-secure context banks
*/
dsi_panel_acquire_panel_lock(display->panel);
if (is_detach) {
/* invalidate the stored iova */
display->cmd_buffer_iova = 0;
/* return the virtual address mapping */
msm_gem_put_vaddr_locked(display->tx_cmd_buf);
msm_gem_vunmap(display->tx_cmd_buf);
} else {
rc = msm_gem_get_iova_locked(display->tx_cmd_buf,
display->aspace, &(display->cmd_buffer_iova));
if (rc) {
pr_err("failed to get the iova rc %d\n", rc);
goto end;
}
display->vaddr =
(void *) msm_gem_get_vaddr_locked(display->tx_cmd_buf);
if (IS_ERR_OR_NULL(display->vaddr)) {
pr_err("failed to get va rc %d\n", rc);
goto end;
}
}
for (cnt = 0; cnt < display->ctrl_count; cnt++) {
display_ctrl = &display->ctrl[cnt];
display_ctrl->ctrl->cmd_buffer_size = display->cmd_buffer_size;
display_ctrl->ctrl->cmd_buffer_iova = display->cmd_buffer_iova;
display_ctrl->ctrl->vaddr = display->vaddr;
display_ctrl->ctrl->secure_mode = is_detach;
}
end:
/* release panel_lock */
dsi_panel_release_panel_lock(display->panel);
}
static irqreturn_t dsi_display_panel_te_irq_handler(int irq, void *data)
{
struct dsi_display *display = (struct dsi_display *)data;
/*
* This irq handler is used for sole purpose of identifying
* ESD attacks on panel and we can safely assume IRQ_HANDLED
* in case of display not being initalized yet
*/
if (!display)
return IRQ_HANDLED;
complete_all(&display->esd_te_gate);
return IRQ_HANDLED;
}
static void dsi_display_change_te_irq_status(struct dsi_display *display,
bool enable)
{
if (!display) {
pr_err("Invalid params\n");
return;
}
/* Handle unbalanced irq enable/disbale calls */
if (enable && !display->is_te_irq_enabled) {
enable_irq(gpio_to_irq(display->disp_te_gpio));
display->is_te_irq_enabled = true;
} else if (!enable && display->is_te_irq_enabled) {
disable_irq(gpio_to_irq(display->disp_te_gpio));
display->is_te_irq_enabled = false;
}
}
static void dsi_display_register_te_irq(struct dsi_display *display)
{
int rc = 0;
struct platform_device *pdev;
struct device *dev;
pdev = display->pdev;
if (!pdev) {
pr_err("invalid platform device\n");
return;
}
dev = &pdev->dev;
if (!dev) {
pr_err("invalid device\n");
return;
}
if (!gpio_is_valid(display->disp_te_gpio)) {
rc = -EINVAL;
goto error;
}
init_completion(&display->esd_te_gate);
rc = devm_request_irq(dev, gpio_to_irq(display->disp_te_gpio),
dsi_display_panel_te_irq_handler, IRQF_TRIGGER_FALLING,
"TE_GPIO", display);
if (rc) {
pr_err("TE request_irq failed for ESD rc:%d\n", rc);
goto error;
}
disable_irq(gpio_to_irq(display->disp_te_gpio));
display->is_te_irq_enabled = false;
return;
error:
/* disable the TE based ESD check */
pr_warn("Unable to register for TE IRQ\n");
if (display->panel->esd_config.status_mode == ESD_MODE_PANEL_TE)
display->panel->esd_config.esd_enabled = false;
}
static bool dsi_display_is_te_based_esd(struct dsi_display *display)
{
u32 status_mode = 0;
if (!display->panel) {
pr_err("Invalid panel data\n");
return false;
}
status_mode = display->panel->esd_config.status_mode;
if (status_mode == ESD_MODE_PANEL_TE &&
gpio_is_valid(display->disp_te_gpio))
return true;
return false;
}
/* Allocate memory for cmd dma tx buffer */
static int dsi_host_alloc_cmd_tx_buffer(struct dsi_display *display)
{
int rc = 0, cnt = 0;
struct dsi_display_ctrl *display_ctrl;
mutex_lock(&display->drm_dev->struct_mutex);
display->tx_cmd_buf = msm_gem_new(display->drm_dev,
SZ_4K,
MSM_BO_UNCACHED);
mutex_unlock(&display->drm_dev->struct_mutex);
if ((display->tx_cmd_buf) == NULL) {
pr_err("Failed to allocate cmd tx buf memory\n");
rc = -ENOMEM;
goto error;
}
display->cmd_buffer_size = SZ_4K;
display->aspace = msm_gem_smmu_address_space_get(
display->drm_dev, MSM_SMMU_DOMAIN_UNSECURE);
if (!display->aspace) {
pr_err("failed to get aspace\n");
rc = -EINVAL;
goto free_gem;
}
/* register to aspace */
rc = msm_gem_address_space_register_cb(display->aspace,
dsi_display_aspace_cb_locked, (void *)display);
if (rc) {
pr_err("failed to register callback %d", rc);
goto free_gem;
}
rc = msm_gem_get_iova(display->tx_cmd_buf, display->aspace,
&(display->cmd_buffer_iova));
if (rc) {
pr_err("failed to get the iova rc %d\n", rc);
goto free_aspace_cb;
}
display->vaddr =
(void *) msm_gem_get_vaddr(display->tx_cmd_buf);
if (IS_ERR_OR_NULL(display->vaddr)) {
pr_err("failed to get va rc %d\n", rc);
rc = -EINVAL;
goto put_iova;
}
for (cnt = 0; cnt < display->ctrl_count; cnt++) {
display_ctrl = &display->ctrl[cnt];
display_ctrl->ctrl->cmd_buffer_size = SZ_4K;
display_ctrl->ctrl->cmd_buffer_iova =
display->cmd_buffer_iova;
display_ctrl->ctrl->vaddr = display->vaddr;
display_ctrl->ctrl->tx_cmd_buf = display->tx_cmd_buf;
}
return rc;
put_iova:
msm_gem_put_iova(display->tx_cmd_buf, display->aspace);
free_aspace_cb:
msm_gem_address_space_unregister_cb(display->aspace,
dsi_display_aspace_cb_locked, display);
free_gem:
mutex_lock(&display->drm_dev->struct_mutex);
msm_gem_free_object(display->tx_cmd_buf);
mutex_unlock(&display->drm_dev->struct_mutex);
error:
return rc;
}
static bool dsi_display_validate_reg_read(struct dsi_panel *panel)
{
int i, j = 0;
int len = 0, *lenp;
int group = 0, count = 0;
struct drm_panel_esd_config *config;
if (!panel)
return false;
config = &(panel->esd_config);
lenp = config->status_valid_params ?: config->status_cmds_rlen;
count = config->status_cmd.count;
for (i = 0; i < count; i++)
len += lenp[i];
for (i = 0; i < len; i++)
j += len;
for (j = 0; j < config->groups; ++j) {
for (i = 0; i < len; ++i) {
if (config->return_buf[i] !=
config->status_value[group + i])
break;
}
if (i == len)
return true;
group += len;
}
return false;
}
static void dsi_display_parse_te_gpio(struct dsi_display *display)
{
struct platform_device *pdev;
struct device *dev;
pdev = display->pdev;
if (!pdev) {
pr_err("Inavlid platform device\n");
return;
}
dev = &pdev->dev;
if (!dev) {
pr_err("Inavlid platform device\n");
return;
}
display->disp_te_gpio = of_get_named_gpio(dev->of_node,
"qcom,platform-te-gpio", 0);
}
static int dsi_display_read_status(struct dsi_display_ctrl *ctrl,
struct dsi_panel *panel)
{
int i, rc = 0, count = 0, start = 0, *lenp;
struct drm_panel_esd_config *config;
struct dsi_cmd_desc *cmds;
u32 flags = 0;
if (!panel || !ctrl || !ctrl->ctrl)
return -EINVAL;
/*
* When DSI controller is not in initialized state, we do not want to
* report a false ESD failure and hence we defer until next read
* happen.
*/
if (dsi_ctrl_validate_host_state(ctrl->ctrl))
return 1;
config = &(panel->esd_config);
lenp = config->status_valid_params ?: config->status_cmds_rlen;
count = config->status_cmd.count;
cmds = config->status_cmd.cmds;
flags |= (DSI_CTRL_CMD_FETCH_MEMORY | DSI_CTRL_CMD_READ |
DSI_CTRL_CMD_CUSTOM_DMA_SCHED);
for (i = 0; i < count; ++i) {
memset(config->status_buf, 0x0, SZ_4K);
if (config->status_cmd.state == DSI_CMD_SET_STATE_LP)
cmds[i].msg.flags |= MIPI_DSI_MSG_USE_LPM;
if (cmds[i].last_command) {
cmds[i].msg.flags |= MIPI_DSI_MSG_LASTCOMMAND;
flags |= DSI_CTRL_CMD_LAST_COMMAND;
}
cmds[i].msg.rx_buf = config->status_buf;
cmds[i].msg.rx_len = config->status_cmds_rlen[i];
rc = dsi_ctrl_cmd_transfer(ctrl->ctrl, &cmds[i].msg, flags);
if (rc <= 0) {
pr_err("rx cmd transfer failed rc=%d\n", rc);
return rc;
}
memcpy(config->return_buf + start,
config->status_buf, lenp[i]);
start += lenp[i];
}
return rc;
}
static int dsi_display_validate_status(struct dsi_display_ctrl *ctrl,
struct dsi_panel *panel)
{
int rc = 0;
rc = dsi_display_read_status(ctrl, panel);
if (rc <= 0) {
goto exit;
} else {
/*
* panel status read successfully.
* check for validity of the data read back.
*/
rc = dsi_display_validate_reg_read(panel);
if (!rc) {
rc = -EINVAL;
goto exit;
}
}
exit:
return rc;
}
static int dsi_display_status_reg_read(struct dsi_display *display)
{
int rc = 0, i, cmd_channel_idx = DSI_CTRL_LEFT;
struct dsi_display_ctrl *m_ctrl, *ctrl;
pr_debug(" ++\n");
/*
* Check the Panel DSI command channel.
* If the cmd_channel is set, then we should
* choose the right DSI(DSI1) controller to send command,
* else we choose the left(DSI0) controller.
*/
if (display->panel->esd_config.cmd_channel)
cmd_channel_idx = DSI_CTRL_RIGHT;
m_ctrl = &display->ctrl[cmd_channel_idx];
if (display->tx_cmd_buf == NULL) {
rc = dsi_host_alloc_cmd_tx_buffer(display);
if (rc) {
pr_err("failed to allocate cmd tx buffer memory\n");
goto done;
}
}
rc = dsi_display_cmd_engine_enable(display);
if (rc) {
pr_err("cmd engine enable failed\n");
return -EPERM;
}
rc = dsi_display_validate_status(m_ctrl, display->panel);
if (rc <= 0) {
pr_err("[%s] read status failed on master,rc=%d\n",
display->name, rc);
goto exit;
}
if (!display->panel->sync_broadcast_en)
goto exit;
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (ctrl == m_ctrl)
continue;
rc = dsi_display_validate_status(ctrl, display->panel);
if (rc <= 0) {
pr_err("[%s] read status failed on slave,rc=%d\n",
display->name, rc);
goto exit;
}
}
exit:
dsi_display_cmd_engine_disable(display);
done:
return rc;
}
static int dsi_display_status_bta_request(struct dsi_display *display)
{
int rc = 0;
pr_debug(" ++\n");
/* TODO: trigger SW BTA and wait for acknowledgment */
return rc;
}
static int dsi_display_status_check_te(struct dsi_display *display)
{
int rc = 1;
int const esd_te_timeout = msecs_to_jiffies(3*20);
dsi_display_change_te_irq_status(display, true);
reinit_completion(&display->esd_te_gate);
if (!wait_for_completion_timeout(&display->esd_te_gate,
esd_te_timeout)) {
pr_err("TE check failed\n");
rc = -EINVAL;
}
dsi_display_change_te_irq_status(display, false);
return rc;
}
int dsi_display_check_status(void *display, bool te_check_override)
{
struct dsi_display *dsi_display = display;
struct dsi_panel *panel;
u32 status_mode;
int rc = 0x1;
u32 mask;
if (!dsi_display || !dsi_display->panel)
return -EINVAL;
panel = dsi_display->panel;
dsi_panel_acquire_panel_lock(panel);
if (!panel->panel_initialized) {
pr_debug("Panel not initialized\n");
dsi_panel_release_panel_lock(panel);
return rc;
}
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY);
/* Prevent another ESD check,when ESD recovery is underway */
if (atomic_read(&panel->esd_recovery_pending)) {
dsi_panel_release_panel_lock(panel);
return rc;
}
if (te_check_override && gpio_is_valid(dsi_display->disp_te_gpio))
status_mode = ESD_MODE_PANEL_TE;
else
status_mode = panel->esd_config.status_mode;
dsi_display_clk_ctrl(dsi_display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
/* Mask error interrupts before attempting ESD read */
mask = BIT(DSI_FIFO_OVERFLOW) | BIT(DSI_FIFO_UNDERFLOW);
dsi_display_set_ctrl_esd_check_flag(dsi_display, true);
dsi_display_mask_ctrl_error_interrupts(dsi_display, mask, true);
if (status_mode == ESD_MODE_REG_READ) {
rc = dsi_display_status_reg_read(dsi_display);
} else if (status_mode == ESD_MODE_SW_BTA) {
rc = dsi_display_status_bta_request(dsi_display);
} else if (status_mode == ESD_MODE_PANEL_TE) {
rc = dsi_display_status_check_te(dsi_display);
} else {
pr_warn("unsupported check status mode\n");
panel->esd_config.esd_enabled = false;
}
/* Unmask error interrupts */
if (rc > 0) {
dsi_display_set_ctrl_esd_check_flag(dsi_display, false);
dsi_display_mask_ctrl_error_interrupts(dsi_display, mask,
false);
} else {
/* Handle Panel failures during display disable sequence */
atomic_set(&panel->esd_recovery_pending, 1);
}
dsi_display_clk_ctrl(dsi_display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
dsi_panel_release_panel_lock(panel);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT);
return rc;
}
static int dsi_display_cmd_prepare(const char *cmd_buf, u32 cmd_buf_len,
struct dsi_cmd_desc *cmd, u8 *payload, u32 payload_len)
{
int i;
memset(cmd, 0x00, sizeof(*cmd));
cmd->msg.type = cmd_buf[0];
cmd->last_command = (cmd_buf[1] == 1 ? true : false);
cmd->msg.channel = cmd_buf[2];
cmd->msg.flags = cmd_buf[3];
cmd->msg.ctrl = 0;
cmd->post_wait_ms = cmd->msg.wait_ms = cmd_buf[4];
cmd->msg.tx_len = ((cmd_buf[5] << 8) | (cmd_buf[6]));
if (cmd->msg.tx_len > payload_len) {
pr_err("Incorrect payload length tx_len %zu, payload_len %d\n",
cmd->msg.tx_len, payload_len);
return -EINVAL;
}
for (i = 0; i < cmd->msg.tx_len; i++)
payload[i] = cmd_buf[7 + i];
cmd->msg.tx_buf = payload;
return 0;
}
static int dsi_display_ctrl_get_host_init_state(struct dsi_display *dsi_display,
bool *state)
{
struct dsi_display_ctrl *ctrl;
int i, rc = -EINVAL;
for (i = 0 ; i < dsi_display->ctrl_count; i++) {
ctrl = &dsi_display->ctrl[i];
rc = dsi_ctrl_get_host_engine_init_state(ctrl->ctrl, state);
if (rc)
break;
}
return rc;
}
int dsi_display_cmd_transfer(void *display, const char *cmd_buf,
u32 cmd_buf_len)
{
struct dsi_display *dsi_display = display;
struct dsi_cmd_desc cmd;
u8 cmd_payload[MAX_CMD_PAYLOAD_SIZE];
int rc = 0;
bool state = false;
if (!dsi_display || !cmd_buf) {
pr_err("[DSI] invalid params\n");
return -EINVAL;
}
pr_debug("[DSI] Display command transfer\n");
rc = dsi_display_cmd_prepare(cmd_buf, cmd_buf_len,
&cmd, cmd_payload, MAX_CMD_PAYLOAD_SIZE);
if (rc) {
pr_err("[DSI] command prepare failed. rc %d\n", rc);
return rc;
}
mutex_lock(&dsi_display->display_lock);
rc = dsi_display_ctrl_get_host_init_state(dsi_display, &state);
if (rc || !state) {
pr_err("[DSI] Invalid host state %d rc %d\n",
state, rc);
rc = -EPERM;
goto end;
}
rc = dsi_display->host.ops->transfer(&dsi_display->host,
&cmd.msg);
end:
mutex_unlock(&dsi_display->display_lock);
return rc;
}
static void _dsi_display_continuous_clk_ctrl(struct dsi_display *display,
bool enable)
{
int i;
struct dsi_display_ctrl *ctrl;
if (!display || !display->panel->host_config.force_hs_clk_lane)
return;
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
dsi_ctrl_set_continuous_clk(ctrl->ctrl, enable);
}
}
int dsi_display_soft_reset(void *display)
{
struct dsi_display *dsi_display;
struct dsi_display_ctrl *ctrl;
int rc = 0;
int i;
if (!display)
return -EINVAL;
dsi_display = display;
for (i = 0 ; i < dsi_display->ctrl_count; i++) {
ctrl = &dsi_display->ctrl[i];
rc = dsi_ctrl_soft_reset(ctrl->ctrl);
if (rc) {
pr_err("[%s] failed to soft reset host_%d, rc=%d\n",
dsi_display->name, i, rc);
break;
}
}
return rc;
}
enum dsi_pixel_format dsi_display_get_dst_format(void *display)
{
enum dsi_pixel_format format = DSI_PIXEL_FORMAT_MAX;
struct dsi_display *dsi_display = (struct dsi_display *)display;
if (!dsi_display || !dsi_display->panel) {
pr_err("Invalid params(s) dsi_display %pK, panel %pK\n",
dsi_display,
((dsi_display) ? dsi_display->panel : NULL));
return format;
}
format = dsi_display->panel->host_config.dst_format;
return format;
}
static void _dsi_display_setup_misr(struct dsi_display *display)
{
int i;
for (i = 0; i < display->ctrl_count; i++) {
dsi_ctrl_setup_misr(display->ctrl[i].ctrl,
display->misr_enable,
display->misr_frame_count);
}
}
/**
* dsi_display_get_cont_splash_status - Get continuous splash status.
* @dsi_display: DSI display handle.
*
* Return: boolean to signify whether continuous splash is enabled.
*/
static bool dsi_display_get_cont_splash_status(struct dsi_display *display)
{
u32 val = 0;
int i;
struct dsi_display_ctrl *ctrl;
struct dsi_ctrl_hw *hw;
for (i = 0; i < display->ctrl_count ; i++) {
ctrl = &(display->ctrl[i]);
if (!ctrl || !ctrl->ctrl)
continue;
hw = &(ctrl->ctrl->hw);
val = hw->ops.get_cont_splash_status(hw);
if (!val)
return false;
}
return true;
}
int dsi_display_set_power(struct drm_connector *connector,
int power_mode, void *disp)
{
struct dsi_display *display = disp;
int rc = 0;
if (!display || !display->panel) {
pr_err("invalid display/panel\n");
return -EINVAL;
}
switch (power_mode) {
case SDE_MODE_DPMS_LP1:
rc = dsi_panel_set_lp1(display->panel);
break;
case SDE_MODE_DPMS_LP2:
rc = dsi_panel_set_lp2(display->panel);
break;
default:
rc = dsi_panel_set_nolp(display->panel);
break;
}
return rc;
}
static ssize_t debugfs_dump_info_read(struct file *file,
char __user *user_buf,
size_t user_len,
loff_t *ppos)
{
struct dsi_display *display = file->private_data;
char *buf;
u32 len = 0;
int i;
if (!display)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(SZ_4K, GFP_KERNEL);
if (!buf)
return -ENOMEM;
len += snprintf(buf + len, (SZ_4K - len), "name = %s\n", display->name);
len += snprintf(buf + len, (SZ_4K - len),
"\tResolution = %dx%d\n",
display->config.video_timing.h_active,
display->config.video_timing.v_active);
for (i = 0; i < display->ctrl_count; i++) {
len += snprintf(buf + len, (SZ_4K - len),
"\tCTRL_%d:\n\t\tctrl = %s\n\t\tphy = %s\n",
i, display->ctrl[i].ctrl->name,
display->ctrl[i].phy->name);
}
len += snprintf(buf + len, (SZ_4K - len),
"\tPanel = %s\n", display->panel->name);
len += snprintf(buf + len, (SZ_4K - len),
"\tClock master = %s\n",
display->ctrl[display->clk_master_idx].ctrl->name);
if (copy_to_user(user_buf, buf, len)) {
kfree(buf);
return -EFAULT;
}
*ppos += len;
kfree(buf);
return len;
}
static ssize_t debugfs_misr_setup(struct file *file,
const char __user *user_buf,
size_t user_len,
loff_t *ppos)
{
struct dsi_display *display = file->private_data;
char *buf;
int rc = 0;
size_t len;
u32 enable, frame_count;
if (!display)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(MISR_BUFF_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* leave room for termination char */
len = min_t(size_t, user_len, MISR_BUFF_SIZE - 1);
if (copy_from_user(buf, user_buf, len)) {
rc = -EINVAL;
goto error;
}
buf[len] = '\0'; /* terminate the string */
if (sscanf(buf, "%u %u", &enable, &frame_count) != 2) {
rc = -EINVAL;
goto error;
}
display->misr_enable = enable;
display->misr_frame_count = frame_count;
mutex_lock(&display->display_lock);
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_ON);
if (rc) {
pr_err("[%s] failed to enable DSI core clocks, rc=%d\n",
display->name, rc);
goto unlock;
}
_dsi_display_setup_misr(display);
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_OFF);
if (rc) {
pr_err("[%s] failed to disable DSI core clocks, rc=%d\n",
display->name, rc);
goto unlock;
}
rc = user_len;
unlock:
mutex_unlock(&display->display_lock);
error:
kfree(buf);
return rc;
}
static ssize_t debugfs_misr_read(struct file *file,
char __user *user_buf,
size_t user_len,
loff_t *ppos)
{
struct dsi_display *display = file->private_data;
char *buf;
u32 len = 0;
int rc = 0;
struct dsi_ctrl *dsi_ctrl;
int i;
u32 misr;
size_t max_len = min_t(size_t, user_len, MISR_BUFF_SIZE);
if (!display)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(max_len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
mutex_lock(&display->display_lock);
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_ON);
if (rc) {
pr_err("[%s] failed to enable DSI core clocks, rc=%d\n",
display->name, rc);
goto error;
}
for (i = 0; i < display->ctrl_count; i++) {
dsi_ctrl = display->ctrl[i].ctrl;
misr = dsi_ctrl_collect_misr(display->ctrl[i].ctrl);
len += snprintf((buf + len), max_len - len,
"DSI_%d MISR: 0x%x\n", dsi_ctrl->cell_index, misr);
if (len >= max_len)
break;
}
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_OFF);
if (rc) {
pr_err("[%s] failed to disable DSI core clocks, rc=%d\n",
display->name, rc);
goto error;
}
if (copy_to_user(user_buf, buf, len)) {
rc = -EFAULT;
goto error;
}
*ppos += len;
error:
mutex_unlock(&display->display_lock);
kfree(buf);
return len;
}
static ssize_t debugfs_esd_trigger_check(struct file *file,
const char __user *user_buf,
size_t user_len,
loff_t *ppos)
{
struct dsi_display *display = file->private_data;
char *buf;
int rc = 0;
u32 esd_trigger;
if (!display)
return -ENODEV;
if (*ppos)
return 0;
if (user_len > sizeof(u32))
return -EINVAL;
buf = kzalloc(user_len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
if (copy_from_user(buf, user_buf, user_len)) {
rc = -EINVAL;
goto error;
}
buf[user_len] = '\0'; /* terminate the string */
if (kstrtouint(buf, 10, &esd_trigger)) {
rc = -EINVAL;
goto error;
}
if (esd_trigger != 1) {
rc = -EINVAL;
goto error;
}
display->esd_trigger = esd_trigger;
if (display->esd_trigger) {
rc = dsi_panel_trigger_esd_attack(display->panel);
if (rc) {
pr_err("Failed to trigger ESD attack\n");
goto error;
}
}
rc = user_len;
error:
kfree(buf);
return rc;
}
static ssize_t debugfs_alter_esd_check_mode(struct file *file,
const char __user *user_buf,
size_t user_len,
loff_t *ppos)
{
struct dsi_display *display = file->private_data;
struct drm_panel_esd_config *esd_config;
char *buf;
int rc = 0;
size_t len = min_t(size_t, user_len, ESD_MODE_STRING_MAX_LEN);
if (!display)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
if (copy_from_user(buf, user_buf, user_len)) {
rc = -EINVAL;
goto error;
}
buf[len] = '\0'; /* terminate the string */
if (!display->panel) {
rc = -EINVAL;
goto error;
}
esd_config = &display->panel->esd_config;
if (!esd_config) {
pr_err("Invalid panel esd config\n");
rc = -EINVAL;
goto error;
}
if (!esd_config->esd_enabled)
goto error;
if (!strcmp(buf, "te_signal_check\n")) {
esd_config->status_mode = ESD_MODE_PANEL_TE;
dsi_display_change_te_irq_status(display, true);
}
if (!strcmp(buf, "reg_read\n")) {
rc = dsi_panel_parse_esd_reg_read_configs(display->panel,
display->panel_of);
if (rc) {
pr_err("failed to alter esd check mode,rc=%d\n",
rc);
rc = user_len;
goto error;
}
esd_config->status_mode = ESD_MODE_REG_READ;
if (dsi_display_is_te_based_esd(display))
dsi_display_change_te_irq_status(display, false);
}
rc = len;
error:
kfree(buf);
return rc;
}
static ssize_t debugfs_read_esd_check_mode(struct file *file,
char __user *user_buf,
size_t user_len,
loff_t *ppos)
{
struct dsi_display *display = file->private_data;
struct drm_panel_esd_config *esd_config;
char *buf;
int rc = 0;
size_t len = min_t(size_t, user_len, ESD_MODE_STRING_MAX_LEN);
if (!display)
return -ENODEV;
if (*ppos)
return 0;
if (!display->panel) {
pr_err("invalid panel data\n");
return -EINVAL;
}
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
esd_config = &display->panel->esd_config;
if (!esd_config) {
pr_err("Invalid panel esd config\n");
rc = -EINVAL;
goto error;
}
if (!esd_config->esd_enabled) {
rc = snprintf(buf, len, "ESD feature not enabled");
goto output_mode;
}
if (esd_config->status_mode == ESD_MODE_REG_READ)
rc = snprintf(buf, len, "reg_read");
if (esd_config->status_mode == ESD_MODE_PANEL_TE)
rc = snprintf(buf, len, "te_signal_check");
output_mode:
if (!rc) {
rc = -EINVAL;
goto error;
}
if (copy_to_user(user_buf, buf, len)) {
rc = -EFAULT;
goto error;
}
*ppos += len;
error:
kfree(buf);
return len;
}
static const struct file_operations dump_info_fops = {
.open = simple_open,
.read = debugfs_dump_info_read,
};
static const struct file_operations misr_data_fops = {
.open = simple_open,
.read = debugfs_misr_read,
.write = debugfs_misr_setup,
};
static const struct file_operations esd_trigger_fops = {
.open = simple_open,
.write = debugfs_esd_trigger_check,
};
static const struct file_operations esd_check_mode_fops = {
.open = simple_open,
.write = debugfs_alter_esd_check_mode,
.read = debugfs_read_esd_check_mode,
};
static int dsi_display_debugfs_init(struct dsi_display *display)
{
int rc = 0;
struct dentry *dir, *dump_file, *misr_data;
char name[MAX_NAME_SIZE];
int i;
dir = debugfs_create_dir(display->name, NULL);
if (IS_ERR_OR_NULL(dir)) {
rc = PTR_ERR(dir);
pr_err("[%s] debugfs create dir failed, rc = %d\n",
display->name, rc);
goto error;
}
dump_file = debugfs_create_file("dump_info",
0400,
dir,
display,
&dump_info_fops);
if (IS_ERR_OR_NULL(dump_file)) {
rc = PTR_ERR(dump_file);
pr_err("[%s] debugfs create dump info file failed, rc=%d\n",
display->name, rc);
goto error_remove_dir;
}
dump_file = debugfs_create_file("esd_trigger",
0644,
dir,
display,
&esd_trigger_fops);
if (IS_ERR_OR_NULL(dump_file)) {
rc = PTR_ERR(dump_file);
pr_err("[%s] debugfs for esd trigger file failed, rc=%d\n",
display->name, rc);
goto error_remove_dir;
}
dump_file = debugfs_create_file("esd_check_mode",
0644,
dir,
display,
&esd_check_mode_fops);
if (IS_ERR_OR_NULL(dump_file)) {
rc = PTR_ERR(dump_file);
pr_err("[%s] debugfs for esd check mode failed, rc=%d\n",
display->name, rc);
goto error_remove_dir;
}
misr_data = debugfs_create_file("misr_data",
0600,
dir,
display,
&misr_data_fops);
if (IS_ERR_OR_NULL(misr_data)) {
rc = PTR_ERR(misr_data);
pr_err("[%s] debugfs create misr datafile failed, rc=%d\n",
display->name, rc);
goto error_remove_dir;
}
for (i = 0; i < display->ctrl_count; i++) {
struct msm_dsi_phy *phy = display->ctrl[i].phy;
if (!phy || !phy->name)
continue;
snprintf(name, ARRAY_SIZE(name),
"%s_allow_phy_power_off", phy->name);
dump_file = debugfs_create_bool(name, 0600, dir,
&phy->allow_phy_power_off);
if (IS_ERR_OR_NULL(dump_file)) {
rc = PTR_ERR(dump_file);
pr_err("[%s] debugfs create %s failed, rc=%d\n",
display->name, name, rc);
goto error_remove_dir;
}
snprintf(name, ARRAY_SIZE(name),
"%s_regulator_min_datarate_bps", phy->name);
dump_file = debugfs_create_u32(name, 0600, dir,
&phy->regulator_min_datarate_bps);
if (IS_ERR_OR_NULL(dump_file)) {
rc = PTR_ERR(dump_file);
pr_err("[%s] debugfs create %s failed, rc=%d\n",
display->name, name, rc);
goto error_remove_dir;
}
}
if (!debugfs_create_bool("ulps_enable", 0600, dir,
&display->panel->ulps_enabled)) {
pr_err("[%s] debugfs create ulps enable file failed\n",
display->name);
goto error_remove_dir;
}
if (!debugfs_create_bool("ulps_suspend_enable", 0600, dir,
&display->panel->ulps_suspend_enabled)) {
pr_err("[%s] debugfs create ulps-suspend enable file failed\n",
display->name);
goto error_remove_dir;
}
display->root = dir;
return rc;
error_remove_dir:
debugfs_remove(dir);
error:
return rc;
}
static int dsi_display_debugfs_deinit(struct dsi_display *display)
{
debugfs_remove_recursive(display->root);
return 0;
}
static void adjust_timing_by_ctrl_count(const struct dsi_display *display,
struct dsi_display_mode *mode)
{
if (display->ctrl_count > 1) {
mode->timing.h_active /= display->ctrl_count;
mode->timing.h_front_porch /= display->ctrl_count;
mode->timing.h_sync_width /= display->ctrl_count;
mode->timing.h_back_porch /= display->ctrl_count;
mode->timing.h_skew /= display->ctrl_count;
mode->pixel_clk_khz /= display->ctrl_count;
}
}
static int dsi_display_is_ulps_req_valid(struct dsi_display *display,
bool enable)
{
/* TODO: make checks based on cont. splash */
int splash_enabled = false;
pr_debug("checking ulps req validity\n");
if (!dsi_panel_ulps_feature_enabled(display->panel) &&
!display->panel->ulps_suspend_enabled) {
pr_debug("%s: ULPS feature is not enabled\n", __func__);
return false;
}
if (!dsi_panel_initialized(display->panel) &&
!display->panel->ulps_suspend_enabled) {
pr_debug("%s: panel not yet initialized\n", __func__);
return false;
}
if (enable && display->ulps_enabled) {
pr_debug("ULPS already enabled\n");
return false;
} else if (!enable && !display->ulps_enabled) {
pr_debug("ULPS already disabled\n");
return false;
}
/*
* No need to enter ULPS when transitioning from splash screen to
* boot animation since it is expected that the clocks would be turned
* right back on.
*/
if (enable && splash_enabled)
return false;
return true;
}
/**
* dsi_display_set_ulps() - set ULPS state for DSI lanes.
* @dsi_display: DSI display handle.
* @enable: enable/disable ULPS.
*
* ULPS can be enabled/disabled after DSI host engine is turned on.
*
* Return: error code.
*/
static int dsi_display_set_ulps(struct dsi_display *display, bool enable)
{
int rc = 0;
int i = 0;
struct dsi_display_ctrl *m_ctrl, *ctrl;
if (!display) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (!dsi_display_is_ulps_req_valid(display, enable)) {
pr_debug("%s: skipping ULPS config, enable=%d\n",
__func__, enable);
return 0;
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
rc = dsi_ctrl_set_ulps(m_ctrl->ctrl, enable);
if (rc) {
pr_err("Ulps controller state change(%d) failed\n", enable);
return rc;
}
rc = dsi_phy_set_ulps(m_ctrl->phy, &display->config, enable,
display->clamp_enabled);
if (rc) {
pr_err("Ulps PHY state change(%d) failed\n", enable);
return rc;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_ulps(ctrl->ctrl, enable);
if (rc) {
pr_err("Ulps controller state change(%d) failed\n",
enable);
return rc;
}
rc = dsi_phy_set_ulps(ctrl->phy, &display->config, enable,
display->clamp_enabled);
if (rc) {
pr_err("Ulps PHY state change(%d) failed\n", enable);
return rc;
}
}
display->ulps_enabled = enable;
return 0;
}
/**
* dsi_display_set_clamp() - set clamp state for DSI IO.
* @dsi_display: DSI display handle.
* @enable: enable/disable clamping.
*
* Return: error code.
*/
static int dsi_display_set_clamp(struct dsi_display *display, bool enable)
{
int rc = 0;
int i = 0;
struct dsi_display_ctrl *m_ctrl, *ctrl;
bool ulps_enabled = false;
if (!display) {
pr_err("Invalid params\n");
return -EINVAL;
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
ulps_enabled = display->ulps_enabled;
/*
* Clamp control can be either through the DSI controller or
* the DSI PHY depending on hardware variation
*/
rc = dsi_ctrl_set_clamp_state(m_ctrl->ctrl, enable, ulps_enabled);
if (rc) {
pr_err("DSI ctrl clamp state change(%d) failed\n", enable);
return rc;
}
rc = dsi_phy_set_clamp_state(m_ctrl->phy, enable);
if (rc) {
pr_err("DSI phy clamp state change(%d) failed\n", enable);
return rc;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_clamp_state(ctrl->ctrl, enable, ulps_enabled);
if (rc) {
pr_err("DSI Clamp state change(%d) failed\n", enable);
return rc;
}
rc = dsi_phy_set_clamp_state(ctrl->phy, enable);
if (rc) {
pr_err("DSI phy clamp state change(%d) failed\n",
enable);
return rc;
}
pr_debug("Clamps %s for ctrl%d\n",
enable ? "enabled" : "disabled", i);
}
display->clamp_enabled = enable;
return 0;
}
/**
* dsi_display_setup_ctrl() - setup DSI controller.
* @dsi_display: DSI display handle.
*
* Return: error code.
*/
static int dsi_display_ctrl_setup(struct dsi_display *display)
{
int rc = 0;
int i = 0;
struct dsi_display_ctrl *ctrl, *m_ctrl;
if (!display) {
pr_err("Invalid params\n");
return -EINVAL;
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
rc = dsi_ctrl_setup(m_ctrl->ctrl);
if (rc) {
pr_err("DSI controller setup failed\n");
return rc;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_setup(ctrl->ctrl);
if (rc) {
pr_err("DSI controller setup failed\n");
return rc;
}
}
return 0;
}
static int dsi_display_phy_enable(struct dsi_display *display);
/**
* dsi_display_phy_idle_on() - enable DSI PHY while coming out of idle screen.
* @dsi_display: DSI display handle.
* @mmss_clamp: True if clamp is enabled.
*
* Return: error code.
*/
static int dsi_display_phy_idle_on(struct dsi_display *display,
bool mmss_clamp)
{
int rc = 0;
int i = 0;
struct dsi_display_ctrl *m_ctrl, *ctrl;
if (!display) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (mmss_clamp && !display->phy_idle_power_off) {
dsi_display_phy_enable(display);
return 0;
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
rc = dsi_phy_idle_ctrl(m_ctrl->phy, true);
if (rc) {
pr_err("DSI controller setup failed\n");
return rc;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_phy_idle_ctrl(ctrl->phy, true);
if (rc) {
pr_err("DSI controller setup failed\n");
return rc;
}
}
display->phy_idle_power_off = false;
return 0;
}
/**
* dsi_display_phy_idle_off() - disable DSI PHY while going to idle screen.
* @dsi_display: DSI display handle.
*
* Return: error code.
*/
static int dsi_display_phy_idle_off(struct dsi_display *display)
{
int rc = 0;
int i = 0;
struct dsi_display_ctrl *m_ctrl, *ctrl;
if (!display) {
pr_err("Invalid params\n");
return -EINVAL;
}
for (i = 0; i < display->ctrl_count; i++) {
struct msm_dsi_phy *phy = display->ctrl[i].phy;
if (!phy)
continue;
if (!phy->allow_phy_power_off) {
pr_debug("phy doesn't support this feature\n");
return 0;
}
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
rc = dsi_phy_idle_ctrl(m_ctrl->phy, false);
if (rc) {
pr_err("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
return rc;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_phy_idle_ctrl(ctrl->phy, false);
if (rc) {
pr_err("DSI controller setup failed\n");
return rc;
}
}
display->phy_idle_power_off = true;
return 0;
}
void dsi_display_enable_event(struct dsi_display *display,
uint32_t event_idx, struct dsi_event_cb_info *event_info,
bool enable)
{
uint32_t irq_status_idx = DSI_STATUS_INTERRUPT_COUNT;
int i;
if (!display) {
pr_err("invalid display\n");
return;
}
if (event_info)
event_info->event_idx = event_idx;
switch (event_idx) {
case SDE_CONN_EVENT_VID_DONE:
irq_status_idx = DSI_SINT_VIDEO_MODE_FRAME_DONE;
break;
case SDE_CONN_EVENT_CMD_DONE:
irq_status_idx = DSI_SINT_CMD_FRAME_DONE;
break;
case SDE_CONN_EVENT_VID_FIFO_OVERFLOW:
case SDE_CONN_EVENT_CMD_FIFO_UNDERFLOW:
if (event_info) {
for (i = 0; i < display->ctrl_count; i++)
display->ctrl[i].ctrl->recovery_cb =
*event_info;
}
default:
/* nothing to do */
pr_debug("[%s] unhandled event %d\n", display->name, event_idx);
return;
}
if (enable) {
for (i = 0; i < display->ctrl_count; i++)
dsi_ctrl_enable_status_interrupt(
display->ctrl[i].ctrl, irq_status_idx,
event_info);
} else {
for (i = 0; i < display->ctrl_count; i++)
dsi_ctrl_disable_status_interrupt(
display->ctrl[i].ctrl, irq_status_idx);
}
}
/**
* dsi_config_host_engine_state_for_cont_splash()- update host engine state
* during continuous splash.
* @display: Handle to dsi display
*
*/
static void dsi_config_host_engine_state_for_cont_splash
(struct dsi_display *display)
{
int i;
struct dsi_display_ctrl *ctrl;
enum dsi_engine_state host_state = DSI_CTRL_ENGINE_ON;
/* Sequence does not matter for split dsi usecases */
for (i = 0; (i < display->ctrl_count) &&
(i < MAX_DSI_CTRLS_PER_DISPLAY); i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
dsi_ctrl_update_host_engine_state_for_cont_splash(ctrl->ctrl,
host_state);
}
}
static int dsi_display_ctrl_power_on(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
/* Sequence does not matter for split dsi usecases */
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
rc = dsi_ctrl_set_power_state(ctrl->ctrl,
DSI_CTRL_POWER_VREG_ON);
if (rc) {
pr_err("[%s] Failed to set power state, rc=%d\n",
ctrl->ctrl->name, rc);
goto error;
}
}
return rc;
error:
for (i = i - 1; i >= 0; i--) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
(void)dsi_ctrl_set_power_state(ctrl->ctrl,
DSI_CTRL_POWER_VREG_OFF);
}
return rc;
}
static int dsi_display_ctrl_power_off(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
/* Sequence does not matter for split dsi usecases */
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
rc = dsi_ctrl_set_power_state(ctrl->ctrl,
DSI_CTRL_POWER_VREG_OFF);
if (rc) {
pr_err("[%s] Failed to power off, rc=%d\n",
ctrl->ctrl->name, rc);
goto error;
}
}
error:
return rc;
}
static void dsi_display_parse_cmdline_topology(struct dsi_display *display,
unsigned int display_type)
{
char *boot_str = NULL;
char *str = NULL;
unsigned long value;
if (display_type >= MAX_DSI_ACTIVE_DISPLAY) {
pr_err("display_type=%d not supported\n", display_type);
return;
}
if (display_type == DSI_PRIMARY)
boot_str = dsi_display_primary;
else
boot_str = dsi_display_secondary;
str = strnstr(boot_str, ":config", strlen(boot_str));
if (!str)
return;
if (kstrtol(str + strlen(":config"), INT_BASE_10,
(unsigned long *)&value)) {
pr_err("invalid config index override: %s\n", boot_str);
return;
}
display->cmdline_topology = value;
str = strnstr(boot_str, ":timing", strlen(boot_str));
if (!str)
return;
if (kstrtol(str + strlen(":timing"), INT_BASE_10,
(unsigned long *)&value)) {
pr_err("invalid timing index override: %s. resetting both timing and config\n",
boot_str);
display->cmdline_topology = NO_OVERRIDE;
return;
}
display->cmdline_timing = value;
}
/**
* dsi_display_name_compare()- compare whether DSI display name matches.
* @node: Pointer to device node structure
* @display_name: Name of display to validate
*
* Return: returns a bool specifying whether given display is active
*/
static bool dsi_display_name_compare(struct device_node *node,
const char *display_name, int index)
{
if (index >= MAX_DSI_ACTIVE_DISPLAY) {
pr_err("Invalid Index\n");
return false;
}
if (boot_displays[index].boot_disp_en) {
if (!(strcmp(&boot_displays[index].name[0], display_name))) {
boot_displays[index].node = node;
return true;
}
}
return false;
}
/**
* dsi_display_parse_boot_display_selection()- Parse DSI boot display name
*
* Return: returns error status
*/
static int dsi_display_parse_boot_display_selection(void)
{
char *pos = NULL;
char disp_buf[MAX_CMDLINE_PARAM_LEN] = {'\0'};
int i, j, num_displays;
if (strlen(dsi_display_primary) == 0)
return -EINVAL;
if ((strlen(dsi_display_secondary) > 0))
num_displays = MAX_DSI_ACTIVE_DISPLAY;
else {
/*
* Initialize secondary dsi variables
* for the senario where dsi_display1
* is null but dsi_display0 is valid
*/
/* Max number of displays will be one->only Primary */
num_displays = 1;
boot_displays[DSI_SECONDARY].is_primary = false;
boot_displays[DSI_SECONDARY].name[0] = '\0';
}
for (i = 0; i < num_displays; i++) {
boot_displays[i].is_primary = false;
if (i == DSI_PRIMARY) {
strlcpy(disp_buf, &dsi_display_primary[0],
sizeof(dsi_display_primary));
pos = strnstr(disp_buf, ":",
sizeof(dsi_display_primary));
} else {
strlcpy(disp_buf, &dsi_display_secondary[0],
sizeof(dsi_display_secondary));
pos = strnstr(disp_buf, ":",
sizeof(dsi_display_secondary));
}
/* Use ':' as a delimiter to retrieve the display name */
if (!pos) {
pr_debug("display name[%s]is not valid\n", disp_buf);
continue;
}
for (j = 0; (disp_buf + j) < pos; j++)
boot_displays[i].name[j] = *(disp_buf + j);
boot_displays[i].name[j] = '\0';
if (i == DSI_PRIMARY)
boot_displays[i].is_primary = true;
boot_displays[i].boot_disp_en = true;
}
return 0;
}
/**
* validate_dsi_display_selection()- validate boot DSI display selection
*
* Return: returns true when both displays have unique configurations
*/
static bool validate_dsi_display_selection(void)
{
int i, j;
int rc = 0;
int phy_count = 0;
int ctrl_count = 0;
int index = 0;
bool ctrl_flags[MAX_DSI_ACTIVE_DISPLAY] = {false, false};
bool phy_flags[MAX_DSI_ACTIVE_DISPLAY] = {false, false};
struct device_node *node, *ctrl_node, *phy_node;
for (i = 0; i < MAX_DSI_ACTIVE_DISPLAY; i++) {
node = boot_displays[i].node;
if (!node)
continue;
ctrl_count = of_count_phandle_with_args(node, "qcom,dsi-ctrl",
NULL);
for (j = 0; j < ctrl_count; j++) {
ctrl_node = of_parse_phandle(node, "qcom,dsi-ctrl", j);
rc = of_property_read_u32(ctrl_node, "cell-index",
&index);
of_node_put(ctrl_node);
if (rc) {
pr_err("cell index not set for ctrl_nodes\n");
return false;
}
if (ctrl_flags[index])
return false;
ctrl_flags[index] = true;
}
phy_count = of_count_phandle_with_args(node, "qcom,dsi-phy",
NULL);
for (j = 0; j < phy_count; j++) {
phy_node = of_parse_phandle(node, "qcom,dsi-phy", j);
rc = of_property_read_u32(phy_node, "cell-index",
&index);
of_node_put(phy_node);
if (rc) {
pr_err("cell index not set phy_nodes\n");
return false;
}
if (phy_flags[index])
return false;
phy_flags[index] = true;
}
}
return true;
}
struct device_node *dsi_display_get_boot_display(int index)
{
pr_err("index = %d\n", index);
if ((index == DSI_PRIMARY)
&& (primary_active_node))
return primary_active_node;
else if ((index == DSI_SECONDARY)
&& (secondary_active_node))
return secondary_active_node;
else
return NULL;
}
static int dsi_display_phy_power_on(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
/* Sequence does not matter for split dsi usecases */
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
rc = dsi_phy_set_power_state(ctrl->phy, true);
if (rc) {
pr_err("[%s] Failed to set power state, rc=%d\n",
ctrl->phy->name, rc);
goto error;
}
}
return rc;
error:
for (i = i - 1; i >= 0; i--) {
ctrl = &display->ctrl[i];
if (!ctrl->phy)
continue;
(void)dsi_phy_set_power_state(ctrl->phy, false);
}
return rc;
}
static int dsi_display_phy_power_off(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
/* Sequence does not matter for split dsi usecases */
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->phy)
continue;
rc = dsi_phy_set_power_state(ctrl->phy, false);
if (rc) {
pr_err("[%s] Failed to power off, rc=%d\n",
ctrl->ctrl->name, rc);
goto error;
}
}
error:
return rc;
}
static int dsi_display_set_clk_src(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
/*
* In case of split DSI usecases, the clock for master controller should
* be enabled before the other controller. Master controller in the
* clock context refers to the controller that sources the clock.
*/
m_ctrl = &display->ctrl[display->clk_master_idx];
rc = dsi_ctrl_set_clock_source(m_ctrl->ctrl,
&display->clock_info.src_clks);
if (rc) {
pr_err("[%s] failed to set source clocks for master, rc=%d\n",
display->name, rc);
return rc;
}
/* Turn on rest of the controllers */
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_clock_source(ctrl->ctrl,
&display->clock_info.src_clks);
if (rc) {
pr_err("[%s] failed to set source clocks, rc=%d\n",
display->name, rc);
return rc;
}
}
return 0;
}
static int dsi_display_phy_reset_config(struct dsi_display *display,
bool enable)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
for (i = 0 ; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_phy_reset_config(ctrl->ctrl, enable);
if (rc) {
pr_err("[%s] failed to %s phy reset, rc=%d\n",
display->name, enable ? "mask" : "unmask", rc);
return rc;
}
}
return 0;
}
static void dsi_display_toggle_resync_fifo(struct dsi_display *display)
{
struct dsi_display_ctrl *ctrl;
int i;
if (!display)
return;
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
dsi_phy_toggle_resync_fifo(ctrl->phy);
}
}
static int dsi_display_ctrl_update(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
for (i = 0 ; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_host_timing_update(ctrl->ctrl);
if (rc) {
pr_err("[%s] failed to update host_%d, rc=%d\n",
display->name, i, rc);
goto error_host_deinit;
}
}
return 0;
error_host_deinit:
for (i = i - 1; i >= 0; i--) {
ctrl = &display->ctrl[i];
(void)dsi_ctrl_host_deinit(ctrl->ctrl);
}
return rc;
}
static int dsi_display_ctrl_init(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
/* when ULPS suspend feature is enabled, we will keep the lanes in
* ULPS during suspend state and clamp DSI phy. Hence while resuming
* we will programe DSI controller as part of core clock enable.
* After that we should not re-configure DSI controller again here for
* usecases where we are resuming from ulps suspend as it might put
* the HW in bad state.
*/
if (!display->panel->ulps_suspend_enabled || !display->ulps_enabled) {
for (i = 0 ; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_host_init(ctrl->ctrl,
display->is_cont_splash_enabled);
if (rc) {
pr_err("[%s] failed to init host_%d, rc=%d\n",
display->name, i, rc);
goto error_host_deinit;
}
}
} else {
for (i = 0 ; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_update_host_init_state(ctrl->ctrl, true);
if (rc)
pr_debug("host init update failed rc=%d\n", rc);
}
}
return rc;
error_host_deinit:
for (i = i - 1; i >= 0; i--) {
ctrl = &display->ctrl[i];
(void)dsi_ctrl_host_deinit(ctrl->ctrl);
}
return rc;
}
static int dsi_display_ctrl_deinit(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
for (i = 0 ; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_host_deinit(ctrl->ctrl);
if (rc) {
pr_err("[%s] failed to deinit host_%d, rc=%d\n",
display->name, i, rc);
}
}
return rc;
}
static int dsi_display_ctrl_host_enable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
/* Host engine states are already taken care for
* continuous splash case
*/
if (display->is_cont_splash_enabled) {
pr_debug("cont splash enabled, host enable not required\n");
return 0;
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
rc = dsi_ctrl_set_host_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_ON);
if (rc) {
pr_err("[%s] failed to enable host engine, rc=%d\n",
display->name, rc);
goto error;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_host_engine_state(ctrl->ctrl,
DSI_CTRL_ENGINE_ON);
if (rc) {
pr_err("[%s] failed to enable sl host engine, rc=%d\n",
display->name, rc);
goto error_disable_master;
}
}
return rc;
error_disable_master:
(void)dsi_ctrl_set_host_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF);
error:
return rc;
}
static int dsi_display_ctrl_host_disable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
m_ctrl = &display->ctrl[display->cmd_master_idx];
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_host_engine_state(ctrl->ctrl,
DSI_CTRL_ENGINE_OFF);
if (rc)
pr_err("[%s] failed to disable host engine, rc=%d\n",
display->name, rc);
}
rc = dsi_ctrl_set_host_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF);
if (rc) {
pr_err("[%s] failed to disable host engine, rc=%d\n",
display->name, rc);
goto error;
}
error:
return rc;
}
static int dsi_display_vid_engine_enable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
m_ctrl = &display->ctrl[display->video_master_idx];
rc = dsi_ctrl_set_vid_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_ON);
if (rc) {
pr_err("[%s] failed to enable vid engine, rc=%d\n",
display->name, rc);
goto error;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_vid_engine_state(ctrl->ctrl,
DSI_CTRL_ENGINE_ON);
if (rc) {
pr_err("[%s] failed to enable vid engine, rc=%d\n",
display->name, rc);
goto error_disable_master;
}
}
return rc;
error_disable_master:
(void)dsi_ctrl_set_vid_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF);
error:
return rc;
}
static int dsi_display_vid_engine_disable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
m_ctrl = &display->ctrl[display->video_master_idx];
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_vid_engine_state(ctrl->ctrl,
DSI_CTRL_ENGINE_OFF);
if (rc)
pr_err("[%s] failed to disable vid engine, rc=%d\n",
display->name, rc);
}
rc = dsi_ctrl_set_vid_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF);
if (rc)
pr_err("[%s] failed to disable mvid engine, rc=%d\n",
display->name, rc);
return rc;
}
static int dsi_display_phy_enable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
enum dsi_phy_pll_source m_src = DSI_PLL_SOURCE_STANDALONE;
m_ctrl = &display->ctrl[display->clk_master_idx];
if (display->ctrl_count > 1)
m_src = DSI_PLL_SOURCE_NATIVE;
rc = dsi_phy_enable(m_ctrl->phy,
&display->config,
m_src,
true,
display->is_cont_splash_enabled);
if (rc) {
pr_err("[%s] failed to enable DSI PHY, rc=%d\n",
display->name, rc);
goto error;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_phy_enable(ctrl->phy,
&display->config,
DSI_PLL_SOURCE_NON_NATIVE,
true,
display->is_cont_splash_enabled);
if (rc) {
pr_err("[%s] failed to enable DSI PHY, rc=%d\n",
display->name, rc);
goto error_disable_master;
}
}
return rc;
error_disable_master:
(void)dsi_phy_disable(m_ctrl->phy);
error:
return rc;
}
static int dsi_display_phy_disable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
m_ctrl = &display->ctrl[display->clk_master_idx];
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_phy_disable(ctrl->phy);
if (rc)
pr_err("[%s] failed to disable DSI PHY, rc=%d\n",
display->name, rc);
}
rc = dsi_phy_disable(m_ctrl->phy);
if (rc)
pr_err("[%s] failed to disable DSI PHY, rc=%d\n",
display->name, rc);
return rc;
}
static int dsi_display_wake_up(struct dsi_display *display)
{
return 0;
}
static int dsi_display_broadcast_cmd(struct dsi_display *display,
const struct mipi_dsi_msg *msg)
{
int rc = 0;
u32 flags, m_flags;
struct dsi_display_ctrl *ctrl, *m_ctrl;
int i;
m_flags = (DSI_CTRL_CMD_BROADCAST | DSI_CTRL_CMD_BROADCAST_MASTER |
DSI_CTRL_CMD_DEFER_TRIGGER | DSI_CTRL_CMD_FETCH_MEMORY);
flags = (DSI_CTRL_CMD_BROADCAST | DSI_CTRL_CMD_DEFER_TRIGGER |
DSI_CTRL_CMD_FETCH_MEMORY);
if ((msg->flags & MIPI_DSI_MSG_LASTCOMMAND)) {
flags |= DSI_CTRL_CMD_LAST_COMMAND;
m_flags |= DSI_CTRL_CMD_LAST_COMMAND;
}
/*
* 1. Setup commands in FIFO
* 2. Trigger commands
*/
m_ctrl = &display->ctrl[display->cmd_master_idx];
rc = dsi_ctrl_cmd_transfer(m_ctrl->ctrl, msg, m_flags);
if (rc) {
pr_err("[%s] cmd transfer failed on master,rc=%d\n",
display->name, rc);
goto error;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (ctrl == m_ctrl)
continue;
rc = dsi_ctrl_cmd_transfer(ctrl->ctrl, msg, flags);
if (rc) {
pr_err("[%s] cmd transfer failed, rc=%d\n",
display->name, rc);
goto error;
}
rc = dsi_ctrl_cmd_tx_trigger(ctrl->ctrl, flags);
if (rc) {
pr_err("[%s] cmd trigger failed, rc=%d\n",
display->name, rc);
goto error;
}
}
rc = dsi_ctrl_cmd_tx_trigger(m_ctrl->ctrl, m_flags);
if (rc) {
pr_err("[%s] cmd trigger failed for master, rc=%d\n",
display->name, rc);
goto error;
}
error:
return rc;
}
static int dsi_display_phy_sw_reset(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
/* For continuous splash use case ctrl states are updated
* separately and hence we do an early return
*/
if (display->is_cont_splash_enabled) {
pr_debug("cont splash enabled, phy sw reset not required\n");
return 0;
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
rc = dsi_ctrl_phy_sw_reset(m_ctrl->ctrl);
if (rc) {
pr_err("[%s] failed to reset phy, rc=%d\n", display->name, rc);
goto error;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_phy_sw_reset(ctrl->ctrl);
if (rc) {
pr_err("[%s] failed to reset phy, rc=%d\n",
display->name, rc);
goto error;
}
}
error:
return rc;
}
/* initialize dsi_panel using ext bridge's setting */
static int dsi_display_populate_ext_bridge_config(struct dsi_display *display,
struct mipi_dsi_device *dsi)
{
struct dsi_panel *panel = display->panel;
if (!panel) {
pr_err("Invalid param\n");
return -EINVAL;
}
pr_debug("DSI[%s]: channel=%d, lanes=%d, format=%d, mode_flags=%lx\n",
dsi->name, dsi->channel, dsi->lanes,
dsi->format, dsi->mode_flags);
panel->host_config.data_lanes = 0;
if (dsi->lanes > 0)
panel->host_config.data_lanes |= DSI_DATA_LANE_0;
if (dsi->lanes > 1)
panel->host_config.data_lanes |= DSI_DATA_LANE_1;
if (dsi->lanes > 2)
panel->host_config.data_lanes |= DSI_DATA_LANE_2;
if (dsi->lanes > 3)
panel->host_config.data_lanes |= DSI_DATA_LANE_3;
switch (dsi->format) {
case MIPI_DSI_FMT_RGB888:
panel->host_config.dst_format = DSI_PIXEL_FORMAT_RGB888;
break;
case MIPI_DSI_FMT_RGB666:
panel->host_config.dst_format = DSI_PIXEL_FORMAT_RGB666_LOOSE;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
panel->host_config.dst_format = DSI_PIXEL_FORMAT_RGB666;
break;
case MIPI_DSI_FMT_RGB565:
default:
panel->host_config.dst_format = DSI_PIXEL_FORMAT_RGB565;
break;
}
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
panel->panel_mode = DSI_OP_VIDEO_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
panel->video_config.traffic_mode =
DSI_VIDEO_TRAFFIC_BURST_MODE;
else if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
panel->video_config.traffic_mode =
DSI_VIDEO_TRAFFIC_SYNC_PULSES;
else
panel->video_config.traffic_mode =
DSI_VIDEO_TRAFFIC_SYNC_START_EVENTS;
panel->video_config.hsa_lp11_en =
dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSA;
panel->video_config.hbp_lp11_en =
dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HBP;
panel->video_config.hfp_lp11_en =
dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HFP;
panel->video_config.pulse_mode_hsa_he =
dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE;
panel->video_config.bllp_lp11_en =
dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BLLP;
panel->video_config.eof_bllp_lp11_en =
dsi->mode_flags & MIPI_DSI_MODE_VIDEO_EOF_BLLP;
} else {
panel->panel_mode = DSI_OP_CMD_MODE;
pr_err("command mode not supported by ext bridge\n");
return -ENOTSUPP;
}
/* TODO: add calc for these 2 values */
panel->host_config.t_clk_post = 0x03;
panel->host_config.t_clk_pre = 0x24;
panel->bl_config.type = DSI_BACKLIGHT_UNKNOWN;
return 0;
}
static int dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
struct dsi_display *display = to_dsi_display(host);
int ret = 0;
if (!host || !dsi) {
pr_err("Invalid param\n");
return -EINVAL;
}
pr_debug("host attach\n");
if (dsi_display_has_ext_bridge(display))
ret = dsi_display_populate_ext_bridge_config(display, dsi);
return ret;
}
static int dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
pr_debug("host detach\n");
return 0;
}
static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct dsi_display *display;
int rc = 0, ret = 0;
if (!host || !msg) {
pr_err("Invalid params\n");
return 0;
}
display = to_dsi_display(host);
/* Avoid sending DCS commands when ESD recovery is pending */
if (atomic_read(&display->panel->esd_recovery_pending)) {
pr_debug("ESD recovery pending\n");
return 0;
}
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
if (rc) {
pr_err("[%s] failed to enable all DSI clocks, rc=%d\n",
display->name, rc);
goto error;
}
rc = dsi_display_wake_up(display);
if (rc) {
pr_err("[%s] failed to wake up display, rc=%d\n",
display->name, rc);
goto error_disable_clks;
}
rc = dsi_display_cmd_engine_enable(display);
if (rc) {
pr_err("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
goto error_disable_clks;
}
if (display->tx_cmd_buf == NULL) {
rc = dsi_host_alloc_cmd_tx_buffer(display);
if (rc) {
pr_err("failed to allocate cmd tx buffer memory\n");
goto error_disable_cmd_engine;
}
}
if (display->ctrl_count > 1 && !(msg->flags & MIPI_DSI_MSG_UNICAST)) {
rc = dsi_display_broadcast_cmd(display, msg);
if (rc) {
pr_err("[%s] cmd broadcast failed, rc=%d\n",
display->name, rc);
goto error_disable_cmd_engine;
}
} else {
int ctrl_idx = (msg->flags & MIPI_DSI_MSG_UNICAST) ?
msg->ctrl : 0;
rc = dsi_ctrl_cmd_transfer(display->ctrl[ctrl_idx].ctrl, msg,
DSI_CTRL_CMD_FETCH_MEMORY);
if (rc) {
pr_err("[%s] cmd transfer failed, rc=%d\n",
display->name, rc);
goto error_disable_cmd_engine;
}
}
error_disable_cmd_engine:
ret = dsi_display_cmd_engine_disable(display);
if (ret) {
pr_err("[%s]failed to disable DSI cmd engine, rc=%d\n",
display->name, ret);
}
error_disable_clks:
ret = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
if (ret) {
pr_err("[%s] failed to disable all DSI clocks, rc=%d\n",
display->name, ret);
}
error:
return rc;
}
static struct mipi_dsi_host_ops dsi_host_ops = {
.attach = dsi_host_attach,
.detach = dsi_host_detach,
.transfer = dsi_host_transfer,
};
static int dsi_display_mipi_host_init(struct dsi_display *display)
{
int rc = 0;
struct mipi_dsi_host *host = &display->host;
host->dev = &display->pdev->dev;
host->ops = &dsi_host_ops;
rc = mipi_dsi_host_register(host);
if (rc) {
pr_err("[%s] failed to register mipi dsi host, rc=%d\n",
display->name, rc);
goto error;
}
error:
return rc;
}
static int dsi_display_mipi_host_deinit(struct dsi_display *display)
{
int rc = 0;
struct mipi_dsi_host *host = &display->host;
mipi_dsi_host_unregister(host);
host->dev = NULL;
host->ops = NULL;
return rc;
}
static int dsi_display_clocks_deinit(struct dsi_display *display)
{
int rc = 0;
struct dsi_clk_link_set *src = &display->clock_info.src_clks;
struct dsi_clk_link_set *mux = &display->clock_info.mux_clks;
struct dsi_clk_link_set *shadow = &display->clock_info.shadow_clks;
if (src->byte_clk) {
devm_clk_put(&display->pdev->dev, src->byte_clk);
src->byte_clk = NULL;
}
if (src->pixel_clk) {
devm_clk_put(&display->pdev->dev, src->pixel_clk);
src->pixel_clk = NULL;
}
if (mux->byte_clk) {
devm_clk_put(&display->pdev->dev, mux->byte_clk);
mux->byte_clk = NULL;
}
if (mux->pixel_clk) {
devm_clk_put(&display->pdev->dev, mux->pixel_clk);
mux->pixel_clk = NULL;
}
if (shadow->byte_clk) {
devm_clk_put(&display->pdev->dev, shadow->byte_clk);
shadow->byte_clk = NULL;
}
if (shadow->pixel_clk) {
devm_clk_put(&display->pdev->dev, shadow->pixel_clk);
shadow->pixel_clk = NULL;
}
return rc;
}
static int dsi_display_clocks_init(struct dsi_display *display)
{
int rc = 0;
struct dsi_clk_link_set *src = &display->clock_info.src_clks;
struct dsi_clk_link_set *mux = &display->clock_info.mux_clks;
struct dsi_clk_link_set *shadow = &display->clock_info.shadow_clks;
src->byte_clk = devm_clk_get(&display->pdev->dev, "src_byte_clk");
if (IS_ERR_OR_NULL(src->byte_clk)) {
rc = PTR_ERR(src->byte_clk);
src->byte_clk = NULL;
pr_err("failed to get src_byte_clk, rc=%d\n", rc);
goto error;
}
src->pixel_clk = devm_clk_get(&display->pdev->dev, "src_pixel_clk");
if (IS_ERR_OR_NULL(src->pixel_clk)) {
rc = PTR_ERR(src->pixel_clk);
src->pixel_clk = NULL;
pr_err("failed to get src_pixel_clk, rc=%d\n", rc);
goto error;
}
mux->byte_clk = devm_clk_get(&display->pdev->dev, "mux_byte_clk");
if (IS_ERR_OR_NULL(mux->byte_clk)) {
rc = PTR_ERR(mux->byte_clk);
pr_debug("failed to get mux_byte_clk, rc=%d\n", rc);
mux->byte_clk = NULL;
/*
* Skip getting rest of clocks since one failed. This is a
* non-critical failure since these clocks are requied only for
* dynamic refresh use cases.
*/
rc = 0;
goto done;
};
mux->pixel_clk = devm_clk_get(&display->pdev->dev, "mux_pixel_clk");
if (IS_ERR_OR_NULL(mux->pixel_clk)) {
rc = PTR_ERR(mux->pixel_clk);
mux->pixel_clk = NULL;
pr_debug("failed to get mux_pixel_clk, rc=%d\n", rc);
/*
* Skip getting rest of clocks since one failed. This is a
* non-critical failure since these clocks are requied only for
* dynamic refresh use cases.
*/
rc = 0;
goto done;
};
shadow->byte_clk = devm_clk_get(&display->pdev->dev, "shadow_byte_clk");
if (IS_ERR_OR_NULL(shadow->byte_clk)) {
rc = PTR_ERR(shadow->byte_clk);
shadow->byte_clk = NULL;
pr_err("failed to get shadow_byte_clk, rc=%d\n", rc);
/*
* Skip getting rest of clocks since one failed. This is a
* non-critical failure since these clocks are requied only for
* dynamic refresh use cases.
*/
rc = 0;
goto done;
};
shadow->pixel_clk = devm_clk_get(&display->pdev->dev,
"shadow_pixel_clk");
if (IS_ERR_OR_NULL(shadow->pixel_clk)) {
rc = PTR_ERR(shadow->pixel_clk);
shadow->pixel_clk = NULL;
pr_err("failed to get shadow_pixel_clk, rc=%d\n", rc);
/*
* Skip getting rest of clocks since one failed. This is a
* non-critical failure since these clocks are requied only for
* dynamic refresh use cases.
*/
rc = 0;
goto done;
};
done:
return 0;
error:
(void)dsi_display_clocks_deinit(display);
return rc;
}
static int dsi_display_clk_ctrl_cb(void *priv,
struct dsi_clk_ctrl_info clk_state_info)
{
int rc = 0;
struct dsi_display *display = NULL;
void *clk_handle = NULL;
if (!priv) {
pr_err("Invalid params\n");
return -EINVAL;
}
display = priv;
if (clk_state_info.client == DSI_CLK_REQ_MDP_CLIENT) {
clk_handle = display->mdp_clk_handle;
} else if (clk_state_info.client == DSI_CLK_REQ_DSI_CLIENT) {
clk_handle = display->dsi_clk_handle;
} else {
pr_err("invalid clk handle, return error\n");
return -EINVAL;
}
/*
* TODO: Wait for CMD_MDP_DONE interrupt if MDP client tries
* to turn off DSI clocks.
*/
rc = dsi_display_clk_ctrl(clk_handle,
clk_state_info.clk_type, clk_state_info.clk_state);
if (rc) {
pr_err("[%s] failed to %d DSI %d clocks, rc=%d\n",
display->name, clk_state_info.clk_state,
clk_state_info.clk_type, rc);
return rc;
}
return 0;
}
static void dsi_display_ctrl_isr_configure(struct dsi_display *display, bool en)
{
int i;
struct dsi_display_ctrl *ctrl;
if (!display)
return;
for (i = 0; (i < display->ctrl_count) &&
(i < MAX_DSI_CTRLS_PER_DISPLAY); i++) {
ctrl = &display->ctrl[i];
if (!ctrl)
continue;
dsi_ctrl_isr_configure(ctrl->ctrl, en);
}
}
int dsi_pre_clkoff_cb(void *priv,
enum dsi_clk_type clk,
enum dsi_lclk_type l_type,
enum dsi_clk_state new_state)
{
int rc = 0;
struct dsi_display *display = priv;
if ((clk & DSI_LINK_CLK) && (new_state == DSI_CLK_OFF) &&
(l_type && DSI_LINK_LP_CLK)) {
/*
* If continuous clock is enabled then disable it
* before entering into ULPS Mode.
*/
if (display->panel->host_config.force_hs_clk_lane)
_dsi_display_continuous_clk_ctrl(display, false);
/*
* If ULPS feature is enabled, enter ULPS first.
* However, when blanking the panel, we should enter ULPS
* only if ULPS during suspend feature is enabled.
*/
if (!dsi_panel_initialized(display->panel)) {
if (display->panel->ulps_suspend_enabled)
rc = dsi_display_set_ulps(display, true);
} else if (dsi_panel_ulps_feature_enabled(display->panel)) {
rc = dsi_display_set_ulps(display, true);
}
if (rc)
pr_err("%s: failed enable ulps, rc = %d\n",
__func__, rc);
}
if ((clk & DSI_CORE_CLK) && (new_state == DSI_CLK_OFF)) {
/*
* Enable DSI clamps only if entering idle power collapse or
* when ULPS during suspend is enabled..
*/
if (dsi_panel_initialized(display->panel) ||
display->panel->ulps_suspend_enabled) {
dsi_display_phy_idle_off(display);
rc = dsi_display_set_clamp(display, true);
if (rc)
pr_err("%s: Failed to enable dsi clamps. rc=%d\n",
__func__, rc);
rc = dsi_display_phy_reset_config(display, false);
if (rc)
pr_err("%s: Failed to reset phy, rc=%d\n",
__func__, rc);
} else {
/* Make sure that controller is not in ULPS state when
* the DSI link is not active.
*/
rc = dsi_display_set_ulps(display, false);
if (rc)
pr_err("%s: failed to disable ulps. rc=%d\n",
__func__, rc);
}
/* dsi will not be able to serve irqs from here on */
dsi_display_ctrl_irq_update(display, false);
}
return rc;
}
int dsi_post_clkon_cb(void *priv,
enum dsi_clk_type clk,
enum dsi_lclk_type l_type,
enum dsi_clk_state curr_state)
{
int rc = 0;
struct dsi_display *display = priv;
bool mmss_clamp = false;
if ((clk & DSI_LINK_CLK) && (l_type & DSI_LINK_LP_CLK)) {
mmss_clamp = display->clamp_enabled;
/*
* controller setup is needed if coming out of idle
* power collapse with clamps enabled.
*/
if (mmss_clamp)
dsi_display_ctrl_setup(display);
/*
* Phy setup is needed if coming out of idle
* power collapse with clamps enabled.
*/
if (display->phy_idle_power_off || mmss_clamp)
dsi_display_phy_idle_on(display, mmss_clamp);
if (display->ulps_enabled && mmss_clamp) {
/*
* ULPS Entry Request. This is needed if the lanes were
* in ULPS prior to power collapse, since after
* power collapse and reset, the DSI controller resets
* back to idle state and not ULPS. This ulps entry
* request will transition the state of the DSI
* controller to ULPS which will match the state of the
* DSI phy. This needs to be done prior to disabling
* the DSI clamps.
*
* Also, reset the ulps flag so that ulps_config
* function would reconfigure the controller state to
* ULPS.
*/
display->ulps_enabled = false;
rc = dsi_display_set_ulps(display, true);
if (rc) {
pr_err("%s: Failed to enter ULPS. rc=%d\n",
__func__, rc);
goto error;
}
}
rc = dsi_display_phy_reset_config(display, true);
if (rc) {
pr_err("%s: Failed to reset phy, rc=%d\n",
__func__, rc);
goto error;
}
rc = dsi_display_set_clamp(display, false);
if (rc) {
pr_err("%s: Failed to disable dsi clamps. rc=%d\n",
__func__, rc);
goto error;
}
}
if ((clk & DSI_LINK_CLK) && (l_type & DSI_LINK_HS_CLK)) {
/*
* Toggle the resync FIFO everytime clock changes, except
* when cont-splash screen transition is going on.
* Toggling resync FIFO during cont splash transition
* can lead to blinks on the display.
*/
if (!display->is_cont_splash_enabled)
dsi_display_toggle_resync_fifo(display);
if (display->ulps_enabled) {
rc = dsi_display_set_ulps(display, false);
if (rc) {
pr_err("%s: failed to disable ulps, rc= %d\n",
__func__, rc);
goto error;
}
}
if (display->panel->host_config.force_hs_clk_lane)
_dsi_display_continuous_clk_ctrl(display, true);
}
/* enable dsi to serve irqs */
if (clk & DSI_CORE_CLK)
dsi_display_ctrl_irq_update(display, true);
error:
return rc;
}
int dsi_post_clkoff_cb(void *priv,
enum dsi_clk_type clk_type,
enum dsi_lclk_type l_type,
enum dsi_clk_state curr_state)
{
int rc = 0;
struct dsi_display *display = priv;
if (!display) {
pr_err("%s: Invalid arg\n", __func__);
return -EINVAL;
}
if ((clk_type & DSI_CORE_CLK) &&
(curr_state == DSI_CLK_OFF)) {
rc = dsi_display_phy_power_off(display);
if (rc)
pr_err("[%s] failed to power off PHY, rc=%d\n",
display->name, rc);
rc = dsi_display_ctrl_power_off(display);
if (rc)
pr_err("[%s] failed to power DSI vregs, rc=%d\n",
display->name, rc);
}
return rc;
}
int dsi_pre_clkon_cb(void *priv,
enum dsi_clk_type clk_type,
enum dsi_lclk_type l_type,
enum dsi_clk_state new_state)
{
int rc = 0;
struct dsi_display *display = priv;
if (!display) {
pr_err("%s: invalid input\n", __func__);
return -EINVAL;
}
if ((clk_type & DSI_CORE_CLK) && (new_state == DSI_CLK_ON)) {
/*
* Enable DSI core power
* 1.> PANEL_PM are controlled as part of
* panel_power_ctrl. Needed not be handled here.
* 2.> CORE_PM are controlled by dsi clk manager.
* 3.> CTRL_PM need to be enabled/disabled
* only during unblank/blank. Their state should
* not be changed during static screen.
*/
pr_debug("updating power states for ctrl and phy\n");
rc = dsi_display_ctrl_power_on(display);
if (rc) {
pr_err("[%s] failed to power on dsi controllers, rc=%d\n",
display->name, rc);
return rc;
}
rc = dsi_display_phy_power_on(display);
if (rc) {
pr_err("[%s] failed to power on dsi phy, rc = %d\n",
display->name, rc);
return rc;
}
pr_debug("%s: Enable DSI core power\n", __func__);
}
return rc;
}
static void __set_lane_map_v2(u8 *lane_map_v2,
enum dsi_phy_data_lanes lane0,
enum dsi_phy_data_lanes lane1,
enum dsi_phy_data_lanes lane2,
enum dsi_phy_data_lanes lane3)
{
lane_map_v2[DSI_LOGICAL_LANE_0] = lane0;
lane_map_v2[DSI_LOGICAL_LANE_1] = lane1;
lane_map_v2[DSI_LOGICAL_LANE_2] = lane2;
lane_map_v2[DSI_LOGICAL_LANE_3] = lane3;
}
static int dsi_display_parse_lane_map(struct dsi_display *display)
{
int rc = 0, i = 0;
const char *data;
u8 temp[DSI_LANE_MAX - 1];
if (!display) {
pr_err("invalid params\n");
return -EINVAL;
}
/* lane-map-v2 supersedes lane-map-v1 setting */
rc = of_property_read_u8_array(display->pdev->dev.of_node,
"qcom,lane-map-v2", temp, (DSI_LANE_MAX - 1));
if (!rc) {
for (i = DSI_LOGICAL_LANE_0; i < (DSI_LANE_MAX - 1); i++)
display->lane_map.lane_map_v2[i] = BIT(temp[i]);
return 0;
} else if (rc != EINVAL) {
pr_debug("Incorrect mapping, configure default\n");
goto set_default;
}
/* lane-map older version, for DSI controller version < 2.0 */
data = of_get_property(display->pdev->dev.of_node,
"qcom,lane-map", NULL);
if (!data)
goto set_default;
if (!strcmp(data, "lane_map_3012")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_3012;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_1,
DSI_PHYSICAL_LANE_2,
DSI_PHYSICAL_LANE_3,
DSI_PHYSICAL_LANE_0);
} else if (!strcmp(data, "lane_map_2301")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_2301;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_2,
DSI_PHYSICAL_LANE_3,
DSI_PHYSICAL_LANE_0,
DSI_PHYSICAL_LANE_1);
} else if (!strcmp(data, "lane_map_1230")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_1230;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_3,
DSI_PHYSICAL_LANE_0,
DSI_PHYSICAL_LANE_1,
DSI_PHYSICAL_LANE_2);
} else if (!strcmp(data, "lane_map_0321")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_0321;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_0,
DSI_PHYSICAL_LANE_3,
DSI_PHYSICAL_LANE_2,
DSI_PHYSICAL_LANE_1);
} else if (!strcmp(data, "lane_map_1032")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_1032;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_1,
DSI_PHYSICAL_LANE_0,
DSI_PHYSICAL_LANE_3,
DSI_PHYSICAL_LANE_2);
} else if (!strcmp(data, "lane_map_2103")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_2103;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_2,
DSI_PHYSICAL_LANE_1,
DSI_PHYSICAL_LANE_0,
DSI_PHYSICAL_LANE_3);
} else if (!strcmp(data, "lane_map_3210")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_3210;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_3,
DSI_PHYSICAL_LANE_2,
DSI_PHYSICAL_LANE_1,
DSI_PHYSICAL_LANE_0);
} else {
pr_warn("%s: invalid lane map %s specified. defaulting to lane_map0123\n",
__func__, data);
goto set_default;
}
return 0;
set_default:
/* default lane mapping */
__set_lane_map_v2(display->lane_map.lane_map_v2, DSI_PHYSICAL_LANE_0,
DSI_PHYSICAL_LANE_1, DSI_PHYSICAL_LANE_2, DSI_PHYSICAL_LANE_3);
display->lane_map.lane_map_v1 = DSI_LANE_MAP_0123;
return 0;
}
static int dsi_display_parse_dt(struct dsi_display *display)
{
int rc = 0;
int i;
u32 phy_count = 0;
struct device_node *of_node;
/* Parse controllers */
for (i = 0; i < MAX_DSI_CTRLS_PER_DISPLAY; i++) {
of_node = of_parse_phandle(display->pdev->dev.of_node,
"qcom,dsi-ctrl", i);
if (!of_node) {
if (!i) {
pr_err("No controllers present\n");
return -ENODEV;
}
break;
}
display->ctrl[i].ctrl_of_node = of_node;
display->ctrl_count++;
}
/* Parse Phys */
for (i = 0; i < MAX_DSI_CTRLS_PER_DISPLAY; i++) {
of_node = of_parse_phandle(display->pdev->dev.of_node,
"qcom,dsi-phy", i);
if (!of_node) {
if (!i) {
pr_err("No PHY devices present\n");
rc = -ENODEV;
goto error;
}
break;
}
display->ctrl[i].phy_of_node = of_node;
phy_count++;
}
if (phy_count != display->ctrl_count) {
pr_err("Number of controllers does not match PHYs\n");
rc = -ENODEV;
goto error;
}
of_node = of_parse_phandle(display->pdev->dev.of_node,
"qcom,dsi-panel", 0);
if (!of_node) {
struct device_node *endpoint;
endpoint = of_graph_get_next_endpoint(
display->pdev->dev.of_node, NULL);
if (!endpoint) {
pr_err("no endpoint for ext bridge\n");
rc = -ENODEV;
goto error;
}
of_node = of_graph_get_remote_port_parent(endpoint);
of_node_put(endpoint);
if (!of_node) {
pr_err("no valid ext bridge\n");
rc = -ENODEV;
goto error;
}
of_node_put(of_node);
display->panel_of = of_node;
/* TODO: split support */
display->type = DSI_DISPLAY_EXT_BRIDGE;
} else {
display->panel_of = of_node;
display->type = DSI_DISPLAY_SINGLE;
}
/* Parse TE gpio */
dsi_display_parse_te_gpio(display);
error:
return rc;
}
static int dsi_display_res_init(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
enum dsi_panel_type panel_type =
dsi_display_has_ext_bridge(display) ? EXT_BRIDGE : DSI_PANEL;
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
ctrl->ctrl = dsi_ctrl_get(ctrl->ctrl_of_node);
if (IS_ERR_OR_NULL(ctrl->ctrl)) {
rc = PTR_ERR(ctrl->ctrl);
pr_err("failed to get dsi controller, rc=%d\n", rc);
ctrl->ctrl = NULL;
goto error_ctrl_put;
}
ctrl->phy = dsi_phy_get(ctrl->phy_of_node);
if (IS_ERR_OR_NULL(ctrl->phy)) {
rc = PTR_ERR(ctrl->phy);
pr_err("failed to get phy controller, rc=%d\n", rc);
dsi_ctrl_put(ctrl->ctrl);
ctrl->phy = NULL;
goto error_ctrl_put;
}
}
display->panel = dsi_panel_get(&display->pdev->dev, display->panel_of,
display->cmdline_topology, panel_type);
if (IS_ERR_OR_NULL(display->panel)) {
rc = PTR_ERR(display->panel);
pr_err("failed to get panel, rc=%d\n", rc);
display->panel = NULL;
goto error_ctrl_put;
}
rc = dsi_display_parse_lane_map(display);
if (rc) {
pr_err("Lane map not found, rc=%d\n", rc);
goto error_ctrl_put;
}
rc = dsi_display_clocks_init(display);
if (rc) {
pr_err("Failed to parse clock data, rc=%d\n", rc);
goto error_ctrl_put;
}
return 0;
error_ctrl_put:
for (i = i - 1; i >= 0; i--) {
ctrl = &display->ctrl[i];
dsi_ctrl_put(ctrl->ctrl);
dsi_phy_put(ctrl->phy);
}
return rc;
}
static int dsi_display_res_deinit(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
rc = dsi_display_clocks_deinit(display);
if (rc)
pr_err("clocks deinit failed, rc=%d\n", rc);
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
dsi_phy_put(ctrl->phy);
dsi_ctrl_put(ctrl->ctrl);
}
if (display->panel)
dsi_panel_put(display->panel);
return rc;
}
static int dsi_display_validate_mode_set(struct dsi_display *display,
struct dsi_display_mode *mode,
u32 flags)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
/*
* To set a mode:
* 1. Controllers should be turned off.
* 2. Link clocks should be off.
* 3. Phy should be disabled.
*/
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if ((ctrl->power_state > DSI_CTRL_POWER_VREG_ON) ||
(ctrl->phy_enabled)) {
rc = -EINVAL;
goto error;
}
}
error:
return rc;
}
static bool dsi_display_is_seamless_dfps_possible(
const struct dsi_display *display,
const struct dsi_display_mode *tgt,
const enum dsi_dfps_type dfps_type)
{
struct dsi_display_mode *cur;
if (!display || !tgt || !display->panel) {
pr_err("Invalid params\n");
return false;
}
cur = display->panel->cur_mode;
if (cur->timing.h_active != tgt->timing.h_active) {
pr_debug("timing.h_active differs %d %d\n",
cur->timing.h_active, tgt->timing.h_active);
return false;
}
if (cur->timing.h_back_porch != tgt->timing.h_back_porch) {
pr_debug("timing.h_back_porch differs %d %d\n",
cur->timing.h_back_porch,
tgt->timing.h_back_porch);
return false;
}
if (cur->timing.h_sync_width != tgt->timing.h_sync_width) {
pr_debug("timing.h_sync_width differs %d %d\n",
cur->timing.h_sync_width,
tgt->timing.h_sync_width);
return false;
}
if (cur->timing.h_front_porch != tgt->timing.h_front_porch) {
pr_debug("timing.h_front_porch differs %d %d\n",
cur->timing.h_front_porch,
tgt->timing.h_front_porch);
if (dfps_type != DSI_DFPS_IMMEDIATE_HFP)
return false;
}
if (cur->timing.h_skew != tgt->timing.h_skew) {
pr_debug("timing.h_skew differs %d %d\n",
cur->timing.h_skew,
tgt->timing.h_skew);
return false;
}
/* skip polarity comparison */
if (cur->timing.v_active != tgt->timing.v_active) {
pr_debug("timing.v_active differs %d %d\n",
cur->timing.v_active,
tgt->timing.v_active);
return false;
}
if (cur->timing.v_back_porch != tgt->timing.v_back_porch) {
pr_debug("timing.v_back_porch differs %d %d\n",
cur->timing.v_back_porch,
tgt->timing.v_back_porch);
return false;
}
if (cur->timing.v_sync_width != tgt->timing.v_sync_width) {
pr_debug("timing.v_sync_width differs %d %d\n",
cur->timing.v_sync_width,
tgt->timing.v_sync_width);
return false;
}
if (cur->timing.v_front_porch != tgt->timing.v_front_porch) {
pr_debug("timing.v_front_porch differs %d %d\n",
cur->timing.v_front_porch,
tgt->timing.v_front_porch);
if (dfps_type != DSI_DFPS_IMMEDIATE_VFP)
return false;
}
/* skip polarity comparison */
if (cur->timing.refresh_rate == tgt->timing.refresh_rate)
pr_debug("timing.refresh_rate identical %d %d\n",
cur->timing.refresh_rate,
tgt->timing.refresh_rate);
if (cur->pixel_clk_khz != tgt->pixel_clk_khz)
pr_debug("pixel_clk_khz differs %d %d\n",
cur->pixel_clk_khz, tgt->pixel_clk_khz);
if (cur->dsi_mode_flags != tgt->dsi_mode_flags)
pr_debug("flags differs %d %d\n",
cur->dsi_mode_flags, tgt->dsi_mode_flags);
return true;
}
static int dsi_display_dfps_update(struct dsi_display *display,
struct dsi_display_mode *dsi_mode)
{
struct dsi_mode_info *timing;
struct dsi_display_ctrl *m_ctrl, *ctrl;
struct dsi_display_mode *panel_mode;
struct dsi_dfps_capabilities dfps_caps;
int rc = 0;
int i = 0;
if (!display || !dsi_mode || !display->panel) {
pr_err("Invalid params\n");
return -EINVAL;
}
timing = &dsi_mode->timing;
dsi_panel_get_dfps_caps(display->panel, &dfps_caps);
if (!dfps_caps.dfps_support) {
pr_err("dfps not supported\n");
return -ENOTSUPP;
}
if (dfps_caps.type == DSI_DFPS_IMMEDIATE_CLK) {
pr_err("dfps clock method not supported\n");
return -ENOTSUPP;
}
/* For split DSI, update the clock master first */
pr_debug("configuring seamless dynamic fps\n\n");
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY);
m_ctrl = &display->ctrl[display->clk_master_idx];
rc = dsi_ctrl_async_timing_update(m_ctrl->ctrl, timing);
if (rc) {
pr_err("[%s] failed to dfps update host_%d, rc=%d\n",
display->name, i, rc);
goto error;
}
/* Update the rest of the controllers */
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_async_timing_update(ctrl->ctrl, timing);
if (rc) {
pr_err("[%s] failed to dfps update host_%d, rc=%d\n",
display->name, i, rc);
goto error;
}
}
panel_mode = display->panel->cur_mode;
memcpy(panel_mode, dsi_mode, sizeof(*panel_mode));
/*
* dsi_mode_flags flags are used to communicate with other drm driver
* components, and are transient. They aren't inherently part of the
* display panel's mode and shouldn't be saved into the cached currently
* active mode.
*/
panel_mode->dsi_mode_flags = 0;
error:
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT);
return rc;
}
static int dsi_display_dfps_calc_front_porch(
u32 old_fps,
u32 new_fps,
u32 a_total,
u32 b_total,
u32 b_fp,
u32 *b_fp_out)
{
s32 b_fp_new;
int add_porches, diff;
if (!b_fp_out) {
pr_err("Invalid params");
return -EINVAL;
}
if (!a_total || !new_fps) {
pr_err("Invalid pixel total or new fps in mode request\n");
return -EINVAL;
}
/*
* Keep clock, other porches constant, use new fps, calc front porch
* new_vtotal = old_vtotal * (old_fps / new_fps )
* new_vfp - old_vfp = new_vtotal - old_vtotal
* new_vfp = old_vfp + old_vtotal * ((old_fps - new_fps)/ new_fps)
*/
diff = abs(old_fps - new_fps);
add_porches = mult_frac(b_total, diff, new_fps);
if (old_fps > new_fps)
b_fp_new = b_fp + add_porches;
else
b_fp_new = b_fp - add_porches;
pr_debug("fps %u a %u b %u b_fp %u new_fp %d\n",
new_fps, a_total, b_total, b_fp, b_fp_new);
if (b_fp_new < 0) {
pr_err("Invalid new_hfp calcluated%d\n", b_fp_new);
return -EINVAL;
}
/**
* TODO: To differentiate from clock method when communicating to the
* other components, perhaps we should set clk here to original value
*/
*b_fp_out = b_fp_new;
return 0;
}
/**
* dsi_display_get_dfps_timing() - Get the new dfps values.
* @display: DSI display handle.
* @adj_mode: Mode value structure to be changed.
* It contains old timing values and latest fps value.
* New timing values are updated based on new fps.
* @curr_refresh_rate: Current fps rate.
* If zero , current fps rate is taken from
* display->panel->cur_mode.
* Return: error code.
*/
static int dsi_display_get_dfps_timing(struct dsi_display *display,
struct dsi_display_mode *adj_mode,
u32 curr_refresh_rate)
{
struct dsi_dfps_capabilities dfps_caps;
struct dsi_display_mode per_ctrl_mode;
struct dsi_mode_info *timing;
struct dsi_ctrl *m_ctrl;
int rc = 0;
if (!display || !adj_mode) {
pr_err("Invalid params\n");
return -EINVAL;
}
m_ctrl = display->ctrl[display->clk_master_idx].ctrl;
dsi_panel_get_dfps_caps(display->panel, &dfps_caps);
if (!dfps_caps.dfps_support) {
pr_err("dfps not supported by panel\n");
return -EINVAL;
}
per_ctrl_mode = *adj_mode;
adjust_timing_by_ctrl_count(display, &per_ctrl_mode);
if (!curr_refresh_rate) {
if (!dsi_display_is_seamless_dfps_possible(display,
&per_ctrl_mode, dfps_caps.type)) {
pr_err("seamless dynamic fps not supported for mode\n");
return -EINVAL;
}
if (display->panel->cur_mode) {
curr_refresh_rate =
display->panel->cur_mode->timing.refresh_rate;
} else {
pr_err("cur_mode is not initialized\n");
return -EINVAL;
}
}
/* TODO: Remove this direct reference to the dsi_ctrl */
timing = &per_ctrl_mode.timing;
switch (dfps_caps.type) {
case DSI_DFPS_IMMEDIATE_VFP:
rc = dsi_display_dfps_calc_front_porch(
curr_refresh_rate,
timing->refresh_rate,
DSI_H_TOTAL(timing),
DSI_V_TOTAL(timing),
timing->v_front_porch,
&adj_mode->timing.v_front_porch);
break;
case DSI_DFPS_IMMEDIATE_HFP:
rc = dsi_display_dfps_calc_front_porch(
curr_refresh_rate,
timing->refresh_rate,
DSI_V_TOTAL(timing),
DSI_H_TOTAL(timing),
timing->h_front_porch,
&adj_mode->timing.h_front_porch);
if (!rc)
adj_mode->timing.h_front_porch *= display->ctrl_count;
break;
default:
pr_err("Unsupported DFPS mode %d\n", dfps_caps.type);
rc = -ENOTSUPP;
}
return rc;
}
static bool dsi_display_validate_mode_seamless(struct dsi_display *display,
struct dsi_display_mode *adj_mode)
{
int rc = 0;
if (!display || !adj_mode) {
pr_err("Invalid params\n");
return false;
}
/* Currently the only seamless transition is dynamic fps */
rc = dsi_display_get_dfps_timing(display, adj_mode, 0);
if (rc) {
pr_debug("Dynamic FPS not supported for seamless\n");
} else {
pr_debug("Mode switch is seamless Dynamic FPS\n");
adj_mode->dsi_mode_flags |= DSI_MODE_FLAG_DFPS |
DSI_MODE_FLAG_VBLANK_PRE_MODESET;
}
return rc;
}
static int dsi_display_set_mode_sub(struct dsi_display *display,
struct dsi_display_mode *mode,
u32 flags)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
struct dsi_display_mode_priv_info *priv_info;
priv_info = mode->priv_info;
if (!dsi_display_has_ext_bridge(display) && !priv_info) {
pr_err("[%s] failed to get private info of the display mode",
display->name);
return -EINVAL;
}
rc = dsi_panel_get_host_cfg_for_mode(display->panel,
mode,
&display->config);
if (rc) {
pr_err("[%s] failed to get host config for mode, rc=%d\n",
display->name, rc);
goto error;
}
memcpy(&display->config.lane_map, &display->lane_map,
sizeof(display->lane_map));
if (mode->dsi_mode_flags &
(DSI_MODE_FLAG_DFPS | DSI_MODE_FLAG_VRR)) {
rc = dsi_display_dfps_update(display, mode);
if (rc) {
pr_err("[%s]DSI dfps update failed, rc=%d\n",
display->name, rc);
goto error;
}
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_update_host_config(ctrl->ctrl, &display->config,
mode->dsi_mode_flags, display->dsi_clk_handle);
if (rc) {
pr_err("[%s] failed to update ctrl config, rc=%d\n",
display->name, rc);
goto error;
}
}
/* ext bridge calculates these timing params by phy driver */
if (priv_info && priv_info->phy_timing_len) {
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
rc = dsi_phy_set_timing_params(ctrl->phy,
priv_info->phy_timing_val,
priv_info->phy_timing_len);
if (rc)
pr_err("failed to add DSI PHY timing params");
}
}
error:
return rc;
}
/**
* _dsi_display_dev_init - initializes the display device
* Initialization will acquire references to the resources required for the
* display hardware to function.
* @display: Handle to the display
* Returns: Zero on success
*/
static int _dsi_display_dev_init(struct dsi_display *display)
{
int rc = 0;
if (!display) {
pr_err("invalid display\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
rc = dsi_display_parse_dt(display);
if (rc) {
pr_err("[%s] failed to parse dt, rc=%d\n", display->name, rc);
goto error;
}
rc = dsi_display_res_init(display);
if (rc) {
pr_err("[%s] failed to initialize resources, rc=%d\n",
display->name, rc);
goto error;
}
error:
mutex_unlock(&display->display_lock);
return rc;
}
/**
* _dsi_display_dev_deinit - deinitializes the display device
* All the resources acquired during device init will be released.
* @display: Handle to the display
* Returns: Zero on success
*/
static int _dsi_display_dev_deinit(struct dsi_display *display)
{
int rc = 0;
if (!display) {
pr_err("invalid display\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
rc = dsi_display_res_deinit(display);
if (rc)
pr_err("[%s] failed to deinitialize resource, rc=%d\n",
display->name, rc);
mutex_unlock(&display->display_lock);
return rc;
}
/**
* dsi_display_cont_splash_config() - Initialize resources for continuous splash
* @dsi_display: Pointer to dsi display
* Returns: Zero on success
*/
int dsi_display_cont_splash_config(void *dsi_display)
{
struct dsi_display *display = dsi_display;
int rc = 0;
if (!display) {
pr_err("Invalid display\n");
return -EINVAL;
}
/* Continuous splash not supported by external bridge */
if (dsi_display_has_ext_bridge(display)) {
display->is_cont_splash_enabled = false;
return 0;
}
mutex_lock(&display->display_lock);
/* Vote for gdsc required to read register address space */
display->cont_splash_client = sde_power_client_create(display->phandle,
"cont_splash_client");
rc = sde_power_resource_enable(display->phandle,
display->cont_splash_client, true);
if (rc) {
pr_err("failed to vote gdsc for continuous splash, rc=%d\n",
rc);
mutex_unlock(&display->display_lock);
return -EINVAL;
}
/*
* Verify whether continuous splash is enabled or not.
*/
display->is_cont_splash_enabled =
dsi_display_get_cont_splash_status(display);
if (!display->is_cont_splash_enabled) {
pr_err("Continuous splash is not enabled\n");
goto splash_disabled;
}
/* Update splash status for clock manager */
dsi_display_clk_mngr_update_splash_status(display->clk_mngr,
display->is_cont_splash_enabled);
/* Set up ctrl isr before enabling core clk */
dsi_display_ctrl_isr_configure(display, true);
/* Vote for Core clk and link clk. Votes on ctrl and phy
* regulator are inplicit from pre clk on callback
*/
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
if (rc) {
pr_err("[%s] failed to enable DSI link clocks, rc=%d\n",
display->name, rc);
goto clk_manager_update;
}
/* Vote on panel regulator will be removed during suspend path */
rc = dsi_pwr_enable_regulator(&display->panel->power_info, true);
if (rc) {
pr_err("[%s] failed to enable vregs, rc=%d\n",
display->panel->name, rc);
goto clks_disabled;
}
dsi_config_host_engine_state_for_cont_splash(display);
mutex_unlock(&display->display_lock);
return rc;
clks_disabled:
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
clk_manager_update:
dsi_display_ctrl_isr_configure(display, false);
/* Update splash status for clock manager */
dsi_display_clk_mngr_update_splash_status(display->clk_mngr,
false);
splash_disabled:
(void)sde_power_resource_enable(display->phandle,
display->cont_splash_client, false);
display->is_cont_splash_enabled = false;
mutex_unlock(&display->display_lock);
return rc;
}
/**
* dsi_display_splash_res_cleanup() - cleanup for continuous splash
* @display: Pointer to dsi display
* Returns: Zero on success
*/
int dsi_display_splash_res_cleanup(struct dsi_display *display)
{
int rc = 0;
if (!display->is_cont_splash_enabled)
return 0;
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
if (rc)
pr_err("[%s] failed to disable DSI link clocks, rc=%d\n",
display->name, rc);
rc = sde_power_resource_enable(display->phandle,
display->cont_splash_client, false);
if (rc)
pr_err("failed to remove vote on gdsc for continuous splash, rc=%d\n",
rc);
display->is_cont_splash_enabled = false;
/* Update splash status for clock manager */
dsi_display_clk_mngr_update_splash_status(display->clk_mngr,
display->is_cont_splash_enabled);
return rc;
}
static int dsi_display_force_update_dsi_clk(struct dsi_display *display)
{
int rc = 0;
rc = dsi_display_link_clk_force_update_ctrl(display->dsi_clk_handle);
if (!rc) {
pr_info("dsi bit clk has been configured to %d\n",
display->cached_clk_rate);
atomic_set(&display->clkrate_change_pending, 0);
} else {
pr_err("Failed to configure dsi bit clock '%d'. rc = %d\n",
display->cached_clk_rate, rc);
}
return rc;
}
static int dsi_display_request_update_dsi_bitrate(struct dsi_display *display,
u32 bit_clk_rate)
{
int rc = 0;
int i;
pr_debug("%s:bit rate:%d\n", __func__, bit_clk_rate);
if (!display->panel) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (bit_clk_rate == 0) {
pr_err("Invalid bit clock rate\n");
return -EINVAL;
}
display->config.bit_clk_rate_hz = bit_clk_rate;
for (i = 0; i < display->ctrl_count; i++) {
struct dsi_display_ctrl *dsi_disp_ctrl = &display->ctrl[i];
struct dsi_ctrl *ctrl = dsi_disp_ctrl->ctrl;
u32 num_of_lanes = 0;
u32 bpp = 3;
u64 bit_rate, pclk_rate, bit_rate_per_lane, byte_clk_rate;
struct dsi_host_common_cfg *host_cfg;
mutex_lock(&ctrl->ctrl_lock);
host_cfg = &display->panel->host_config;
if (host_cfg->data_lanes & DSI_DATA_LANE_0)
num_of_lanes++;
if (host_cfg->data_lanes & DSI_DATA_LANE_1)
num_of_lanes++;
if (host_cfg->data_lanes & DSI_DATA_LANE_2)
num_of_lanes++;
if (host_cfg->data_lanes & DSI_DATA_LANE_3)
num_of_lanes++;
if (num_of_lanes == 0) {
pr_err("Invalid lane count\n");
rc = -EINVAL;
goto error;
}
bit_rate = display->config.bit_clk_rate_hz * num_of_lanes;
bit_rate_per_lane = bit_rate;
do_div(bit_rate_per_lane, num_of_lanes);
pclk_rate = bit_rate;
do_div(pclk_rate, (8 * bpp));
byte_clk_rate = bit_rate_per_lane;
do_div(byte_clk_rate, 8);
pr_debug("bit_clk_rate = %llu, bit_clk_rate_per_lane = %llu\n",
bit_rate, bit_rate_per_lane);
pr_debug("byte_clk_rate = %llu, pclk_rate = %llu\n",
byte_clk_rate, pclk_rate);
ctrl->clk_freq.byte_clk_rate = byte_clk_rate;
ctrl->clk_freq.pix_clk_rate = pclk_rate;
rc = dsi_clk_set_link_frequencies(display->dsi_clk_handle,
ctrl->clk_freq, ctrl->cell_index);
if (rc) {
pr_err("Failed to update link frequencies\n");
goto error;
}
ctrl->host_config.bit_clk_rate_hz = bit_clk_rate;
error:
mutex_unlock(&ctrl->ctrl_lock);
/* TODO: recover ctrl->clk_freq in case of failure */
if (rc)
return rc;
}
return 0;
}
static ssize_t sysfs_dynamic_dsi_clk_read(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc = 0;
struct dsi_display *display;
struct dsi_display_ctrl *m_ctrl;
struct dsi_ctrl *ctrl;
display = dev_get_drvdata(dev);
if (!display) {
pr_err("Invalid display\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
m_ctrl = &display->ctrl[display->cmd_master_idx];
ctrl = m_ctrl->ctrl;
if (ctrl)
display->cached_clk_rate = ctrl->clk_freq.
byte_clk_rate * 8;
rc = snprintf(buf, PAGE_SIZE, "%d\n", display->cached_clk_rate);
pr_debug("%s: read dsi clk rate %d\n", __func__,
display->cached_clk_rate);
mutex_unlock(&display->display_lock);
return rc;
}
static ssize_t sysfs_dynamic_dsi_clk_write(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int rc = 0;
int clk_rate;
struct dsi_display *display;
display = dev_get_drvdata(dev);
if (!display) {
pr_err("Invalid display\n");
return -EINVAL;
}
rc = kstrtoint(buf, DSI_CLOCK_BITRATE_RADIX, &clk_rate);
if (rc) {
pr_err("%s: kstrtoint failed. rc=%d\n", __func__, rc);
return rc;
}
if (clk_rate <= 0) {
pr_err("%s: bitrate should be greater than 0\n", __func__);
return -EINVAL;
}
if (clk_rate == display->cached_clk_rate) {
pr_info("%s: ignore duplicated DSI clk setting\n", __func__);
return count;
}
pr_info("%s: bitrate param value: '%d'\n", __func__, clk_rate);
mutex_lock(&display->display_lock);
display->cached_clk_rate = clk_rate;
rc = dsi_display_request_update_dsi_bitrate(display, clk_rate);
if (!rc) {
pr_info("%s: bit clk is ready to be configured to '%d'\n",
__func__, clk_rate);
} else {
pr_err("%s: Failed to prepare to configure '%d'. rc = %d\n",
__func__, clk_rate, rc);
/*Caching clock failed, so don't go on doing so.*/
atomic_set(&display->clkrate_change_pending, 0);
display->cached_clk_rate = 0;
mutex_unlock(&display->display_lock);
return rc;
}
atomic_set(&display->clkrate_change_pending, 1);
mutex_unlock(&display->display_lock);
return count;
}
static DEVICE_ATTR(dynamic_dsi_clock, 0644,
sysfs_dynamic_dsi_clk_read,
sysfs_dynamic_dsi_clk_write);
static struct attribute *dynamic_dsi_clock_fs_attrs[] = {
&dev_attr_dynamic_dsi_clock.attr,
NULL,
};
static struct attribute_group dynamic_dsi_clock_fs_attrs_group = {
.attrs = dynamic_dsi_clock_fs_attrs,
};
static int dsi_display_sysfs_init(struct dsi_display *display)
{
int rc = 0;
struct device *dev = &display->pdev->dev;
if (display->panel->panel_mode == DSI_OP_CMD_MODE)
rc = sysfs_create_group(&dev->kobj,
&dynamic_dsi_clock_fs_attrs_group);
pr_debug("[%s] dsi_display_sysfs_init:%d,panel mode:%d\n",
display->name, rc, display->panel->panel_mode);
return rc;
}
static int dsi_display_sysfs_deinit(struct dsi_display *display)
{
struct device *dev = &display->pdev->dev;
if (display->panel->panel_mode == DSI_OP_CMD_MODE)
sysfs_remove_group(&dev->kobj,
&dynamic_dsi_clock_fs_attrs_group);
return 0;
}
/**
* dsi_display_bind - bind dsi device with controlling device
* @dev: Pointer to base of platform device
* @master: Pointer to container of drm device
* @data: Pointer to private data
* Returns: Zero on success
*/
static int dsi_display_bind(struct device *dev,
struct device *master,
void *data)
{
struct dsi_display_ctrl *display_ctrl;
struct drm_device *drm;
struct dsi_display *display;
struct dsi_clk_info info;
struct clk_ctrl_cb clk_cb;
struct msm_drm_private *priv;
void *handle = NULL;
struct platform_device *pdev = to_platform_device(dev);
char *client1 = "dsi_clk_client";
char *client2 = "mdp_event_client";
char dsi_client_name[DSI_CLIENT_NAME_SIZE];
int i, rc = 0;
if (!dev || !pdev || !master) {
pr_err("invalid param(s), dev %pK, pdev %pK, master %pK\n",
dev, pdev, master);
return -EINVAL;
}
drm = dev_get_drvdata(master);
display = platform_get_drvdata(pdev);
if (!drm || !display) {
pr_err("invalid param(s), drm %pK, display %pK\n",
drm, display);
return -EINVAL;
}
priv = drm->dev_private;
mutex_lock(&display->display_lock);
rc = dsi_display_debugfs_init(display);
if (rc) {
pr_err("[%s] debugfs init failed, rc=%d\n", display->name, rc);
goto error;
}
atomic_set(&display->clkrate_change_pending, 0);
display->cached_clk_rate = 0;
rc = dsi_display_sysfs_init(display);
if (rc) {
pr_err("[%s] sysfs init failed, rc=%d\n", display->name, rc);
goto error;
}
memset(&info, 0x0, sizeof(info));
for (i = 0; i < display->ctrl_count; i++) {
display_ctrl = &display->ctrl[i];
rc = dsi_ctrl_drv_init(display_ctrl->ctrl, display->root);
if (rc) {
pr_err("[%s] failed to initialize ctrl[%d], rc=%d\n",
display->name, i, rc);
goto error_ctrl_deinit;
}
display_ctrl->ctrl->horiz_index = i;
rc = dsi_phy_drv_init(display_ctrl->phy);
if (rc) {
pr_err("[%s] Failed to initialize phy[%d], rc=%d\n",
display->name, i, rc);
(void)dsi_ctrl_drv_deinit(display_ctrl->ctrl);
goto error_ctrl_deinit;
}
memcpy(&info.c_clks[i],
(&display_ctrl->ctrl->clk_info.core_clks),
sizeof(struct dsi_core_clk_info));
memcpy(&info.l_hs_clks[i],
(&display_ctrl->ctrl->clk_info.hs_link_clks),
sizeof(struct dsi_link_hs_clk_info));
memcpy(&info.l_lp_clks[i],
(&display_ctrl->ctrl->clk_info.lp_link_clks),
sizeof(struct dsi_link_lp_clk_info));
info.c_clks[i].phandle = &priv->phandle;
info.bus_handle[i] =
display_ctrl->ctrl->axi_bus_info.bus_handle;
info.ctrl_index[i] = display_ctrl->ctrl->cell_index;
snprintf(dsi_client_name, DSI_CLIENT_NAME_SIZE,
"dsi_core_client%u", i);
info.c_clks[i].dsi_core_client = sde_power_client_create(
info.c_clks[i].phandle, dsi_client_name);
if (IS_ERR_OR_NULL(info.c_clks[i].dsi_core_client)) {
pr_err("[%s] client creation failed for ctrl[%d]",
dsi_client_name, i);
goto error_ctrl_deinit;
}
}
display->phandle = &priv->phandle;
info.pre_clkoff_cb = dsi_pre_clkoff_cb;
info.pre_clkon_cb = dsi_pre_clkon_cb;
info.post_clkoff_cb = dsi_post_clkoff_cb;
info.post_clkon_cb = dsi_post_clkon_cb;
info.priv_data = display;
info.master_ndx = display->clk_master_idx;
info.dsi_ctrl_count = display->ctrl_count;
snprintf(info.name, MAX_STRING_LEN,
"DSI_MNGR-%s", display->name);
display->clk_mngr = dsi_display_clk_mngr_register(&info);
if (IS_ERR_OR_NULL(display->clk_mngr)) {
rc = PTR_ERR(display->clk_mngr);
display->clk_mngr = NULL;
pr_err("dsi clock registration failed, rc = %d\n", rc);
goto error_ctrl_deinit;
}
handle = dsi_register_clk_handle(display->clk_mngr, client1);
if (IS_ERR_OR_NULL(handle)) {
rc = PTR_ERR(handle);
pr_err("failed to register %s client, rc = %d\n",
client1, rc);
goto error_clk_deinit;
} else {
display->dsi_clk_handle = handle;
}
handle = dsi_register_clk_handle(display->clk_mngr, client2);
if (IS_ERR_OR_NULL(handle)) {
rc = PTR_ERR(handle);
pr_err("failed to register %s client, rc = %d\n",
client2, rc);
goto error_clk_client_deinit;
} else {
display->mdp_clk_handle = handle;
}
clk_cb.priv = display;
clk_cb.dsi_clk_cb = dsi_display_clk_ctrl_cb;
for (i = 0; i < display->ctrl_count; i++) {
display_ctrl = &display->ctrl[i];
rc = dsi_ctrl_clk_cb_register(display_ctrl->ctrl, &clk_cb);
if (rc) {
pr_err("[%s] failed to register ctrl clk_cb[%d], rc=%d\n",
display->name, i, rc);
goto error_ctrl_deinit;
}
rc = dsi_phy_clk_cb_register(display_ctrl->phy, &clk_cb);
if (rc) {
pr_err("[%s] failed to register phy clk_cb[%d], rc=%d\n",
display->name, i, rc);
goto error_ctrl_deinit;
}
}
rc = dsi_display_mipi_host_init(display);
if (rc) {
pr_err("[%s] failed to initialize mipi host, rc=%d\n",
display->name, rc);
goto error_ctrl_deinit;
}
rc = dsi_panel_drv_init(display->panel, &display->host);
if (rc) {
if (rc != -EPROBE_DEFER)
pr_err("[%s] failed to initialize panel driver, rc=%d\n",
display->name, rc);
goto error_host_deinit;
}
pr_info("Successfully bind display panel '%s'\n", display->name);
display->drm_dev = drm;
for (i = 0; i < display->ctrl_count; i++) {
display_ctrl = &display->ctrl[i];
if (!display_ctrl->phy || !display_ctrl->ctrl)
continue;
rc = dsi_phy_set_clk_freq(display_ctrl->phy,
&display_ctrl->ctrl->clk_freq);
if (rc) {
pr_err("[%s] failed to set phy clk freq, rc=%d\n",
display->name, rc);
goto error;
}
}
/* register te irq handler */
dsi_display_register_te_irq(display);
goto error;
error_host_deinit:
(void)dsi_display_mipi_host_deinit(display);
error_clk_client_deinit:
(void)dsi_deregister_clk_handle(display->dsi_clk_handle);
error_clk_deinit:
(void)dsi_display_clk_mngr_deregister(display->clk_mngr);
error_ctrl_deinit:
for (i = i - 1; i >= 0; i--) {
display_ctrl = &display->ctrl[i];
(void)dsi_phy_drv_deinit(display_ctrl->phy);
(void)dsi_ctrl_drv_deinit(display_ctrl->ctrl);
}
(void)dsi_display_sysfs_deinit(display);
(void)dsi_display_debugfs_deinit(display);
error:
mutex_unlock(&display->display_lock);
return rc;
}
/**
* dsi_display_unbind - unbind dsi from controlling device
* @dev: Pointer to base of platform device
* @master: Pointer to container of drm device
* @data: Pointer to private data
*/
static void dsi_display_unbind(struct device *dev,
struct device *master, void *data)
{
struct dsi_display_ctrl *display_ctrl;
struct dsi_display *display;
struct platform_device *pdev = to_platform_device(dev);
int i, rc = 0;
if (!dev || !pdev) {
pr_err("invalid param(s)\n");
return;
}
display = platform_get_drvdata(pdev);
if (!display) {
pr_err("invalid display\n");
return;
}
mutex_lock(&display->display_lock);
rc = dsi_panel_drv_deinit(display->panel);
if (rc)
pr_err("[%s] failed to deinit panel driver, rc=%d\n",
display->name, rc);
rc = dsi_display_mipi_host_deinit(display);
if (rc)
pr_err("[%s] failed to deinit mipi hosts, rc=%d\n",
display->name,
rc);
for (i = 0; i < display->ctrl_count; i++) {
display_ctrl = &display->ctrl[i];
rc = dsi_phy_drv_deinit(display_ctrl->phy);
if (rc)
pr_err("[%s] failed to deinit phy%d driver, rc=%d\n",
display->name, i, rc);
rc = dsi_ctrl_drv_deinit(display_ctrl->ctrl);
if (rc)
pr_err("[%s] failed to deinit ctrl%d driver, rc=%d\n",
display->name, i, rc);
}
atomic_set(&display->clkrate_change_pending, 0);
(void)dsi_display_sysfs_deinit(display);
(void)dsi_display_debugfs_deinit(display);
mutex_unlock(&display->display_lock);
}
static const struct component_ops dsi_display_comp_ops = {
.bind = dsi_display_bind,
.unbind = dsi_display_unbind,
};
static struct platform_driver dsi_display_driver = {
.probe = dsi_display_dev_probe,
.remove = dsi_display_dev_remove,
.driver = {
.name = "msm-dsi-display",
.of_match_table = dsi_display_dt_match,
.suppress_bind_attrs = true,
},
};
int dsi_display_dev_probe(struct platform_device *pdev)
{
int rc = 0;
struct dsi_display *display;
static bool boot_displays_parsed;
static struct device_node *primary_np, *secondary_np;
if (!pdev || !pdev->dev.of_node) {
pr_err("pdev not found\n");
return -ENODEV;
}
display = devm_kzalloc(&pdev->dev, sizeof(*display), GFP_KERNEL);
if (!display)
return -ENOMEM;
display->name = of_get_property(pdev->dev.of_node, "label", NULL);
if (!display->name)
display->name = "unknown";
if (!boot_displays_parsed) {
boot_displays[DSI_PRIMARY].boot_disp_en = false;
boot_displays[DSI_SECONDARY].boot_disp_en = false;
if (dsi_display_parse_boot_display_selection())
pr_debug("Display Boot param not valid/available\n");
boot_displays_parsed = true;
}
/* use default topology of every mode if not overridden */
display->cmdline_topology = NO_OVERRIDE;
display->cmdline_timing = 0;
if (boot_displays[DSI_PRIMARY].boot_disp_en && !primary_np &&
dsi_display_name_compare(pdev->dev.of_node,
display->name, DSI_PRIMARY)) {
if (primary_display) {
(void)_dsi_display_dev_deinit(primary_display);
component_del(&primary_display->pdev->dev,
&dsi_display_comp_ops);
mutex_lock(&dsi_display_list_lock);
list_del(&primary_display->list);
mutex_unlock(&dsi_display_list_lock);
primary_active_node = NULL;
pr_debug("removed the existing comp ops\n");
}
/*
* Need to add component for
* the secondary DSI display
* when more than one DSI display
* is supported.
*/
pr_debug("cmdline primary dsi: %s\n", display->name);
display->is_active = true;
dsi_display_parse_cmdline_topology(display, DSI_PRIMARY);
primary_np = pdev->dev.of_node;
}
if (boot_displays[DSI_SECONDARY].boot_disp_en && !secondary_np &&
dsi_display_name_compare(pdev->dev.of_node,
display->name, DSI_SECONDARY)) {
pr_debug("cmdline secondary dsi: %s\n", display->name);
if (validate_dsi_display_selection()) {
if (secondary_display) {
(void)_dsi_display_dev_deinit(
secondary_display);
component_del(&secondary_display->pdev->dev,
&dsi_display_comp_ops);
mutex_lock(&dsi_display_list_lock);
list_del(&secondary_display->list);
mutex_unlock(&dsi_display_list_lock);
secondary_active_node = NULL;
pr_debug("removed the existing comp ops\n");
}
display->is_active = true;
dsi_display_parse_cmdline_topology(display,
DSI_SECONDARY);
secondary_np = pdev->dev.of_node;
} else {
boot_displays[DSI_SECONDARY].boot_disp_en = false;
}
}
display->display_type = of_get_property(pdev->dev.of_node,
"qcom,display-type", NULL);
if (!display->display_type)
display->display_type = "unknown";
mutex_init(&display->display_lock);
display->pdev = pdev;
platform_set_drvdata(pdev, display);
mutex_lock(&dsi_display_list_lock);
list_add(&display->list, &dsi_display_list);
mutex_unlock(&dsi_display_list_lock);
if (!strcmp(display->display_type, "primary") && !primary_np)
display->is_active = of_property_read_bool(pdev->dev.of_node,
"qcom,dsi-display-active");
else if (strcmp(display->display_type, "primary") && !secondary_np)
display->is_active = of_property_read_bool(pdev->dev.of_node,
"qcom,dsi-display-active");
if (display->is_active) {
if (!strcmp(display->display_type, "primary"))
primary_display = display;
else
secondary_display = display;
rc = _dsi_display_dev_init(display);
if (rc) {
pr_err("device init failed, rc=%d\n", rc);
return rc;
}
rc = component_add(&pdev->dev, &dsi_display_comp_ops);
if (rc)
pr_err("component add failed, rc=%d\n", rc);
pr_debug("Component_add success: %s\n", display->name);
if (!strcmp(display->display_type, "primary"))
primary_active_node = pdev->dev.of_node;
else
secondary_active_node = pdev->dev.of_node;
}
return rc;
}
int dsi_display_dev_remove(struct platform_device *pdev)
{
int rc = 0;
struct dsi_display *display;
struct dsi_display *pos, *tmp;
if (!pdev) {
pr_err("Invalid device\n");
return -EINVAL;
}
display = platform_get_drvdata(pdev);
(void)_dsi_display_dev_deinit(display);
mutex_lock(&dsi_display_list_lock);
list_for_each_entry_safe(pos, tmp, &dsi_display_list, list) {
if (pos == display) {
list_del(&display->list);
break;
}
}
mutex_unlock(&dsi_display_list_lock);
platform_set_drvdata(pdev, NULL);
devm_kfree(&pdev->dev, display);
return rc;
}
int dsi_display_get_num_of_displays(void)
{
int count = 0;
struct dsi_display *display;
mutex_lock(&dsi_display_list_lock);
list_for_each_entry(display, &dsi_display_list, list) {
count++;
}
mutex_unlock(&dsi_display_list_lock);
return count;
}
int dsi_display_get_active_displays(void **display_array, u32 max_display_count)
{
struct dsi_display *pos;
int i = 0;
if (!display_array || !max_display_count) {
if (!display_array)
pr_err("invalid params\n");
return 0;
}
mutex_lock(&dsi_display_list_lock);
list_for_each_entry(pos, &dsi_display_list, list) {
if (i >= max_display_count) {
pr_err("capping display count to %d\n", i);
break;
}
if (pos->is_active)
display_array[i++] = pos;
}
mutex_unlock(&dsi_display_list_lock);
return i;
}
struct dsi_display *dsi_display_get_display_by_name(const char *name)
{
struct dsi_display *display = NULL, *pos;
mutex_lock(&dsi_display_list_lock);
list_for_each_entry(pos, &dsi_display_list, list) {
if (!strcmp(name, pos->name))
display = pos;
}
mutex_unlock(&dsi_display_list_lock);
return display;
}
void dsi_display_set_active_state(struct dsi_display *display, bool is_active)
{
mutex_lock(&display->display_lock);
display->is_active = is_active;
mutex_unlock(&display->display_lock);
}
int dsi_display_drm_bridge_init(struct dsi_display *display,
struct drm_encoder *enc)
{
int rc = 0;
struct dsi_bridge *bridge;
struct msm_drm_private *priv = NULL;
if (!display || !display->drm_dev || !enc) {
pr_err("invalid param(s)\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
priv = display->drm_dev->dev_private;
if (!priv) {
pr_err("Private data is not present\n");
rc = -EINVAL;
goto error;
}
if (display->bridge) {
pr_err("display is already initialized\n");
goto error;
}
bridge = dsi_drm_bridge_init(display, display->drm_dev, enc);
if (IS_ERR_OR_NULL(bridge)) {
rc = PTR_ERR(bridge);
pr_err("[%s] brige init failed, %d\n", display->name, rc);
goto error;
}
display->bridge = bridge;
priv->bridges[priv->num_bridges++] = &bridge->base;
error:
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_drm_ext_bridge_init(struct dsi_display *display,
struct drm_encoder *enc, struct drm_connector *connector)
{
int rc = 0;
struct drm_bridge *ext_bridge;
struct msm_drm_private *priv = NULL;
if (!display || !display->drm_dev || !enc) {
pr_err("invalid param(s)\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
priv = display->drm_dev->dev_private;
if (!priv) {
pr_err("Private data is not present\n");
rc = -EINVAL;
goto error;
}
if (!display->bridge) {
pr_err("dsi bridge is not initialize\n");
rc = -EINVAL;
goto error;
}
ext_bridge = of_drm_find_bridge(display->panel_of);
if (!ext_bridge) {
pr_err("ext brige not found\n");
rc = -EINVAL;
goto error;
}
/* update connector ops in ext bridge */
drm_bridge_connector_init(ext_bridge, connector);
/* insert ext bridge to the bridge chain */
display->bridge->base.next = ext_bridge;
ext_bridge->encoder = enc;
priv->bridges[priv->num_bridges++] = ext_bridge;
drm_bridge_attach(display->drm_dev, ext_bridge);
error:
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_drm_bridge_deinit(struct dsi_display *display)
{
int rc = 0;
if (!display) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
dsi_drm_bridge_cleanup(display->bridge);
display->bridge = NULL;
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_get_info(struct msm_display_info *info, void *disp)
{
struct dsi_display *display;
struct dsi_panel_phy_props phy_props;
int i, rc;
if (!info || !disp) {
pr_err("invalid params\n");
return -EINVAL;
}
display = disp;
if (!display->panel) {
pr_err("invalid display panel\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
rc = dsi_panel_get_phy_props(display->panel, &phy_props);
if (rc) {
pr_err("[%s] failed to get panel phy props, rc=%d\n",
display->name, rc);
goto error;
}
memset(info, 0, sizeof(struct msm_display_info));
info->intf_type = DRM_MODE_CONNECTOR_DSI;
info->num_of_h_tiles = display->ctrl_count;
for (i = 0; i < info->num_of_h_tiles; i++)
info->h_tile_instance[i] = display->ctrl[i].ctrl->cell_index;
info->is_connected = true;
info->is_primary = false;
if (!strcmp(display->display_type, "primary"))
info->is_primary = true;
info->width_mm = phy_props.panel_width_mm;
info->height_mm = phy_props.panel_height_mm;
info->max_width = 1920;
info->max_height = 1080;
switch (display->panel->panel_mode) {
case DSI_OP_VIDEO_MODE:
info->capabilities |= MSM_DISPLAY_CAP_VID_MODE;
break;
case DSI_OP_CMD_MODE:
info->capabilities |= MSM_DISPLAY_CAP_CMD_MODE;
info->is_te_using_watchdog_timer =
display->panel->te_using_watchdog_timer;
break;
default:
pr_err("unknwown dsi panel mode %d\n",
display->panel->panel_mode);
break;
}
if (display->panel->esd_config.esd_enabled)
info->capabilities |= MSM_DISPLAY_ESD_ENABLED;
error:
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_ext_bridge_get_info(struct msm_display_info *info, void *disp)
{
struct dsi_display *display;
int i;
if (!info || !disp) {
pr_err("invalid params\n");
return -EINVAL;
}
display = disp;
if (!display->panel) {
pr_err("invalid display panel\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
memset(info, 0, sizeof(struct msm_display_info));
info->intf_type = DRM_MODE_CONNECTOR_DSI;
info->num_of_h_tiles = display->ctrl_count;
for (i = 0; i < info->num_of_h_tiles; i++)
info->h_tile_instance[i] = display->ctrl[i].ctrl->cell_index;
/*
* TODO: these info need come from ext bridge.
* using drm_connector->status, connector->polled.
*/
info->is_connected = true;
info->is_primary = true;
info->capabilities |= (MSM_DISPLAY_CAP_VID_MODE |
MSM_DISPLAY_CAP_EDID | MSM_DISPLAY_CAP_HOT_PLUG);
mutex_unlock(&display->display_lock);
return 0;
}
static int dsi_display_get_mode_count_no_lock(struct dsi_display *display,
u32 *count)
{
struct dsi_dfps_capabilities dfps_caps;
int num_dfps_rates, rc = 0;
if (!display || !display->panel) {
pr_err("invalid display:%d panel:%d\n", display != NULL,
display ? display->panel != NULL : 0);
return -EINVAL;
}
*count = display->panel->num_timing_nodes;
rc = dsi_panel_get_dfps_caps(display->panel, &dfps_caps);
if (rc) {
pr_err("[%s] failed to get dfps caps from panel\n",
display->name);
return rc;
}
num_dfps_rates = !dfps_caps.dfps_support ? 1 :
dfps_caps.max_refresh_rate -
dfps_caps.min_refresh_rate + 1;
/* Inflate num_of_modes by fps in dfps */
*count = display->panel->num_timing_nodes * num_dfps_rates;
return 0;
}
int dsi_display_get_mode_count(struct dsi_display *display,
u32 *count)
{
int rc;
if (!display || !display->panel) {
pr_err("invalid display:%d panel:%d\n", display != NULL,
display ? display->panel != NULL : 0);
return -EINVAL;
}
mutex_lock(&display->display_lock);
rc = dsi_display_get_mode_count_no_lock(display, count);
mutex_unlock(&display->display_lock);
return 0;
}
void dsi_display_put_mode(struct dsi_display *display,
struct dsi_display_mode *mode)
{
dsi_panel_put_mode(mode);
}
int dsi_display_get_modes(struct dsi_display *display,
struct dsi_display_mode **out_modes)
{
struct dsi_dfps_capabilities dfps_caps;
u32 num_dfps_rates, panel_mode_count, total_mode_count;
u32 mode_idx, array_idx = 0;
int i, rc = -EINVAL;
if (!display || !out_modes) {
pr_err("Invalid params\n");
return -EINVAL;
}
*out_modes = NULL;
mutex_lock(&display->display_lock);
rc = dsi_display_get_mode_count_no_lock(display, &total_mode_count);
if (rc)
goto error;
/* free any previously probed modes */
kfree(display->modes);
display->modes = kcalloc(total_mode_count, sizeof(*display->modes),
GFP_KERNEL);
if (!display->modes) {
rc = -ENOMEM;
goto error;
}
rc = dsi_panel_get_dfps_caps(display->panel, &dfps_caps);
if (rc) {
pr_err("[%s] failed to get dfps caps from panel\n",
display->name);
goto error;
}
num_dfps_rates = !dfps_caps.dfps_support ? 1 :
dfps_caps.max_refresh_rate -
dfps_caps.min_refresh_rate + 1;
panel_mode_count = display->panel->num_timing_nodes;
for (mode_idx = 0; mode_idx < panel_mode_count; mode_idx++) {
struct dsi_display_mode panel_mode;
int topology_override = NO_OVERRIDE;
if (display->cmdline_timing == mode_idx)
topology_override = display->cmdline_topology;
memset(&panel_mode, 0, sizeof(panel_mode));
rc = dsi_panel_get_mode(display->panel, mode_idx,
&panel_mode, topology_override);
if (rc) {
pr_err("[%s] failed to get mode idx %d from panel\n",
display->name, mode_idx);
goto error;
}
if (display->ctrl_count > 1) { /* TODO: remove if */
panel_mode.timing.h_active *= display->ctrl_count;
panel_mode.timing.h_front_porch *= display->ctrl_count;
panel_mode.timing.h_sync_width *= display->ctrl_count;
panel_mode.timing.h_back_porch *= display->ctrl_count;
panel_mode.timing.h_skew *= display->ctrl_count;
panel_mode.pixel_clk_khz *= display->ctrl_count;
}
for (i = 0; i < num_dfps_rates; i++) {
struct dsi_display_mode *sub_mode =
&display->modes[array_idx];
u32 curr_refresh_rate;
if (!sub_mode) {
pr_err("invalid mode data\n");
rc = -EFAULT;
goto error;
}
memcpy(sub_mode, &panel_mode, sizeof(panel_mode));
if (dfps_caps.dfps_support) {
curr_refresh_rate =
sub_mode->timing.refresh_rate;
sub_mode->timing.refresh_rate =
dfps_caps.min_refresh_rate +
(i % num_dfps_rates);
dsi_display_get_dfps_timing(display,
sub_mode, curr_refresh_rate);
sub_mode->pixel_clk_khz =
(DSI_H_TOTAL(&sub_mode->timing) *
DSI_V_TOTAL(&sub_mode->timing) *
sub_mode->timing.refresh_rate) / 1000;
}
array_idx++;
}
}
*out_modes = display->modes;
rc = 0;
error:
if (rc)
kfree(display->modes);
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_get_panel_vfp(void *dsi_display,
int h_active, int v_active)
{
int i, rc = 0;
u32 count, refresh_rate = 0;
struct dsi_dfps_capabilities dfps_caps;
struct dsi_display *display = (struct dsi_display *)dsi_display;
if (!display)
return -EINVAL;
rc = dsi_display_get_mode_count(display, &count);
if (rc)
return rc;
mutex_lock(&display->display_lock);
if (display->panel && display->panel->cur_mode)
refresh_rate = display->panel->cur_mode->timing.refresh_rate;
dsi_panel_get_dfps_caps(display->panel, &dfps_caps);
if (dfps_caps.dfps_support)
refresh_rate = dfps_caps.max_refresh_rate;
if (!refresh_rate) {
mutex_unlock(&display->display_lock);
pr_err("Null Refresh Rate\n");
return -EINVAL;
}
h_active *= display->ctrl_count;
for (i = 0; i < count; i++) {
struct dsi_display_mode *m = &display->modes[i];
if (m && v_active == m->timing.v_active &&
h_active == m->timing.h_active &&
refresh_rate == m->timing.refresh_rate) {
rc = m->timing.v_front_porch;
break;
}
}
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_find_mode(struct dsi_display *display,
const struct dsi_display_mode *cmp,
struct dsi_display_mode **out_mode)
{
u32 count, i;
int rc;
if (!display || !out_mode)
return -EINVAL;
*out_mode = NULL;
rc = dsi_display_get_mode_count(display, &count);
if (rc)
return rc;
mutex_lock(&display->display_lock);
for (i = 0; i < count; i++) {
struct dsi_display_mode *m = &display->modes[i];
if (cmp->timing.v_active == m->timing.v_active &&
cmp->timing.h_active == m->timing.h_active &&
cmp->timing.refresh_rate == m->timing.refresh_rate) {
*out_mode = m;
rc = 0;
break;
}
}
mutex_unlock(&display->display_lock);
if (!*out_mode) {
pr_err("[%s] failed to find mode for v_active %u h_active %u rate %u\n",
display->name, cmp->timing.v_active,
cmp->timing.h_active, cmp->timing.refresh_rate);
rc = -ENOENT;
}
return rc;
}
/**
* dsi_display_validate_mode_vrr() - Validate if varaible refresh case.
* @display: DSI display handle.
* @cur_dsi_mode: Current DSI mode.
* @mode: Mode value structure to be validated.
* MSM_MODE_FLAG_SEAMLESS_VRR flag is set if there
* is change in fps but vactive and hactive are same.
* Return: error code.
*/
int dsi_display_validate_mode_vrr(struct dsi_display *display,
struct dsi_display_mode *cur_dsi_mode,
struct dsi_display_mode *mode)
{
int rc = 0;
struct dsi_display_mode adj_mode, cur_mode;
struct dsi_dfps_capabilities dfps_caps;
u32 curr_refresh_rate;
if (!display || !mode) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (!display->panel || !display->panel->cur_mode) {
pr_debug("Current panel mode not set\n");
return rc;
}
mutex_lock(&display->display_lock);
adj_mode = *mode;
cur_mode = *cur_dsi_mode;
if ((cur_mode.timing.refresh_rate != adj_mode.timing.refresh_rate) &&
(cur_mode.timing.v_active == adj_mode.timing.v_active) &&
(cur_mode.timing.h_active == adj_mode.timing.h_active)) {
curr_refresh_rate = cur_mode.timing.refresh_rate;
rc = dsi_panel_get_dfps_caps(display->panel, &dfps_caps);
if (rc) {
pr_err("[%s] failed to get dfps caps from panel\n",
display->name);
goto error;
}
cur_mode.timing.refresh_rate =
adj_mode.timing.refresh_rate;
rc = dsi_display_get_dfps_timing(display,
&cur_mode, curr_refresh_rate);
if (rc) {
pr_err("[%s] seamless vrr not possible rc=%d\n",
display->name, rc);
goto error;
}
switch (dfps_caps.type) {
/*
* Ignore any round off factors in porch calculation.
* Worse case is set to 5.
*/
case DSI_DFPS_IMMEDIATE_VFP:
if (abs(DSI_V_TOTAL(&cur_mode.timing) -
DSI_V_TOTAL(&adj_mode.timing)) > 5)
pr_err("Mismatch vfp fps:%d new:%d given:%d\n",
adj_mode.timing.refresh_rate,
cur_mode.timing.v_front_porch,
adj_mode.timing.v_front_porch);
break;
case DSI_DFPS_IMMEDIATE_HFP:
if (abs(DSI_H_TOTAL(&cur_mode.timing) -
DSI_H_TOTAL(&adj_mode.timing)) > 5)
pr_err("Mismatch hfp fps:%d new:%d given:%d\n",
adj_mode.timing.refresh_rate,
cur_mode.timing.h_front_porch,
adj_mode.timing.h_front_porch);
break;
default:
pr_err("Unsupported DFPS mode %d\n",
dfps_caps.type);
rc = -ENOTSUPP;
}
pr_debug("Mode switch is seamless variable refresh\n");
mode->dsi_mode_flags |= DSI_MODE_FLAG_VRR;
SDE_EVT32(curr_refresh_rate, adj_mode.timing.refresh_rate,
cur_mode.timing.h_front_porch,
adj_mode.timing.h_front_porch);
}
error:
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_validate_mode(struct dsi_display *display,
struct dsi_display_mode *mode,
u32 flags)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
struct dsi_display_mode adj_mode;
if (!display || !mode) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
adj_mode = *mode;
adjust_timing_by_ctrl_count(display, &adj_mode);
rc = dsi_panel_validate_mode(display->panel, &adj_mode);
if (rc) {
pr_err("[%s] panel mode validation failed, rc=%d\n",
display->name, rc);
goto error;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_validate_timing(ctrl->ctrl, &adj_mode.timing);
if (rc) {
pr_err("[%s] ctrl mode validation failed, rc=%d\n",
display->name, rc);
goto error;
}
rc = dsi_phy_validate_mode(ctrl->phy, &adj_mode.timing);
if (rc) {
pr_err("[%s] phy mode validation failed, rc=%d\n",
display->name, rc);
goto error;
}
}
if ((flags & DSI_VALIDATE_FLAG_ALLOW_ADJUST) &&
(mode->dsi_mode_flags & DSI_MODE_FLAG_SEAMLESS)) {
rc = dsi_display_validate_mode_seamless(display, mode);
if (rc) {
pr_err("[%s] seamless not possible rc=%d\n",
display->name, rc);
goto error;
}
}
error:
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_set_mode(struct dsi_display *display,
struct dsi_display_mode *mode,
u32 flags)
{
int rc = 0;
struct dsi_display_mode adj_mode;
if (!display || !mode || !display->panel) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
adj_mode = *mode;
adjust_timing_by_ctrl_count(display, &adj_mode);
/*For dynamic DSI setting, use specified clock rate */
if (display->cached_clk_rate > 0)
adj_mode.priv_info->clk_rate_hz = display->cached_clk_rate;
rc = dsi_display_validate_mode_set(display, &adj_mode, flags);
if (rc) {
pr_err("[%s] mode cannot be set\n", display->name);
goto error;
}
rc = dsi_display_set_mode_sub(display, &adj_mode, flags);
if (rc) {
pr_err("[%s] failed to set mode\n", display->name);
goto error;
}
if (!display->panel->cur_mode) {
display->panel->cur_mode =
kzalloc(sizeof(struct dsi_display_mode), GFP_KERNEL);
if (!display->panel->cur_mode) {
rc = -ENOMEM;
goto error;
}
}
memcpy(display->panel->cur_mode, &adj_mode, sizeof(adj_mode));
error:
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_set_tpg_state(struct dsi_display *display, bool enable)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
if (!display) {
pr_err("Invalid params\n");
return -EINVAL;
}
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_set_tpg_state(ctrl->ctrl, enable);
if (rc) {
pr_err("[%s] failed to set tpg state for host_%d\n",
display->name, i);
goto error;
}
}
display->is_tpg_enabled = enable;
error:
return rc;
}
static int dsi_display_pre_switch(struct dsi_display *display)
{
int rc = 0;
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_ON);
if (rc) {
pr_err("[%s] failed to enable DSI core clocks, rc=%d\n",
display->name, rc);
goto error;
}
rc = dsi_display_ctrl_update(display);
if (rc) {
pr_err("[%s] failed to update DSI controller, rc=%d\n",
display->name, rc);
goto error_ctrl_clk_off;
}
rc = dsi_display_set_clk_src(display);
if (rc) {
pr_err("[%s] failed to set DSI link clock source, rc=%d\n",
display->name, rc);
goto error_ctrl_deinit;
}
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_LINK_CLK, DSI_CLK_ON);
if (rc) {
pr_err("[%s] failed to enable DSI link clocks, rc=%d\n",
display->name, rc);
goto error_ctrl_deinit;
}
goto error;
error_ctrl_deinit:
(void)dsi_display_ctrl_deinit(display);
error_ctrl_clk_off:
(void)dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_OFF);
error:
return rc;
}
static void dsi_display_handle_fifo_underflow(struct work_struct *work)
{
struct dsi_display *display = NULL;
display = container_of(work, struct dsi_display, fifo_underflow_work);
if (!display)
return;
pr_debug("handle DSI FIFO underflow error\n");
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
dsi_display_soft_reset(display);
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
}
static void dsi_display_handle_fifo_overflow(struct work_struct *work)
{
struct dsi_display *display = NULL;
struct dsi_display_ctrl *ctrl;
int i, rc;
int mask = BIT(20); /* clock lane */
int (*cb_func)(void *event_usr_ptr,
uint32_t event_idx, uint32_t instance_idx,
uint32_t data0, uint32_t data1,
uint32_t data2, uint32_t data3);
void *data;
u32 version = 0;
display = container_of(work, struct dsi_display, fifo_overflow_work);
if (!display || !display->panel ||
(display->panel->panel_mode != DSI_OP_VIDEO_MODE))
return;
pr_debug("handle DSI FIFO overflow error\n");
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
/*
* below recovery sequence is not applicable to
* hw version 2.0.0, 2.1.0 and 2.2.0, so return early.
*/
ctrl = &display->ctrl[display->clk_master_idx];
version = dsi_ctrl_get_hw_version(ctrl->ctrl);
if (!version || (version < 0x20020001))
goto end;
/* reset ctrl and lanes */
for (i = 0 ; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_reset(ctrl->ctrl, mask);
rc = dsi_phy_lane_reset(ctrl->phy);
}
/* wait for display line count to be in active area */
ctrl = &display->ctrl[display->clk_master_idx];
if (ctrl->ctrl->recovery_cb.event_cb) {
cb_func = ctrl->ctrl->recovery_cb.event_cb;
data = ctrl->ctrl->recovery_cb.event_usr_ptr;
rc = cb_func(data, SDE_CONN_EVENT_VID_FIFO_OVERFLOW,
display->clk_master_idx, 0, 0, 0, 0);
if (rc < 0) {
pr_debug("sde callback failed\n");
goto end;
}
}
/* Enable Video mode for DSI controller */
for (i = 0 ; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
dsi_ctrl_vid_engine_en(ctrl->ctrl, true);
}
/*
* Add sufficient delay to make sure
* pixel transmission has started
*/
udelay(200);
end:
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
}
static void dsi_display_handle_lp_rx_timeout(struct work_struct *work)
{
struct dsi_display *display = NULL;
struct dsi_display_ctrl *ctrl;
int i, rc;
int mask = (BIT(20) | (0xF << 16)); /* clock lane and 4 data lane */
int (*cb_func)(void *event_usr_ptr,
uint32_t event_idx, uint32_t instance_idx,
uint32_t data0, uint32_t data1,
uint32_t data2, uint32_t data3);
void *data;
u32 version = 0;
display = container_of(work, struct dsi_display, lp_rx_timeout_work);
if (!display || !display->panel ||
(display->panel->panel_mode != DSI_OP_VIDEO_MODE))
return;
pr_debug("handle DSI LP RX Timeout error\n");
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
/*
* below recovery sequence is not applicable to
* hw version 2.0.0, 2.1.0 and 2.2.0, so return early.
*/
ctrl = &display->ctrl[display->clk_master_idx];
version = dsi_ctrl_get_hw_version(ctrl->ctrl);
if (!version || (version < 0x20020001))
goto end;
/* reset ctrl and lanes */
for (i = 0 ; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_reset(ctrl->ctrl, mask);
rc = dsi_phy_lane_reset(ctrl->phy);
}
ctrl = &display->ctrl[display->clk_master_idx];
if (ctrl->ctrl->recovery_cb.event_cb) {
cb_func = ctrl->ctrl->recovery_cb.event_cb;
data = ctrl->ctrl->recovery_cb.event_usr_ptr;
rc = cb_func(data, SDE_CONN_EVENT_VID_FIFO_OVERFLOW,
display->clk_master_idx, 0, 0, 0, 0);
if (rc < 0) {
pr_debug("Target is in suspend/shutdown\n");
goto end;
}
}
/* Enable Video mode for DSI controller */
for (i = 0 ; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
dsi_ctrl_vid_engine_en(ctrl->ctrl, true);
}
/*
* Add sufficient delay to make sure
* pixel transmission as started
*/
udelay(200);
end:
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
}
static int dsi_display_cb_error_handler(void *data,
uint32_t event_idx, uint32_t instance_idx,
uint32_t data0, uint32_t data1,
uint32_t data2, uint32_t data3)
{
struct dsi_display *display = data;
if (!display)
return -EINVAL;
switch (event_idx) {
case DSI_FIFO_UNDERFLOW:
queue_work(display->err_workq, &display->fifo_underflow_work);
break;
case DSI_FIFO_OVERFLOW:
queue_work(display->err_workq, &display->fifo_overflow_work);
break;
case DSI_LP_Rx_TIMEOUT:
queue_work(display->err_workq, &display->lp_rx_timeout_work);
break;
default:
pr_warn("unhandled error interrupt: %d\n", event_idx);
break;
}
return 0;
}
static void dsi_display_register_error_handler(struct dsi_display *display)
{
int i = 0;
struct dsi_display_ctrl *ctrl;
struct dsi_event_cb_info event_info;
if (!display)
return;
display->err_workq = create_singlethread_workqueue("dsi_err_workq");
if (!display->err_workq) {
pr_err("failed to create dsi workq!\n");
return;
}
INIT_WORK(&display->fifo_underflow_work,
dsi_display_handle_fifo_underflow);
INIT_WORK(&display->fifo_overflow_work,
dsi_display_handle_fifo_overflow);
INIT_WORK(&display->lp_rx_timeout_work,
dsi_display_handle_lp_rx_timeout);
memset(&event_info, 0, sizeof(event_info));
event_info.event_cb = dsi_display_cb_error_handler;
event_info.event_usr_ptr = display;
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
ctrl->ctrl->irq_info.irq_err_cb = event_info;
}
}
static void dsi_display_unregister_error_handler(struct dsi_display *display)
{
int i = 0;
struct dsi_display_ctrl *ctrl;
if (!display)
return;
for (i = 0; i < display->ctrl_count; i++) {
ctrl = &display->ctrl[i];
memset(&ctrl->ctrl->irq_info.irq_err_cb,
0, sizeof(struct dsi_event_cb_info));
}
if (display->err_workq)
destroy_workqueue(display->err_workq);
}
int dsi_display_prepare(struct dsi_display *display)
{
int rc = 0;
struct dsi_display_mode *mode;
if (!display) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (!display->panel->cur_mode) {
pr_err("no valid mode set for the display");
return -EINVAL;
}
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY);
mutex_lock(&display->display_lock);
mode = display->panel->cur_mode;
dsi_display_set_ctrl_esd_check_flag(display, false);
if (mode->dsi_mode_flags & DSI_MODE_FLAG_DMS) {
if (display->is_cont_splash_enabled) {
pr_err("DMS is not supposed to be set on first frame\n");
return -EINVAL;
}
/* update dsi ctrl for new mode */
rc = dsi_display_pre_switch(display);
if (rc)
pr_err("[%s] panel pre-prepare-res-switch failed, rc=%d\n",
display->name, rc);
goto error;
}
if (!display->is_cont_splash_enabled) {
/*
* For continuous splash usecase we skip panel
* pre prepare since the regulator vote is already
* taken care in splash resource init
*/
rc = dsi_panel_pre_prepare(display->panel);
if (rc) {
pr_err("[%s] panel pre-prepare failed, rc=%d\n",
display->name, rc);
goto error;
}
}
/* Set up ctrl isr before enabling core clk */
dsi_display_ctrl_isr_configure(display, true);
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_ON);
if (rc) {
pr_err("[%s] failed to enable DSI core clocks, rc=%d\n",
display->name, rc);
goto error_panel_post_unprep;
}
/*
* If ULPS during suspend feature is enabled, then DSI PHY was
* left on during suspend. In this case, we do not need to reset/init
* PHY. This would have already been done when the CORE clocks are
* turned on. However, if cont splash is disabled, the first time DSI
* is powered on, phy init needs to be done unconditionally.
*/
if (!display->panel->ulps_suspend_enabled || !display->ulps_enabled) {
rc = dsi_display_phy_sw_reset(display);
if (rc) {
pr_err("[%s] failed to reset phy, rc=%d\n",
display->name, rc);
goto error_ctrl_clk_off;
}
rc = dsi_display_phy_enable(display);
if (rc) {
pr_err("[%s] failed to enable DSI PHY, rc=%d\n",
display->name, rc);
goto error_ctrl_clk_off;
}
}
rc = dsi_display_set_clk_src(display);
if (rc) {
pr_err("[%s] failed to set DSI link clock source, rc=%d\n",
display->name, rc);
goto error_phy_disable;
}
rc = dsi_display_ctrl_init(display);
if (rc) {
pr_err("[%s] failed to setup DSI controller, rc=%d\n",
display->name, rc);
goto error_phy_disable;
}
/* Set up DSI ERROR event callback */
dsi_display_register_error_handler(display);
rc = dsi_display_ctrl_host_enable(display);
if (rc) {
pr_err("[%s] failed to enable DSI host, rc=%d\n",
display->name, rc);
goto error_ctrl_deinit;
}
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_LINK_CLK, DSI_CLK_ON);
if (rc) {
pr_err("[%s] failed to enable DSI link clocks, rc=%d\n",
display->name, rc);
goto error_host_engine_off;
}
if (!display->is_cont_splash_enabled) {
/*
* For continuous splash usecase, skip panel prepare and
* ctl reset since the pnael and ctrl is already in active
* state and panel on commands are not needed
*/
rc = dsi_display_soft_reset(display);
if (rc) {
pr_err("[%s] failed soft reset, rc=%d\n",
display->name, rc);
goto error_ctrl_link_off;
}
rc = dsi_panel_prepare(display->panel);
if (rc) {
pr_err("[%s] panel prepare failed, rc=%d\n",
display->name, rc);
goto error_ctrl_link_off;
}
}
goto error;
error_ctrl_link_off:
(void)dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_LINK_CLK, DSI_CLK_OFF);
error_host_engine_off:
(void)dsi_display_ctrl_host_disable(display);
error_ctrl_deinit:
(void)dsi_display_ctrl_deinit(display);
error_phy_disable:
(void)dsi_display_phy_disable(display);
error_ctrl_clk_off:
(void)dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_OFF);
error_panel_post_unprep:
(void)dsi_panel_post_unprepare(display->panel);
error:
mutex_unlock(&display->display_lock);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT);
return rc;
}
static int dsi_display_calc_ctrl_roi(const struct dsi_display *display,
const struct dsi_display_ctrl *ctrl,
const struct msm_roi_list *req_rois,
struct dsi_rect *out_roi)
{
const struct dsi_rect *bounds = &ctrl->ctrl->mode_bounds;
struct dsi_display_mode *cur_mode;
struct msm_roi_caps *roi_caps;
struct dsi_rect req_roi = { 0 };
int rc = 0;
if (dsi_display_has_ext_bridge(display))
return 0;
cur_mode = display->panel->cur_mode;
if (!cur_mode)
return 0;
roi_caps = &cur_mode->priv_info->roi_caps;
if (req_rois->num_rects > roi_caps->num_roi) {
pr_err("request for %d rois greater than max %d\n",
req_rois->num_rects,
roi_caps->num_roi);
rc = -EINVAL;
goto exit;
}
/**
* if no rois, user wants to reset back to full resolution
* note: h_active is already divided by ctrl_count
*/
if (!req_rois->num_rects) {
*out_roi = *bounds;
goto exit;
}
/* intersect with the bounds */
req_roi.x = req_rois->roi[0].x1;
req_roi.y = req_rois->roi[0].y1;
req_roi.w = req_rois->roi[0].x2 - req_rois->roi[0].x1;
req_roi.h = req_rois->roi[0].y2 - req_rois->roi[0].y1;
dsi_rect_intersect(&req_roi, bounds, out_roi);
exit:
/* adjust the ctrl origin to be top left within the ctrl */
out_roi->x = out_roi->x - bounds->x;
pr_debug("ctrl%d:%d: req (%d,%d,%d,%d) bnd (%d,%d,%d,%d) out (%d,%d,%d,%d)\n",
ctrl->dsi_ctrl_idx, ctrl->ctrl->cell_index,
req_roi.x, req_roi.y, req_roi.w, req_roi.h,
bounds->x, bounds->y, bounds->w, bounds->h,
out_roi->x, out_roi->y, out_roi->w, out_roi->h);
return rc;
}
static int dsi_display_set_roi(struct dsi_display *display,
struct msm_roi_list *rois)
{
struct dsi_display_mode *cur_mode;
struct msm_roi_caps *roi_caps;
int rc = 0;
int i;
if (!display || !rois || !display->panel)
return -EINVAL;
if (dsi_display_has_ext_bridge(display))
return 0;
cur_mode = display->panel->cur_mode;
if (!cur_mode)
return 0;
roi_caps = &cur_mode->priv_info->roi_caps;
if (!roi_caps->enabled)
return 0;
for (i = 0; i < display->ctrl_count; i++) {
struct dsi_display_ctrl *ctrl = &display->ctrl[i];
struct dsi_rect ctrl_roi;
bool changed = false;
rc = dsi_display_calc_ctrl_roi(display, ctrl, rois, &ctrl_roi);
if (rc) {
pr_err("dsi_display_calc_ctrl_roi failed rc %d\n", rc);
return rc;
}
rc = dsi_ctrl_set_roi(ctrl->ctrl, &ctrl_roi, &changed);
if (rc) {
pr_err("dsi_ctrl_set_roi failed rc %d\n", rc);
return rc;
}
if (!changed)
continue;
/* send the new roi to the panel via dcs commands */
rc = dsi_panel_send_roi_dcs(display->panel, i, &ctrl_roi);
if (rc) {
pr_err("dsi_panel_set_roi failed rc %d\n", rc);
return rc;
}
/* re-program the ctrl with the timing based on the new roi */
rc = dsi_ctrl_setup(ctrl->ctrl);
if (rc) {
pr_err("dsi_ctrl_setup failed rc %d\n", rc);
return rc;
}
}
return rc;
}
int dsi_display_pre_kickoff(struct dsi_display *display,
struct msm_display_kickoff_params *params)
{
int rc = 0;
int i;
/* check and setup MISR */
if (display->misr_enable)
_dsi_display_setup_misr(display);
rc = dsi_display_set_roi(display, params->rois);
/* dynamic DSI clock setting */
if (atomic_read(&display->clkrate_change_pending)) {
mutex_lock(&display->display_lock);
/*
* acquire panel_lock to make sure no commands are in progress
*/
dsi_panel_acquire_panel_lock(display->panel);
/*
* Wait for DSI command engine not to be busy sending data
* from display engine.
* If waiting fails, return "rc" instead of below "ret" so as
* not to impact DRM commit. The clock updating would be
* deferred to the next DRM commit.
*/
for (i = 0; i < display->ctrl_count; i++) {
struct dsi_ctrl *ctrl = display->ctrl[i].ctrl;
int ret = 0;
ret = dsi_ctrl_wait_for_cmd_mode_mdp_idle(ctrl);
if (ret)
goto wait_failure;
}
/*
* Don't check the return value so as not to impact DRM commit
* when error occurs.
*/
(void)dsi_display_force_update_dsi_clk(display);
wait_failure:
/* release panel_lock */
dsi_panel_release_panel_lock(display->panel);
mutex_unlock(&display->display_lock);
}
return rc;
}
int dsi_display_config_ctrl_for_cont_splash(struct dsi_display *display)
{
int rc = 0;
if (!display || !display->panel) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (!display->panel->cur_mode) {
pr_err("no valid mode set for the display");
return -EINVAL;
}
if (!display->is_cont_splash_enabled)
return 0;
if (display->config.panel_mode == DSI_OP_VIDEO_MODE) {
rc = dsi_display_vid_engine_enable(display);
if (rc) {
pr_err("[%s]failed to enable DSI video engine, rc=%d\n",
display->name, rc);
goto error_out;
}
} else if (display->config.panel_mode == DSI_OP_CMD_MODE) {
rc = dsi_display_cmd_engine_enable(display);
if (rc) {
pr_err("[%s]failed to enable DSI cmd engine, rc=%d\n",
display->name, rc);
goto error_out;
}
} else {
pr_err("[%s] Invalid configuration\n", display->name);
rc = -EINVAL;
}
error_out:
return rc;
}
int dsi_display_enable(struct dsi_display *display)
{
int rc = 0;
struct dsi_display_mode *mode;
if (!display || !display->panel) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (!display->panel->cur_mode) {
pr_err("no valid mode set for the display");
return -EINVAL;
}
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY);
/* Engine states and panel states are populated during splash
* resource init and hence we return early
*/
if (display->is_cont_splash_enabled) {
dsi_display_config_ctrl_for_cont_splash(display);
rc = dsi_display_splash_res_cleanup(display);
if (rc) {
pr_err("Continuous splash res cleanup failed, rc=%d\n",
rc);
return -EINVAL;
}
display->panel->panel_initialized = true;
pr_debug("cont splash enabled, display enable not required\n");
return 0;
}
mutex_lock(&display->display_lock);
mode = display->panel->cur_mode;
if (mode->dsi_mode_flags & DSI_MODE_FLAG_DMS) {
rc = dsi_panel_post_switch(display->panel);
if (rc) {
pr_err("[%s] failed to switch DSI panel mode, rc=%d\n",
display->name, rc);
goto error;
}
} else {
rc = dsi_panel_enable(display->panel);
if (rc) {
pr_err("[%s] failed to enable DSI panel, rc=%d\n",
display->name, rc);
goto error;
}
}
if (mode->priv_info && mode->priv_info->dsc_enabled) {
mode->priv_info->dsc.pic_width *= display->ctrl_count;
rc = dsi_panel_update_pps(display->panel);
if (rc) {
pr_err("[%s] panel pps cmd update failed, rc=%d\n",
display->name, rc);
goto error;
}
}
if (mode->dsi_mode_flags & DSI_MODE_FLAG_DMS) {
rc = dsi_panel_switch(display->panel);
if (rc)
pr_err("[%s] failed to switch DSI panel mode, rc=%d\n",
display->name, rc);
goto error;
}
if (display->config.panel_mode == DSI_OP_VIDEO_MODE) {
rc = dsi_display_vid_engine_enable(display);
if (rc) {
pr_err("[%s]failed to enable DSI video engine, rc=%d\n",
display->name, rc);
goto error_disable_panel;
}
} else if (display->config.panel_mode == DSI_OP_CMD_MODE) {
rc = dsi_display_cmd_engine_enable(display);
if (rc) {
pr_err("[%s]failed to enable DSI cmd engine, rc=%d\n",
display->name, rc);
goto error_disable_panel;
}
} else {
pr_err("[%s] Invalid configuration\n", display->name);
rc = -EINVAL;
goto error_disable_panel;
}
goto error;
error_disable_panel:
(void)dsi_panel_disable(display->panel);
error:
mutex_unlock(&display->display_lock);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT);
return rc;
}
int dsi_display_post_enable(struct dsi_display *display)
{
int rc = 0;
if (!display) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
rc = dsi_panel_post_enable(display->panel);
if (rc)
pr_err("[%s] panel post-enable failed, rc=%d\n",
display->name, rc);
/* remove the clk vote for CMD mode panels */
if (display->config.panel_mode == DSI_OP_CMD_MODE)
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_pre_disable(struct dsi_display *display)
{
int rc = 0;
if (!display) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
/* enable the clk vote for CMD mode panels */
if (display->config.panel_mode == DSI_OP_CMD_MODE)
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
rc = dsi_panel_pre_disable(display->panel);
if (rc)
pr_err("[%s] panel pre-disable failed, rc=%d\n",
display->name, rc);
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_disable(struct dsi_display *display)
{
int rc = 0;
if (!display) {
pr_err("Invalid params\n");
return -EINVAL;
}
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY);
mutex_lock(&display->display_lock);
rc = dsi_display_wake_up(display);
if (rc)
pr_err("[%s] display wake up failed, rc=%d\n",
display->name, rc);
if (display->config.panel_mode == DSI_OP_VIDEO_MODE) {
rc = dsi_display_vid_engine_disable(display);
if (rc)
pr_err("[%s]failed to disable DSI vid engine, rc=%d\n",
display->name, rc);
} else if (display->config.panel_mode == DSI_OP_CMD_MODE) {
rc = dsi_display_cmd_engine_disable(display);
if (rc)
pr_err("[%s]failed to disable DSI cmd engine, rc=%d\n",
display->name, rc);
} else {
pr_err("[%s] Invalid configuration\n", display->name);
rc = -EINVAL;
}
rc = dsi_panel_disable(display->panel);
if (rc)
pr_err("[%s] failed to disable DSI panel, rc=%d\n",
display->name, rc);
mutex_unlock(&display->display_lock);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT);
return rc;
}
int dsi_display_update_pps(char *pps_cmd, void *disp)
{
struct dsi_display *display;
if (pps_cmd == NULL || disp == NULL) {
pr_err("Invalid parameter\n");
return -EINVAL;
}
display = disp;
mutex_lock(&display->display_lock);
memcpy(display->panel->dsc_pps_cmd, pps_cmd, DSI_CMD_PPS_SIZE);
mutex_unlock(&display->display_lock);
return 0;
}
int dsi_display_unprepare(struct dsi_display *display)
{
int rc = 0;
if (!display) {
pr_err("Invalid params\n");
return -EINVAL;
}
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY);
mutex_lock(&display->display_lock);
rc = dsi_display_wake_up(display);
if (rc)
pr_err("[%s] display wake up failed, rc=%d\n",
display->name, rc);
rc = dsi_panel_unprepare(display->panel);
if (rc)
pr_err("[%s] panel unprepare failed, rc=%d\n",
display->name, rc);
rc = dsi_display_ctrl_host_disable(display);
if (rc)
pr_err("[%s] failed to disable DSI host, rc=%d\n",
display->name, rc);
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_LINK_CLK, DSI_CLK_OFF);
if (rc)
pr_err("[%s] failed to disable Link clocks, rc=%d\n",
display->name, rc);
/* Free up DSI ERROR event callback */
dsi_display_unregister_error_handler(display);
rc = dsi_display_ctrl_deinit(display);
if (rc)
pr_err("[%s] failed to deinit controller, rc=%d\n",
display->name, rc);
if (!display->panel->ulps_suspend_enabled) {
rc = dsi_display_phy_disable(display);
if (rc)
pr_err("[%s] failed to disable DSI PHY, rc=%d\n",
display->name, rc);
}
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_OFF);
if (rc)
pr_err("[%s] failed to disable DSI clocks, rc=%d\n",
display->name, rc);
/* destrory dsi isr set up */
dsi_display_ctrl_isr_configure(display, false);
rc = dsi_panel_post_unprepare(display->panel);
if (rc)
pr_err("[%s] panel post-unprepare failed, rc=%d\n",
display->name, rc);
mutex_unlock(&display->display_lock);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT);
return rc;
}
static int __init dsi_display_register(void)
{
dsi_phy_drv_register();
dsi_ctrl_drv_register();
return platform_driver_register(&dsi_display_driver);
}
static void __exit dsi_display_unregister(void)
{
platform_driver_unregister(&dsi_display_driver);
dsi_ctrl_drv_unregister();
dsi_phy_drv_unregister();
}
module_param_string(dsi_display0, dsi_display_primary, MAX_CMDLINE_PARAM_LEN,
0600);
MODULE_PARM_DESC(dsi_display0,
"msm_drm.dsi_display0=<display node>:<configX> where <display node> is 'primary dsi display node name' and <configX> where x represents index in the topology list");
module_param_string(dsi_display1, dsi_display_secondary, MAX_CMDLINE_PARAM_LEN,
0600);
MODULE_PARM_DESC(dsi_display1,
"msm_drm.dsi_display1=<display node>:<configX> where <display node> is 'secondary dsi display node name' and <configX> where x represents index in the topology list");
module_init(dsi_display_register);
module_exit(dsi_display_unregister);