| /* |
| * Disk Array driver for HP Smart Array controllers. |
| * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| * 02111-1307, USA. |
| * |
| * Questions/Comments/Bugfixes to iss_storagedev@hp.com |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/major.h> |
| #include <linux/fs.h> |
| #include <linux/bio.h> |
| #include <linux/blkpg.h> |
| #include <linux/timer.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/init.h> |
| #include <linux/hdreg.h> |
| #include <linux/spinlock.h> |
| #include <linux/compat.h> |
| #include <linux/blktrace_api.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/blkdev.h> |
| #include <linux/genhd.h> |
| #include <linux/completion.h> |
| #include <scsi/scsi.h> |
| #include <scsi/sg.h> |
| #include <scsi/scsi_ioctl.h> |
| #include <linux/cdrom.h> |
| #include <linux/scatterlist.h> |
| #include <linux/kthread.h> |
| |
| #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin)) |
| #define DRIVER_NAME "HP CISS Driver (v 3.6.20)" |
| #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20) |
| |
| /* Embedded module documentation macros - see modules.h */ |
| MODULE_AUTHOR("Hewlett-Packard Company"); |
| MODULE_DESCRIPTION("Driver for HP Smart Array Controllers"); |
| MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400" |
| " SA6i P600 P800 P400 P400i E200 E200i E500 P700m" |
| " Smart Array G2 Series SAS/SATA Controllers"); |
| MODULE_VERSION("3.6.20"); |
| MODULE_LICENSE("GPL"); |
| |
| #include "cciss_cmd.h" |
| #include "cciss.h" |
| #include <linux/cciss_ioctl.h> |
| |
| /* define the PCI info for the cards we can control */ |
| static const struct pci_device_id cciss_pci_device_id[] = { |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, |
| {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, |
| PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, |
| {0,} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, cciss_pci_device_id); |
| |
| /* board_id = Subsystem Device ID & Vendor ID |
| * product = Marketing Name for the board |
| * access = Address of the struct of function pointers |
| */ |
| static struct board_type products[] = { |
| {0x40700E11, "Smart Array 5300", &SA5_access}, |
| {0x40800E11, "Smart Array 5i", &SA5B_access}, |
| {0x40820E11, "Smart Array 532", &SA5B_access}, |
| {0x40830E11, "Smart Array 5312", &SA5B_access}, |
| {0x409A0E11, "Smart Array 641", &SA5_access}, |
| {0x409B0E11, "Smart Array 642", &SA5_access}, |
| {0x409C0E11, "Smart Array 6400", &SA5_access}, |
| {0x409D0E11, "Smart Array 6400 EM", &SA5_access}, |
| {0x40910E11, "Smart Array 6i", &SA5_access}, |
| {0x3225103C, "Smart Array P600", &SA5_access}, |
| {0x3223103C, "Smart Array P800", &SA5_access}, |
| {0x3234103C, "Smart Array P400", &SA5_access}, |
| {0x3235103C, "Smart Array P400i", &SA5_access}, |
| {0x3211103C, "Smart Array E200i", &SA5_access}, |
| {0x3212103C, "Smart Array E200", &SA5_access}, |
| {0x3213103C, "Smart Array E200i", &SA5_access}, |
| {0x3214103C, "Smart Array E200i", &SA5_access}, |
| {0x3215103C, "Smart Array E200i", &SA5_access}, |
| {0x3237103C, "Smart Array E500", &SA5_access}, |
| {0x323D103C, "Smart Array P700m", &SA5_access}, |
| {0x3241103C, "Smart Array P212", &SA5_access}, |
| {0x3243103C, "Smart Array P410", &SA5_access}, |
| {0x3245103C, "Smart Array P410i", &SA5_access}, |
| {0x3247103C, "Smart Array P411", &SA5_access}, |
| {0x3249103C, "Smart Array P812", &SA5_access}, |
| {0x324A103C, "Smart Array P712m", &SA5_access}, |
| {0x324B103C, "Smart Array P711m", &SA5_access}, |
| {0xFFFF103C, "Unknown Smart Array", &SA5_access}, |
| }; |
| |
| /* How long to wait (in milliseconds) for board to go into simple mode */ |
| #define MAX_CONFIG_WAIT 30000 |
| #define MAX_IOCTL_CONFIG_WAIT 1000 |
| |
| /*define how many times we will try a command because of bus resets */ |
| #define MAX_CMD_RETRIES 3 |
| |
| #define MAX_CTLR 32 |
| |
| /* Originally cciss driver only supports 8 major numbers */ |
| #define MAX_CTLR_ORIG 8 |
| |
| static ctlr_info_t *hba[MAX_CTLR]; |
| |
| static void do_cciss_request(struct request_queue *q); |
| static irqreturn_t do_cciss_intr(int irq, void *dev_id); |
| static int cciss_open(struct block_device *bdev, fmode_t mode); |
| static int cciss_release(struct gendisk *disk, fmode_t mode); |
| static int cciss_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned int cmd, unsigned long arg); |
| static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo); |
| |
| static int cciss_revalidate(struct gendisk *disk); |
| static int rebuild_lun_table(ctlr_info_t *h, int first_time); |
| static int deregister_disk(ctlr_info_t *h, int drv_index, |
| int clear_all); |
| |
| static void cciss_read_capacity(int ctlr, int logvol, int withirq, |
| sector_t *total_size, unsigned int *block_size); |
| static void cciss_read_capacity_16(int ctlr, int logvol, int withirq, |
| sector_t *total_size, unsigned int *block_size); |
| static void cciss_geometry_inquiry(int ctlr, int logvol, |
| int withirq, sector_t total_size, |
| unsigned int block_size, InquiryData_struct *inq_buff, |
| drive_info_struct *drv); |
| static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *, |
| __u32); |
| static void start_io(ctlr_info_t *h); |
| static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, |
| unsigned int use_unit_num, unsigned int log_unit, |
| __u8 page_code, unsigned char *scsi3addr, int cmd_type); |
| static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size, |
| unsigned int use_unit_num, unsigned int log_unit, |
| __u8 page_code, int cmd_type); |
| |
| static void fail_all_cmds(unsigned long ctlr); |
| static int scan_thread(void *data); |
| static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c); |
| |
| #ifdef CONFIG_PROC_FS |
| static void cciss_procinit(int i); |
| #else |
| static void cciss_procinit(int i) |
| { |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| #ifdef CONFIG_COMPAT |
| static int cciss_compat_ioctl(struct block_device *, fmode_t, |
| unsigned, unsigned long); |
| #endif |
| |
| static struct block_device_operations cciss_fops = { |
| .owner = THIS_MODULE, |
| .open = cciss_open, |
| .release = cciss_release, |
| .locked_ioctl = cciss_ioctl, |
| .getgeo = cciss_getgeo, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = cciss_compat_ioctl, |
| #endif |
| .revalidate_disk = cciss_revalidate, |
| }; |
| |
| /* |
| * Enqueuing and dequeuing functions for cmdlists. |
| */ |
| static inline void addQ(struct hlist_head *list, CommandList_struct *c) |
| { |
| hlist_add_head(&c->list, list); |
| } |
| |
| static inline void removeQ(CommandList_struct *c) |
| { |
| if (WARN_ON(hlist_unhashed(&c->list))) |
| return; |
| |
| hlist_del_init(&c->list); |
| } |
| |
| #include "cciss_scsi.c" /* For SCSI tape support */ |
| |
| #define RAID_UNKNOWN 6 |
| |
| #ifdef CONFIG_PROC_FS |
| |
| /* |
| * Report information about this controller. |
| */ |
| #define ENG_GIG 1000000000 |
| #define ENG_GIG_FACTOR (ENG_GIG/512) |
| #define ENGAGE_SCSI "engage scsi" |
| static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", |
| "UNKNOWN" |
| }; |
| |
| static struct proc_dir_entry *proc_cciss; |
| |
| static void cciss_seq_show_header(struct seq_file *seq) |
| { |
| ctlr_info_t *h = seq->private; |
| |
| seq_printf(seq, "%s: HP %s Controller\n" |
| "Board ID: 0x%08lx\n" |
| "Firmware Version: %c%c%c%c\n" |
| "IRQ: %d\n" |
| "Logical drives: %d\n" |
| "Current Q depth: %d\n" |
| "Current # commands on controller: %d\n" |
| "Max Q depth since init: %d\n" |
| "Max # commands on controller since init: %d\n" |
| "Max SG entries since init: %d\n", |
| h->devname, |
| h->product_name, |
| (unsigned long)h->board_id, |
| h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], |
| h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT], |
| h->num_luns, |
| h->Qdepth, h->commands_outstanding, |
| h->maxQsinceinit, h->max_outstanding, h->maxSG); |
| |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| cciss_seq_tape_report(seq, h->ctlr); |
| #endif /* CONFIG_CISS_SCSI_TAPE */ |
| } |
| |
| static void *cciss_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| ctlr_info_t *h = seq->private; |
| unsigned ctlr = h->ctlr; |
| unsigned long flags; |
| |
| /* prevent displaying bogus info during configuration |
| * or deconfiguration of a logical volume |
| */ |
| spin_lock_irqsave(CCISS_LOCK(ctlr), flags); |
| if (h->busy_configuring) { |
| spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); |
| return ERR_PTR(-EBUSY); |
| } |
| h->busy_configuring = 1; |
| spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); |
| |
| if (*pos == 0) |
| cciss_seq_show_header(seq); |
| |
| return pos; |
| } |
| |
| static int cciss_seq_show(struct seq_file *seq, void *v) |
| { |
| sector_t vol_sz, vol_sz_frac; |
| ctlr_info_t *h = seq->private; |
| unsigned ctlr = h->ctlr; |
| loff_t *pos = v; |
| drive_info_struct *drv = &h->drv[*pos]; |
| |
| if (*pos > h->highest_lun) |
| return 0; |
| |
| if (drv->heads == 0) |
| return 0; |
| |
| vol_sz = drv->nr_blocks; |
| vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR); |
| vol_sz_frac *= 100; |
| sector_div(vol_sz_frac, ENG_GIG_FACTOR); |
| |
| if (drv->raid_level > 5) |
| drv->raid_level = RAID_UNKNOWN; |
| seq_printf(seq, "cciss/c%dd%d:" |
| "\t%4u.%02uGB\tRAID %s\n", |
| ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac, |
| raid_label[drv->raid_level]); |
| return 0; |
| } |
| |
| static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| ctlr_info_t *h = seq->private; |
| |
| if (*pos > h->highest_lun) |
| return NULL; |
| *pos += 1; |
| |
| return pos; |
| } |
| |
| static void cciss_seq_stop(struct seq_file *seq, void *v) |
| { |
| ctlr_info_t *h = seq->private; |
| |
| /* Only reset h->busy_configuring if we succeeded in setting |
| * it during cciss_seq_start. */ |
| if (v == ERR_PTR(-EBUSY)) |
| return; |
| |
| h->busy_configuring = 0; |
| } |
| |
| static struct seq_operations cciss_seq_ops = { |
| .start = cciss_seq_start, |
| .show = cciss_seq_show, |
| .next = cciss_seq_next, |
| .stop = cciss_seq_stop, |
| }; |
| |
| static int cciss_seq_open(struct inode *inode, struct file *file) |
| { |
| int ret = seq_open(file, &cciss_seq_ops); |
| struct seq_file *seq = file->private_data; |
| |
| if (!ret) |
| seq->private = PDE(inode)->data; |
| |
| return ret; |
| } |
| |
| static ssize_t |
| cciss_proc_write(struct file *file, const char __user *buf, |
| size_t length, loff_t *ppos) |
| { |
| int err; |
| char *buffer; |
| |
| #ifndef CONFIG_CISS_SCSI_TAPE |
| return -EINVAL; |
| #endif |
| |
| if (!buf || length > PAGE_SIZE - 1) |
| return -EINVAL; |
| |
| buffer = (char *)__get_free_page(GFP_KERNEL); |
| if (!buffer) |
| return -ENOMEM; |
| |
| err = -EFAULT; |
| if (copy_from_user(buffer, buf, length)) |
| goto out; |
| buffer[length] = '\0'; |
| |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) { |
| struct seq_file *seq = file->private_data; |
| ctlr_info_t *h = seq->private; |
| int rc; |
| |
| rc = cciss_engage_scsi(h->ctlr); |
| if (rc != 0) |
| err = -rc; |
| else |
| err = length; |
| } else |
| #endif /* CONFIG_CISS_SCSI_TAPE */ |
| err = -EINVAL; |
| /* might be nice to have "disengage" too, but it's not |
| safely possible. (only 1 module use count, lock issues.) */ |
| |
| out: |
| free_page((unsigned long)buffer); |
| return err; |
| } |
| |
| static struct file_operations cciss_proc_fops = { |
| .owner = THIS_MODULE, |
| .open = cciss_seq_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| .write = cciss_proc_write, |
| }; |
| |
| static void __devinit cciss_procinit(int i) |
| { |
| struct proc_dir_entry *pde; |
| |
| if (proc_cciss == NULL) |
| proc_cciss = proc_mkdir("driver/cciss", NULL); |
| if (!proc_cciss) |
| return; |
| pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP | |
| S_IROTH, proc_cciss, |
| &cciss_proc_fops, hba[i]); |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| /* |
| * For operations that cannot sleep, a command block is allocated at init, |
| * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track |
| * which ones are free or in use. For operations that can wait for kmalloc |
| * to possible sleep, this routine can be called with get_from_pool set to 0. |
| * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was. |
| */ |
| static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool) |
| { |
| CommandList_struct *c; |
| int i; |
| u64bit temp64; |
| dma_addr_t cmd_dma_handle, err_dma_handle; |
| |
| if (!get_from_pool) { |
| c = (CommandList_struct *) pci_alloc_consistent(h->pdev, |
| sizeof(CommandList_struct), &cmd_dma_handle); |
| if (c == NULL) |
| return NULL; |
| memset(c, 0, sizeof(CommandList_struct)); |
| |
| c->cmdindex = -1; |
| |
| c->err_info = (ErrorInfo_struct *) |
| pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct), |
| &err_dma_handle); |
| |
| if (c->err_info == NULL) { |
| pci_free_consistent(h->pdev, |
| sizeof(CommandList_struct), c, cmd_dma_handle); |
| return NULL; |
| } |
| memset(c->err_info, 0, sizeof(ErrorInfo_struct)); |
| } else { /* get it out of the controllers pool */ |
| |
| do { |
| i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); |
| if (i == h->nr_cmds) |
| return NULL; |
| } while (test_and_set_bit |
| (i & (BITS_PER_LONG - 1), |
| h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); |
| #ifdef CCISS_DEBUG |
| printk(KERN_DEBUG "cciss: using command buffer %d\n", i); |
| #endif |
| c = h->cmd_pool + i; |
| memset(c, 0, sizeof(CommandList_struct)); |
| cmd_dma_handle = h->cmd_pool_dhandle |
| + i * sizeof(CommandList_struct); |
| c->err_info = h->errinfo_pool + i; |
| memset(c->err_info, 0, sizeof(ErrorInfo_struct)); |
| err_dma_handle = h->errinfo_pool_dhandle |
| + i * sizeof(ErrorInfo_struct); |
| h->nr_allocs++; |
| |
| c->cmdindex = i; |
| } |
| |
| INIT_HLIST_NODE(&c->list); |
| c->busaddr = (__u32) cmd_dma_handle; |
| temp64.val = (__u64) err_dma_handle; |
| c->ErrDesc.Addr.lower = temp64.val32.lower; |
| c->ErrDesc.Addr.upper = temp64.val32.upper; |
| c->ErrDesc.Len = sizeof(ErrorInfo_struct); |
| |
| c->ctlr = h->ctlr; |
| return c; |
| } |
| |
| /* |
| * Frees a command block that was previously allocated with cmd_alloc(). |
| */ |
| static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool) |
| { |
| int i; |
| u64bit temp64; |
| |
| if (!got_from_pool) { |
| temp64.val32.lower = c->ErrDesc.Addr.lower; |
| temp64.val32.upper = c->ErrDesc.Addr.upper; |
| pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct), |
| c->err_info, (dma_addr_t) temp64.val); |
| pci_free_consistent(h->pdev, sizeof(CommandList_struct), |
| c, (dma_addr_t) c->busaddr); |
| } else { |
| i = c - h->cmd_pool; |
| clear_bit(i & (BITS_PER_LONG - 1), |
| h->cmd_pool_bits + (i / BITS_PER_LONG)); |
| h->nr_frees++; |
| } |
| } |
| |
| static inline ctlr_info_t *get_host(struct gendisk *disk) |
| { |
| return disk->queue->queuedata; |
| } |
| |
| static inline drive_info_struct *get_drv(struct gendisk *disk) |
| { |
| return disk->private_data; |
| } |
| |
| /* |
| * Open. Make sure the device is really there. |
| */ |
| static int cciss_open(struct block_device *bdev, fmode_t mode) |
| { |
| ctlr_info_t *host = get_host(bdev->bd_disk); |
| drive_info_struct *drv = get_drv(bdev->bd_disk); |
| |
| #ifdef CCISS_DEBUG |
| printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name); |
| #endif /* CCISS_DEBUG */ |
| |
| if (host->busy_initializing || drv->busy_configuring) |
| return -EBUSY; |
| /* |
| * Root is allowed to open raw volume zero even if it's not configured |
| * so array config can still work. Root is also allowed to open any |
| * volume that has a LUN ID, so it can issue IOCTL to reread the |
| * disk information. I don't think I really like this |
| * but I'm already using way to many device nodes to claim another one |
| * for "raw controller". |
| */ |
| if (drv->heads == 0) { |
| if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */ |
| /* if not node 0 make sure it is a partition = 0 */ |
| if (MINOR(bdev->bd_dev) & 0x0f) { |
| return -ENXIO; |
| /* if it is, make sure we have a LUN ID */ |
| } else if (drv->LunID == 0) { |
| return -ENXIO; |
| } |
| } |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| } |
| drv->usage_count++; |
| host->usage_count++; |
| return 0; |
| } |
| |
| /* |
| * Close. Sync first. |
| */ |
| static int cciss_release(struct gendisk *disk, fmode_t mode) |
| { |
| ctlr_info_t *host = get_host(disk); |
| drive_info_struct *drv = get_drv(disk); |
| |
| #ifdef CCISS_DEBUG |
| printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name); |
| #endif /* CCISS_DEBUG */ |
| |
| drv->usage_count--; |
| host->usage_count--; |
| return 0; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| |
| static int do_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned cmd, unsigned long arg) |
| { |
| int ret; |
| lock_kernel(); |
| ret = cciss_ioctl(bdev, mode, cmd, arg); |
| unlock_kernel(); |
| return ret; |
| } |
| |
| static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode, |
| unsigned cmd, unsigned long arg); |
| static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode, |
| unsigned cmd, unsigned long arg); |
| |
| static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned cmd, unsigned long arg) |
| { |
| switch (cmd) { |
| case CCISS_GETPCIINFO: |
| case CCISS_GETINTINFO: |
| case CCISS_SETINTINFO: |
| case CCISS_GETNODENAME: |
| case CCISS_SETNODENAME: |
| case CCISS_GETHEARTBEAT: |
| case CCISS_GETBUSTYPES: |
| case CCISS_GETFIRMVER: |
| case CCISS_GETDRIVVER: |
| case CCISS_REVALIDVOLS: |
| case CCISS_DEREGDISK: |
| case CCISS_REGNEWDISK: |
| case CCISS_REGNEWD: |
| case CCISS_RESCANDISK: |
| case CCISS_GETLUNINFO: |
| return do_ioctl(bdev, mode, cmd, arg); |
| |
| case CCISS_PASSTHRU32: |
| return cciss_ioctl32_passthru(bdev, mode, cmd, arg); |
| case CCISS_BIG_PASSTHRU32: |
| return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg); |
| |
| default: |
| return -ENOIOCTLCMD; |
| } |
| } |
| |
| static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode, |
| unsigned cmd, unsigned long arg) |
| { |
| IOCTL32_Command_struct __user *arg32 = |
| (IOCTL32_Command_struct __user *) arg; |
| IOCTL_Command_struct arg64; |
| IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); |
| int err; |
| u32 cp; |
| |
| err = 0; |
| err |= |
| copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
| sizeof(arg64.LUN_info)); |
| err |= |
| copy_from_user(&arg64.Request, &arg32->Request, |
| sizeof(arg64.Request)); |
| err |= |
| copy_from_user(&arg64.error_info, &arg32->error_info, |
| sizeof(arg64.error_info)); |
| err |= get_user(arg64.buf_size, &arg32->buf_size); |
| err |= get_user(cp, &arg32->buf); |
| arg64.buf = compat_ptr(cp); |
| err |= copy_to_user(p, &arg64, sizeof(arg64)); |
| |
| if (err) |
| return -EFAULT; |
| |
| err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p); |
| if (err) |
| return err; |
| err |= |
| copy_in_user(&arg32->error_info, &p->error_info, |
| sizeof(arg32->error_info)); |
| if (err) |
| return -EFAULT; |
| return err; |
| } |
| |
| static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode, |
| unsigned cmd, unsigned long arg) |
| { |
| BIG_IOCTL32_Command_struct __user *arg32 = |
| (BIG_IOCTL32_Command_struct __user *) arg; |
| BIG_IOCTL_Command_struct arg64; |
| BIG_IOCTL_Command_struct __user *p = |
| compat_alloc_user_space(sizeof(arg64)); |
| int err; |
| u32 cp; |
| |
| err = 0; |
| err |= |
| copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
| sizeof(arg64.LUN_info)); |
| err |= |
| copy_from_user(&arg64.Request, &arg32->Request, |
| sizeof(arg64.Request)); |
| err |= |
| copy_from_user(&arg64.error_info, &arg32->error_info, |
| sizeof(arg64.error_info)); |
| err |= get_user(arg64.buf_size, &arg32->buf_size); |
| err |= get_user(arg64.malloc_size, &arg32->malloc_size); |
| err |= get_user(cp, &arg32->buf); |
| arg64.buf = compat_ptr(cp); |
| err |= copy_to_user(p, &arg64, sizeof(arg64)); |
| |
| if (err) |
| return -EFAULT; |
| |
| err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p); |
| if (err) |
| return err; |
| err |= |
| copy_in_user(&arg32->error_info, &p->error_info, |
| sizeof(arg32->error_info)); |
| if (err) |
| return -EFAULT; |
| return err; |
| } |
| #endif |
| |
| static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
| { |
| drive_info_struct *drv = get_drv(bdev->bd_disk); |
| |
| if (!drv->cylinders) |
| return -ENXIO; |
| |
| geo->heads = drv->heads; |
| geo->sectors = drv->sectors; |
| geo->cylinders = drv->cylinders; |
| return 0; |
| } |
| |
| static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c) |
| { |
| if (c->err_info->CommandStatus == CMD_TARGET_STATUS && |
| c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) |
| (void)check_for_unit_attention(host, c); |
| } |
| /* |
| * ioctl |
| */ |
| static int cciss_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct gendisk *disk = bdev->bd_disk; |
| ctlr_info_t *host = get_host(disk); |
| drive_info_struct *drv = get_drv(disk); |
| int ctlr = host->ctlr; |
| void __user *argp = (void __user *)arg; |
| |
| #ifdef CCISS_DEBUG |
| printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg); |
| #endif /* CCISS_DEBUG */ |
| |
| switch (cmd) { |
| case CCISS_GETPCIINFO: |
| { |
| cciss_pci_info_struct pciinfo; |
| |
| if (!arg) |
| return -EINVAL; |
| pciinfo.domain = pci_domain_nr(host->pdev->bus); |
| pciinfo.bus = host->pdev->bus->number; |
| pciinfo.dev_fn = host->pdev->devfn; |
| pciinfo.board_id = host->board_id; |
| if (copy_to_user |
| (argp, &pciinfo, sizeof(cciss_pci_info_struct))) |
| return -EFAULT; |
| return 0; |
| } |
| case CCISS_GETINTINFO: |
| { |
| cciss_coalint_struct intinfo; |
| if (!arg) |
| return -EINVAL; |
| intinfo.delay = |
| readl(&host->cfgtable->HostWrite.CoalIntDelay); |
| intinfo.count = |
| readl(&host->cfgtable->HostWrite.CoalIntCount); |
| if (copy_to_user |
| (argp, &intinfo, sizeof(cciss_coalint_struct))) |
| return -EFAULT; |
| return 0; |
| } |
| case CCISS_SETINTINFO: |
| { |
| cciss_coalint_struct intinfo; |
| unsigned long flags; |
| int i; |
| |
| if (!arg) |
| return -EINVAL; |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| if (copy_from_user |
| (&intinfo, argp, sizeof(cciss_coalint_struct))) |
| return -EFAULT; |
| if ((intinfo.delay == 0) && (intinfo.count == 0)) |
| { |
| // printk("cciss_ioctl: delay and count cannot be 0\n"); |
| return -EINVAL; |
| } |
| spin_lock_irqsave(CCISS_LOCK(ctlr), flags); |
| /* Update the field, and then ring the doorbell */ |
| writel(intinfo.delay, |
| &(host->cfgtable->HostWrite.CoalIntDelay)); |
| writel(intinfo.count, |
| &(host->cfgtable->HostWrite.CoalIntCount)); |
| writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL); |
| |
| for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) { |
| if (!(readl(host->vaddr + SA5_DOORBELL) |
| & CFGTBL_ChangeReq)) |
| break; |
| /* delay and try again */ |
| udelay(1000); |
| } |
| spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); |
| if (i >= MAX_IOCTL_CONFIG_WAIT) |
| return -EAGAIN; |
| return 0; |
| } |
| case CCISS_GETNODENAME: |
| { |
| NodeName_type NodeName; |
| int i; |
| |
| if (!arg) |
| return -EINVAL; |
| for (i = 0; i < 16; i++) |
| NodeName[i] = |
| readb(&host->cfgtable->ServerName[i]); |
| if (copy_to_user(argp, NodeName, sizeof(NodeName_type))) |
| return -EFAULT; |
| return 0; |
| } |
| case CCISS_SETNODENAME: |
| { |
| NodeName_type NodeName; |
| unsigned long flags; |
| int i; |
| |
| if (!arg) |
| return -EINVAL; |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (copy_from_user |
| (NodeName, argp, sizeof(NodeName_type))) |
| return -EFAULT; |
| |
| spin_lock_irqsave(CCISS_LOCK(ctlr), flags); |
| |
| /* Update the field, and then ring the doorbell */ |
| for (i = 0; i < 16; i++) |
| writeb(NodeName[i], |
| &host->cfgtable->ServerName[i]); |
| |
| writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL); |
| |
| for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) { |
| if (!(readl(host->vaddr + SA5_DOORBELL) |
| & CFGTBL_ChangeReq)) |
| break; |
| /* delay and try again */ |
| udelay(1000); |
| } |
| spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); |
| if (i >= MAX_IOCTL_CONFIG_WAIT) |
| return -EAGAIN; |
| return 0; |
| } |
| |
| case CCISS_GETHEARTBEAT: |
| { |
| Heartbeat_type heartbeat; |
| |
| if (!arg) |
| return -EINVAL; |
| heartbeat = readl(&host->cfgtable->HeartBeat); |
| if (copy_to_user |
| (argp, &heartbeat, sizeof(Heartbeat_type))) |
| return -EFAULT; |
| return 0; |
| } |
| case CCISS_GETBUSTYPES: |
| { |
| BusTypes_type BusTypes; |
| |
| if (!arg) |
| return -EINVAL; |
| BusTypes = readl(&host->cfgtable->BusTypes); |
| if (copy_to_user |
| (argp, &BusTypes, sizeof(BusTypes_type))) |
| return -EFAULT; |
| return 0; |
| } |
| case CCISS_GETFIRMVER: |
| { |
| FirmwareVer_type firmware; |
| |
| if (!arg) |
| return -EINVAL; |
| memcpy(firmware, host->firm_ver, 4); |
| |
| if (copy_to_user |
| (argp, firmware, sizeof(FirmwareVer_type))) |
| return -EFAULT; |
| return 0; |
| } |
| case CCISS_GETDRIVVER: |
| { |
| DriverVer_type DriverVer = DRIVER_VERSION; |
| |
| if (!arg) |
| return -EINVAL; |
| |
| if (copy_to_user |
| (argp, &DriverVer, sizeof(DriverVer_type))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| case CCISS_DEREGDISK: |
| case CCISS_REGNEWD: |
| case CCISS_REVALIDVOLS: |
| return rebuild_lun_table(host, 0); |
| |
| case CCISS_GETLUNINFO:{ |
| LogvolInfo_struct luninfo; |
| |
| luninfo.LunID = drv->LunID; |
| luninfo.num_opens = drv->usage_count; |
| luninfo.num_parts = 0; |
| if (copy_to_user(argp, &luninfo, |
| sizeof(LogvolInfo_struct))) |
| return -EFAULT; |
| return 0; |
| } |
| case CCISS_PASSTHRU: |
| { |
| IOCTL_Command_struct iocommand; |
| CommandList_struct *c; |
| char *buff = NULL; |
| u64bit temp64; |
| unsigned long flags; |
| DECLARE_COMPLETION_ONSTACK(wait); |
| |
| if (!arg) |
| return -EINVAL; |
| |
| if (!capable(CAP_SYS_RAWIO)) |
| return -EPERM; |
| |
| if (copy_from_user |
| (&iocommand, argp, sizeof(IOCTL_Command_struct))) |
| return -EFAULT; |
| if ((iocommand.buf_size < 1) && |
| (iocommand.Request.Type.Direction != XFER_NONE)) { |
| return -EINVAL; |
| } |
| #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */ |
| /* Check kmalloc limits */ |
| if (iocommand.buf_size > 128000) |
| return -EINVAL; |
| #endif |
| if (iocommand.buf_size > 0) { |
| buff = kmalloc(iocommand.buf_size, GFP_KERNEL); |
| if (buff == NULL) |
| return -EFAULT; |
| } |
| if (iocommand.Request.Type.Direction == XFER_WRITE) { |
| /* Copy the data into the buffer we created */ |
| if (copy_from_user |
| (buff, iocommand.buf, iocommand.buf_size)) { |
| kfree(buff); |
| return -EFAULT; |
| } |
| } else { |
| memset(buff, 0, iocommand.buf_size); |
| } |
| if ((c = cmd_alloc(host, 0)) == NULL) { |
| kfree(buff); |
| return -ENOMEM; |
| } |
| // Fill in the command type |
| c->cmd_type = CMD_IOCTL_PEND; |
| // Fill in Command Header |
| c->Header.ReplyQueue = 0; // unused in simple mode |
| if (iocommand.buf_size > 0) // buffer to fill |
| { |
| c->Header.SGList = 1; |
| c->Header.SGTotal = 1; |
| } else // no buffers to fill |
| { |
| c->Header.SGList = 0; |
| c->Header.SGTotal = 0; |
| } |
| c->Header.LUN = iocommand.LUN_info; |
| c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag |
| |
| // Fill in Request block |
| c->Request = iocommand.Request; |
| |
| // Fill in the scatter gather information |
| if (iocommand.buf_size > 0) { |
| temp64.val = pci_map_single(host->pdev, buff, |
| iocommand.buf_size, |
| PCI_DMA_BIDIRECTIONAL); |
| c->SG[0].Addr.lower = temp64.val32.lower; |
| c->SG[0].Addr.upper = temp64.val32.upper; |
| c->SG[0].Len = iocommand.buf_size; |
| c->SG[0].Ext = 0; // we are not chaining |
| } |
| c->waiting = &wait; |
| |
| /* Put the request on the tail of the request queue */ |
| spin_lock_irqsave(CCISS_LOCK(ctlr), flags); |
| addQ(&host->reqQ, c); |
| host->Qdepth++; |
| start_io(host); |
| spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); |
| |
| wait_for_completion(&wait); |
| |
| /* unlock the buffers from DMA */ |
| temp64.val32.lower = c->SG[0].Addr.lower; |
| temp64.val32.upper = c->SG[0].Addr.upper; |
| pci_unmap_single(host->pdev, (dma_addr_t) temp64.val, |
| iocommand.buf_size, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| check_ioctl_unit_attention(host, c); |
| |
| /* Copy the error information out */ |
| iocommand.error_info = *(c->err_info); |
| if (copy_to_user |
| (argp, &iocommand, sizeof(IOCTL_Command_struct))) { |
| kfree(buff); |
| cmd_free(host, c, 0); |
| return -EFAULT; |
| } |
| |
| if (iocommand.Request.Type.Direction == XFER_READ) { |
| /* Copy the data out of the buffer we created */ |
| if (copy_to_user |
| (iocommand.buf, buff, iocommand.buf_size)) { |
| kfree(buff); |
| cmd_free(host, c, 0); |
| return -EFAULT; |
| } |
| } |
| kfree(buff); |
| cmd_free(host, c, 0); |
| return 0; |
| } |
| case CCISS_BIG_PASSTHRU:{ |
| BIG_IOCTL_Command_struct *ioc; |
| CommandList_struct *c; |
| unsigned char **buff = NULL; |
| int *buff_size = NULL; |
| u64bit temp64; |
| unsigned long flags; |
| BYTE sg_used = 0; |
| int status = 0; |
| int i; |
| DECLARE_COMPLETION_ONSTACK(wait); |
| __u32 left; |
| __u32 sz; |
| BYTE __user *data_ptr; |
| |
| if (!arg) |
| return -EINVAL; |
| if (!capable(CAP_SYS_RAWIO)) |
| return -EPERM; |
| ioc = (BIG_IOCTL_Command_struct *) |
| kmalloc(sizeof(*ioc), GFP_KERNEL); |
| if (!ioc) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| if (copy_from_user(ioc, argp, sizeof(*ioc))) { |
| status = -EFAULT; |
| goto cleanup1; |
| } |
| if ((ioc->buf_size < 1) && |
| (ioc->Request.Type.Direction != XFER_NONE)) { |
| status = -EINVAL; |
| goto cleanup1; |
| } |
| /* Check kmalloc limits using all SGs */ |
| if (ioc->malloc_size > MAX_KMALLOC_SIZE) { |
| status = -EINVAL; |
| goto cleanup1; |
| } |
| if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { |
| status = -EINVAL; |
| goto cleanup1; |
| } |
| buff = |
| kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); |
| if (!buff) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| buff_size = kmalloc(MAXSGENTRIES * sizeof(int), |
| GFP_KERNEL); |
| if (!buff_size) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| left = ioc->buf_size; |
| data_ptr = ioc->buf; |
| while (left) { |
| sz = (left > |
| ioc->malloc_size) ? ioc-> |
| malloc_size : left; |
| buff_size[sg_used] = sz; |
| buff[sg_used] = kmalloc(sz, GFP_KERNEL); |
| if (buff[sg_used] == NULL) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| if (ioc->Request.Type.Direction == XFER_WRITE) { |
| if (copy_from_user |
| (buff[sg_used], data_ptr, sz)) { |
| status = -EFAULT; |
| goto cleanup1; |
| } |
| } else { |
| memset(buff[sg_used], 0, sz); |
| } |
| left -= sz; |
| data_ptr += sz; |
| sg_used++; |
| } |
| if ((c = cmd_alloc(host, 0)) == NULL) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| c->cmd_type = CMD_IOCTL_PEND; |
| c->Header.ReplyQueue = 0; |
| |
| if (ioc->buf_size > 0) { |
| c->Header.SGList = sg_used; |
| c->Header.SGTotal = sg_used; |
| } else { |
| c->Header.SGList = 0; |
| c->Header.SGTotal = 0; |
| } |
| c->Header.LUN = ioc->LUN_info; |
| c->Header.Tag.lower = c->busaddr; |
| |
| c->Request = ioc->Request; |
| if (ioc->buf_size > 0) { |
| int i; |
| for (i = 0; i < sg_used; i++) { |
| temp64.val = |
| pci_map_single(host->pdev, buff[i], |
| buff_size[i], |
| PCI_DMA_BIDIRECTIONAL); |
| c->SG[i].Addr.lower = |
| temp64.val32.lower; |
| c->SG[i].Addr.upper = |
| temp64.val32.upper; |
| c->SG[i].Len = buff_size[i]; |
| c->SG[i].Ext = 0; /* we are not chaining */ |
| } |
| } |
| c->waiting = &wait; |
| /* Put the request on the tail of the request queue */ |
| spin_lock_irqsave(CCISS_LOCK(ctlr), flags); |
| addQ(&host->reqQ, c); |
| host->Qdepth++; |
| start_io(host); |
| spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); |
| wait_for_completion(&wait); |
| /* unlock the buffers from DMA */ |
| for (i = 0; i < sg_used; i++) { |
| temp64.val32.lower = c->SG[i].Addr.lower; |
| temp64.val32.upper = c->SG[i].Addr.upper; |
| pci_unmap_single(host->pdev, |
| (dma_addr_t) temp64.val, buff_size[i], |
| PCI_DMA_BIDIRECTIONAL); |
| } |
| check_ioctl_unit_attention(host, c); |
| /* Copy the error information out */ |
| ioc->error_info = *(c->err_info); |
| if (copy_to_user(argp, ioc, sizeof(*ioc))) { |
| cmd_free(host, c, 0); |
| status = -EFAULT; |
| goto cleanup1; |
| } |
| if (ioc->Request.Type.Direction == XFER_READ) { |
| /* Copy the data out of the buffer we created */ |
| BYTE __user *ptr = ioc->buf; |
| for (i = 0; i < sg_used; i++) { |
| if (copy_to_user |
| (ptr, buff[i], buff_size[i])) { |
| cmd_free(host, c, 0); |
| status = -EFAULT; |
| goto cleanup1; |
| } |
| ptr += buff_size[i]; |
| } |
| } |
| cmd_free(host, c, 0); |
| status = 0; |
| cleanup1: |
| if (buff) { |
| for (i = 0; i < sg_used; i++) |
| kfree(buff[i]); |
| kfree(buff); |
| } |
| kfree(buff_size); |
| kfree(ioc); |
| return status; |
| } |
| |
| /* scsi_cmd_ioctl handles these, below, though some are not */ |
| /* very meaningful for cciss. SG_IO is the main one people want. */ |
| |
| case SG_GET_VERSION_NUM: |
| case SG_SET_TIMEOUT: |
| case SG_GET_TIMEOUT: |
| case SG_GET_RESERVED_SIZE: |
| case SG_SET_RESERVED_SIZE: |
| case SG_EMULATED_HOST: |
| case SG_IO: |
| case SCSI_IOCTL_SEND_COMMAND: |
| return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp); |
| |
| /* scsi_cmd_ioctl would normally handle these, below, but */ |
| /* they aren't a good fit for cciss, as CD-ROMs are */ |
| /* not supported, and we don't have any bus/target/lun */ |
| /* which we present to the kernel. */ |
| |
| case CDROM_SEND_PACKET: |
| case CDROMCLOSETRAY: |
| case CDROMEJECT: |
| case SCSI_IOCTL_GET_IDLUN: |
| case SCSI_IOCTL_GET_BUS_NUMBER: |
| default: |
| return -ENOTTY; |
| } |
| } |
| |
| static void cciss_check_queues(ctlr_info_t *h) |
| { |
| int start_queue = h->next_to_run; |
| int i; |
| |
| /* check to see if we have maxed out the number of commands that can |
| * be placed on the queue. If so then exit. We do this check here |
| * in case the interrupt we serviced was from an ioctl and did not |
| * free any new commands. |
| */ |
| if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) |
| return; |
| |
| /* We have room on the queue for more commands. Now we need to queue |
| * them up. We will also keep track of the next queue to run so |
| * that every queue gets a chance to be started first. |
| */ |
| for (i = 0; i < h->highest_lun + 1; i++) { |
| int curr_queue = (start_queue + i) % (h->highest_lun + 1); |
| /* make sure the disk has been added and the drive is real |
| * because this can be called from the middle of init_one. |
| */ |
| if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads)) |
| continue; |
| blk_start_queue(h->gendisk[curr_queue]->queue); |
| |
| /* check to see if we have maxed out the number of commands |
| * that can be placed on the queue. |
| */ |
| if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) { |
| if (curr_queue == start_queue) { |
| h->next_to_run = |
| (start_queue + 1) % (h->highest_lun + 1); |
| break; |
| } else { |
| h->next_to_run = curr_queue; |
| break; |
| } |
| } |
| } |
| } |
| |
| static void cciss_softirq_done(struct request *rq) |
| { |
| CommandList_struct *cmd = rq->completion_data; |
| ctlr_info_t *h = hba[cmd->ctlr]; |
| unsigned int nr_bytes; |
| unsigned long flags; |
| u64bit temp64; |
| int i, ddir; |
| |
| if (cmd->Request.Type.Direction == XFER_READ) |
| ddir = PCI_DMA_FROMDEVICE; |
| else |
| ddir = PCI_DMA_TODEVICE; |
| |
| /* command did not need to be retried */ |
| /* unmap the DMA mapping for all the scatter gather elements */ |
| for (i = 0; i < cmd->Header.SGList; i++) { |
| temp64.val32.lower = cmd->SG[i].Addr.lower; |
| temp64.val32.upper = cmd->SG[i].Addr.upper; |
| pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir); |
| } |
| |
| #ifdef CCISS_DEBUG |
| printk("Done with %p\n", rq); |
| #endif /* CCISS_DEBUG */ |
| |
| /* |
| * Store the full size and set the residual count for pc requests |
| */ |
| nr_bytes = blk_rq_bytes(rq); |
| if (blk_pc_request(rq)) |
| rq->data_len = cmd->err_info->ResidualCnt; |
| |
| if (blk_end_request(rq, (rq->errors == 0) ? 0 : -EIO, nr_bytes)) |
| BUG(); |
| |
| spin_lock_irqsave(&h->lock, flags); |
| cmd_free(h, cmd, 1); |
| cciss_check_queues(h); |
| spin_unlock_irqrestore(&h->lock, flags); |
| } |
| |
| /* This function gets the serial number of a logical drive via |
| * inquiry page 0x83. Serial no. is 16 bytes. If the serial |
| * number cannot be had, for whatever reason, 16 bytes of 0xff |
| * are returned instead. |
| */ |
| static void cciss_get_serial_no(int ctlr, int logvol, int withirq, |
| unsigned char *serial_no, int buflen) |
| { |
| #define PAGE_83_INQ_BYTES 64 |
| int rc; |
| unsigned char *buf; |
| |
| if (buflen > 16) |
| buflen = 16; |
| memset(serial_no, 0xff, buflen); |
| buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL); |
| if (!buf) |
| return; |
| memset(serial_no, 0, buflen); |
| if (withirq) |
| rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf, |
| PAGE_83_INQ_BYTES, 1, logvol, 0x83, TYPE_CMD); |
| else |
| rc = sendcmd(CISS_INQUIRY, ctlr, buf, |
| PAGE_83_INQ_BYTES, 1, logvol, 0x83, NULL, TYPE_CMD); |
| if (rc == IO_OK) |
| memcpy(serial_no, &buf[8], buflen); |
| kfree(buf); |
| return; |
| } |
| |
| static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk, |
| int drv_index) |
| { |
| disk->queue = blk_init_queue(do_cciss_request, &h->lock); |
| sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index); |
| disk->major = h->major; |
| disk->first_minor = drv_index << NWD_SHIFT; |
| disk->fops = &cciss_fops; |
| disk->private_data = &h->drv[drv_index]; |
| disk->driverfs_dev = &h->pdev->dev; |
| |
| /* Set up queue information */ |
| blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask); |
| |
| /* This is a hardware imposed limit. */ |
| blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES); |
| |
| /* This is a limit in the driver and could be eliminated. */ |
| blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES); |
| |
| blk_queue_max_sectors(disk->queue, h->cciss_max_sectors); |
| |
| blk_queue_softirq_done(disk->queue, cciss_softirq_done); |
| |
| disk->queue->queuedata = h; |
| |
| blk_queue_hardsect_size(disk->queue, |
| h->drv[drv_index].block_size); |
| |
| /* Make sure all queue data is written out before */ |
| /* setting h->drv[drv_index].queue, as setting this */ |
| /* allows the interrupt handler to start the queue */ |
| wmb(); |
| h->drv[drv_index].queue = disk->queue; |
| add_disk(disk); |
| } |
| |
| /* This function will check the usage_count of the drive to be updated/added. |
| * If the usage_count is zero and it is a heretofore unknown drive, or, |
| * the drive's capacity, geometry, or serial number has changed, |
| * then the drive information will be updated and the disk will be |
| * re-registered with the kernel. If these conditions don't hold, |
| * then it will be left alone for the next reboot. The exception to this |
| * is disk 0 which will always be left registered with the kernel since it |
| * is also the controller node. Any changes to disk 0 will show up on |
| * the next reboot. |
| */ |
| static void cciss_update_drive_info(int ctlr, int drv_index, int first_time) |
| { |
| ctlr_info_t *h = hba[ctlr]; |
| struct gendisk *disk; |
| InquiryData_struct *inq_buff = NULL; |
| unsigned int block_size; |
| sector_t total_size; |
| unsigned long flags = 0; |
| int ret = 0; |
| drive_info_struct *drvinfo; |
| int was_only_controller_node; |
| |
| /* Get information about the disk and modify the driver structure */ |
| inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL); |
| drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL); |
| if (inq_buff == NULL || drvinfo == NULL) |
| goto mem_msg; |
| |
| /* See if we're trying to update the "controller node" |
| * this will happen the when the first logical drive gets |
| * created by ACU. |
| */ |
| was_only_controller_node = (drv_index == 0 && |
| h->drv[0].raid_level == -1); |
| |
| /* testing to see if 16-byte CDBs are already being used */ |
| if (h->cciss_read == CCISS_READ_16) { |
| cciss_read_capacity_16(h->ctlr, drv_index, 1, |
| &total_size, &block_size); |
| |
| } else { |
| cciss_read_capacity(ctlr, drv_index, 1, |
| &total_size, &block_size); |
| |
| /* if read_capacity returns all F's this volume is >2TB */ |
| /* in size so we switch to 16-byte CDB's for all */ |
| /* read/write ops */ |
| if (total_size == 0xFFFFFFFFULL) { |
| cciss_read_capacity_16(ctlr, drv_index, 1, |
| &total_size, &block_size); |
| h->cciss_read = CCISS_READ_16; |
| h->cciss_write = CCISS_WRITE_16; |
| } else { |
| h->cciss_read = CCISS_READ_10; |
| h->cciss_write = CCISS_WRITE_10; |
| } |
| } |
| |
| cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size, |
| inq_buff, drvinfo); |
| drvinfo->block_size = block_size; |
| drvinfo->nr_blocks = total_size + 1; |
| |
| cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no, |
| sizeof(drvinfo->serial_no)); |
| |
| /* Is it the same disk we already know, and nothing's changed? */ |
| if (h->drv[drv_index].raid_level != -1 && |
| ((memcmp(drvinfo->serial_no, |
| h->drv[drv_index].serial_no, 16) == 0) && |
| drvinfo->block_size == h->drv[drv_index].block_size && |
| drvinfo->nr_blocks == h->drv[drv_index].nr_blocks && |
| drvinfo->heads == h->drv[drv_index].heads && |
| drvinfo->sectors == h->drv[drv_index].sectors && |
| drvinfo->cylinders == h->drv[drv_index].cylinders)) |
| /* The disk is unchanged, nothing to update */ |
| goto freeret; |
| |
| /* If we get here it's not the same disk, or something's changed, |
| * so we need to * deregister it, and re-register it, if it's not |
| * in use. |
| * If the disk already exists then deregister it before proceeding |
| * (unless it's the first disk (for the controller node). |
| */ |
| if (h->drv[drv_index].raid_level != -1 && drv_index != 0) { |
| printk(KERN_WARNING "disk %d has changed.\n", drv_index); |
| spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); |
| h->drv[drv_index].busy_configuring = 1; |
| spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); |
| |
| /* deregister_disk sets h->drv[drv_index].queue = NULL |
| * which keeps the interrupt handler from starting |
| * the queue. |
| */ |
| ret = deregister_disk(h, drv_index, 0); |
| h->drv[drv_index].busy_configuring = 0; |
| } |
| |
| /* If the disk is in use return */ |
| if (ret) |
| goto freeret; |
| |
| /* Save the new information from cciss_geometry_inquiry |
| * and serial number inquiry. |
| */ |
| h->drv[drv_index].block_size = drvinfo->block_size; |
| h->drv[drv_index].nr_blocks = drvinfo->nr_blocks; |
| h->drv[drv_index].heads = drvinfo->heads; |
| h->drv[drv_index].sectors = drvinfo->sectors; |
| h->drv[drv_index].cylinders = drvinfo->cylinders; |
| h->drv[drv_index].raid_level = drvinfo->raid_level; |
| memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16); |
| |
| ++h->num_luns; |
| disk = h->gendisk[drv_index]; |
| set_capacity(disk, h->drv[drv_index].nr_blocks); |
| |
| /* If it's not disk 0 (drv_index != 0) |
| * or if it was disk 0, but there was previously |
| * no actual corresponding configured logical drive |
| * (raid_leve == -1) then we want to update the |
| * logical drive's information. |
| */ |
| if (drv_index || first_time) |
| cciss_add_disk(h, disk, drv_index); |
| |
| freeret: |
| kfree(inq_buff); |
| kfree(drvinfo); |
| return; |
| mem_msg: |
| printk(KERN_ERR "cciss: out of memory\n"); |
| goto freeret; |
| } |
| |
| /* This function will find the first index of the controllers drive array |
| * that has a -1 for the raid_level and will return that index. This is |
| * where new drives will be added. If the index to be returned is greater |
| * than the highest_lun index for the controller then highest_lun is set |
| * to this new index. If there are no available indexes then -1 is returned. |
| * "controller_node" is used to know if this is a real logical drive, or just |
| * the controller node, which determines if this counts towards highest_lun. |
| */ |
| static int cciss_find_free_drive_index(int ctlr, int controller_node) |
| { |
| int i; |
| |
| for (i = 0; i < CISS_MAX_LUN; i++) { |
| if (hba[ctlr]->drv[i].raid_level == -1) { |
| if (i > hba[ctlr]->highest_lun) |
| if (!controller_node) |
| hba[ctlr]->highest_lun = i; |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| /* cciss_add_gendisk finds a free hba[]->drv structure |
| * and allocates a gendisk if needed, and sets the lunid |
| * in the drvinfo structure. It returns the index into |
| * the ->drv[] array, or -1 if none are free. |
| * is_controller_node indicates whether highest_lun should |
| * count this disk, or if it's only being added to provide |
| * a means to talk to the controller in case no logical |
| * drives have yet been configured. |
| */ |
| static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node) |
| { |
| int drv_index; |
| |
| drv_index = cciss_find_free_drive_index(h->ctlr, controller_node); |
| if (drv_index == -1) |
| return -1; |
| /*Check if the gendisk needs to be allocated */ |
| if (!h->gendisk[drv_index]) { |
| h->gendisk[drv_index] = |
| alloc_disk(1 << NWD_SHIFT); |
| if (!h->gendisk[drv_index]) { |
| printk(KERN_ERR "cciss%d: could not " |
| "allocate a new disk %d\n", |
| h->ctlr, drv_index); |
| return -1; |
| } |
| } |
| h->drv[drv_index].LunID = lunid; |
| |
| /* Don't need to mark this busy because nobody */ |
| /* else knows about this disk yet to contend */ |
| /* for access to it. */ |
| h->drv[drv_index].busy_configuring = 0; |
| wmb(); |
| return drv_index; |
| } |
| |
| /* This is for the special case of a controller which |
| * has no logical drives. In this case, we still need |
| * to register a disk so the controller can be accessed |
| * by the Array Config Utility. |
| */ |
| static void cciss_add_controller_node(ctlr_info_t *h) |
| { |
| struct gendisk *disk; |
| int drv_index; |
| |
| if (h->gendisk[0] != NULL) /* already did this? Then bail. */ |
| return; |
| |
| drv_index = cciss_add_gendisk(h, 0, 1); |
| if (drv_index == -1) { |
| printk(KERN_WARNING "cciss%d: could not " |
| "add disk 0.\n", h->ctlr); |
| return; |
| } |
| h->drv[drv_index].block_size = 512; |
| h->drv[drv_index].nr_blocks = 0; |
| h->drv[drv_index].heads = 0; |
| h->drv[drv_index].sectors = 0; |
| h->drv[drv_index].cylinders = 0; |
| h->drv[drv_index].raid_level = -1; |
| memset(h->drv[drv_index].serial_no, 0, 16); |
| disk = h->gendisk[drv_index]; |
| cciss_add_disk(h, disk, drv_index); |
| } |
| |
| /* This function will add and remove logical drives from the Logical |
| * drive array of the controller and maintain persistency of ordering |
| * so that mount points are preserved until the next reboot. This allows |
| * for the removal of logical drives in the middle of the drive array |
| * without a re-ordering of those drives. |
| * INPUT |
| * h = The controller to perform the operations on |
| */ |
| static int rebuild_lun_table(ctlr_info_t *h, int first_time) |
| { |
| int ctlr = h->ctlr; |
| int num_luns; |
| ReportLunData_struct *ld_buff = NULL; |
| int return_code; |
| int listlength = 0; |
| int i; |
| int drv_found; |
| int drv_index = 0; |
| __u32 lunid = 0; |
| unsigned long flags; |
| |
| if (!capable(CAP_SYS_RAWIO)) |
| return -EPERM; |
| |
| /* Set busy_configuring flag for this operation */ |
| spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); |
| if (h->busy_configuring) { |
| spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); |
| return -EBUSY; |
| } |
| h->busy_configuring = 1; |
| spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); |
| |
| ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL); |
| if (ld_buff == NULL) |
| goto mem_msg; |
| |
| return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff, |
| sizeof(ReportLunData_struct), 0, |
| 0, 0, TYPE_CMD); |
| |
| if (return_code == IO_OK) |
| listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength); |
| else { /* reading number of logical volumes failed */ |
| printk(KERN_WARNING "cciss: report logical volume" |
| " command failed\n"); |
| listlength = 0; |
| goto freeret; |
| } |
| |
| num_luns = listlength / 8; /* 8 bytes per entry */ |
| if (num_luns > CISS_MAX_LUN) { |
| num_luns = CISS_MAX_LUN; |
| printk(KERN_WARNING "cciss: more luns configured" |
| " on controller than can be handled by" |
| " this driver.\n"); |
| } |
| |
| if (num_luns == 0) |
| cciss_add_controller_node(h); |
| |
| /* Compare controller drive array to driver's drive array |
| * to see if any drives are missing on the controller due |
| * to action of Array Config Utility (user deletes drive) |
| * and deregister logical drives which have disappeared. |
| */ |
| for (i = 0; i <= h->highest_lun; i++) { |
| int j; |
| drv_found = 0; |
| |
| /* skip holes in the array from already deleted drives */ |
| if (h->drv[i].raid_level == -1) |
| continue; |
| |
| for (j = 0; j < num_luns; j++) { |
| memcpy(&lunid, &ld_buff->LUN[j][0], 4); |
| lunid = le32_to_cpu(lunid); |
| if (h->drv[i].LunID == lunid) { |
| drv_found = 1; |
| break; |
| } |
| } |
| if (!drv_found) { |
| /* Deregister it from the OS, it's gone. */ |
| spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); |
| h->drv[i].busy_configuring = 1; |
| spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); |
| return_code = deregister_disk(h, i, 1); |
| h->drv[i].busy_configuring = 0; |
| } |
| } |
| |
| /* Compare controller drive array to driver's drive array. |
| * Check for updates in the drive information and any new drives |
| * on the controller due to ACU adding logical drives, or changing |
| * a logical drive's size, etc. Reregister any new/changed drives |
| */ |
| for (i = 0; i < num_luns; i++) { |
| int j; |
| |
| drv_found = 0; |
| |
| memcpy(&lunid, &ld_buff->LUN[i][0], 4); |
| lunid = le32_to_cpu(lunid); |
| |
| /* Find if the LUN is already in the drive array |
| * of the driver. If so then update its info |
| * if not in use. If it does not exist then find |
| * the first free index and add it. |
| */ |
| for (j = 0; j <= h->highest_lun; j++) { |
| if (h->drv[j].raid_level != -1 && |
| h->drv[j].LunID == lunid) { |
| drv_index = j; |
| drv_found = 1; |
| break; |
| } |
| } |
| |
| /* check if the drive was found already in the array */ |
| if (!drv_found) { |
| drv_index = cciss_add_gendisk(h, lunid, 0); |
| if (drv_index == -1) |
| goto freeret; |
| } |
| cciss_update_drive_info(ctlr, drv_index, first_time); |
| } /* end for */ |
| |
| freeret: |
| kfree(ld_buff); |
| h->busy_configuring = 0; |
| /* We return -1 here to tell the ACU that we have registered/updated |
| * all of the drives that we can and to keep it from calling us |
| * additional times. |
| */ |
| return -1; |
| mem_msg: |
| printk(KERN_ERR "cciss: out of memory\n"); |
| h->busy_configuring = 0; |
| goto freeret; |
| } |
| |
| /* This function will deregister the disk and it's queue from the |
| * kernel. It must be called with the controller lock held and the |
| * drv structures busy_configuring flag set. It's parameters are: |
| * |
| * disk = This is the disk to be deregistered |
| * drv = This is the drive_info_struct associated with the disk to be |
| * deregistered. It contains information about the disk used |
| * by the driver. |
| * clear_all = This flag determines whether or not the disk information |
| * is going to be completely cleared out and the highest_lun |
| * reset. Sometimes we want to clear out information about |
| * the disk in preparation for re-adding it. In this case |
| * the highest_lun should be left unchanged and the LunID |
| * should not be cleared. |
| */ |
| static int deregister_disk(ctlr_info_t *h, int drv_index, |
| int clear_all) |
| { |
| int i; |
| struct gendisk *disk; |
| drive_info_struct *drv; |
| |
| if (!capable(CAP_SYS_RAWIO)) |
| return -EPERM; |
| |
| drv = &h->drv[drv_index]; |
| disk = h->gendisk[drv_index]; |
| |
| /* make sure logical volume is NOT is use */ |
| if (clear_all || (h->gendisk[0] == disk)) { |
| if (drv->usage_count > 1) |
| return -EBUSY; |
| } else if (drv->usage_count > 0) |
| return -EBUSY; |
| |
| /* invalidate the devices and deregister the disk. If it is disk |
| * zero do not deregister it but just zero out it's values. This |
| * allows us to delete disk zero but keep the controller registered. |
| */ |
| if (h->gendisk[0] != disk) { |
| struct request_queue *q = disk->queue; |
| if (disk->flags & GENHD_FL_UP) |
| del_gendisk(disk); |
| if (q) { |
| blk_cleanup_queue(q); |
| /* Set drv->queue to NULL so that we do not try |
| * to call blk_start_queue on this queue in the |
| * interrupt handler |
| */ |
| drv->queue = NULL; |
| } |
| /* If clear_all is set then we are deleting the logical |
| * drive, not just refreshing its info. For drives |
| * other than disk 0 we will call put_disk. We do not |
| * do this for disk 0 as we need it to be able to |
| * configure the controller. |
| */ |
| if (clear_all){ |
| /* This isn't pretty, but we need to find the |
| * disk in our array and NULL our the pointer. |
| * This is so that we will call alloc_disk if |
| * this index is used again later. |
| */ |
| for (i=0; i < CISS_MAX_LUN; i++){ |
| if (h->gendisk[i] == disk) { |
| h->gendisk[i] = NULL; |
| break; |
| } |
| } |
| put_disk(disk); |
| } |
| } else { |
| set_capacity(disk, 0); |
| } |
| |
| --h->num_luns; |
| /* zero out the disk size info */ |
| drv->nr_blocks = 0; |
| drv->block_size = 0; |
| drv->heads = 0; |
| drv->sectors = 0; |
| drv->cylinders = 0; |
| drv->raid_level = -1; /* This can be used as a flag variable to |
| * indicate that this element of the drive |
| * array is free. |
| */ |
| |
| if (clear_all) { |
| /* check to see if it was the last disk */ |
| if (drv == h->drv + h->highest_lun) { |
| /* if so, find the new hightest lun */ |
| int i, newhighest = -1; |
| for (i = 0; i <= h->highest_lun; i++) { |
| /* if the disk has size > 0, it is available */ |
| if (h->drv[i].heads) |
| newhighest = i; |
| } |
| h->highest_lun = newhighest; |
| } |
| |
| drv->LunID = 0; |
| } |
| return 0; |
| } |
| |
| static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller, |
| 1: address logical volume log_unit, |
| 2: periph device address is scsi3addr */ |
| unsigned int log_unit, __u8 page_code, |
| unsigned char *scsi3addr, int cmd_type) |
| { |
| ctlr_info_t *h = hba[ctlr]; |
| u64bit buff_dma_handle; |
| int status = IO_OK; |
| |
| c->cmd_type = CMD_IOCTL_PEND; |
| c->Header.ReplyQueue = 0; |
| if (buff != NULL) { |
| c->Header.SGList = 1; |
| c->Header.SGTotal = 1; |
| } else { |
| c->Header.SGList = 0; |
| c->Header.SGTotal = 0; |
| } |
| c->Header.Tag.lower = c->busaddr; |
| |
| c->Request.Type.Type = cmd_type; |
| if (cmd_type == TYPE_CMD) { |
| switch (cmd) { |
| case CISS_INQUIRY: |
| /* If the logical unit number is 0 then, this is going |
| to controller so It's a physical command |
| mode = 0 target = 0. So we have nothing to write. |
| otherwise, if use_unit_num == 1, |
| mode = 1(volume set addressing) target = LUNID |
| otherwise, if use_unit_num == 2, |
| mode = 0(periph dev addr) target = scsi3addr */ |
| if (use_unit_num == 1) { |
| c->Header.LUN.LogDev.VolId = |
| h->drv[log_unit].LunID; |
| c->Header.LUN.LogDev.Mode = 1; |
| } else if (use_unit_num == 2) { |
| memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, |
| 8); |
| c->Header.LUN.LogDev.Mode = 0; |
| } |
| /* are we trying to read a vital product page */ |
| if (page_code != 0) { |
| c->Request.CDB[1] = 0x01; |
| c->Request.CDB[2] = page_code; |
| } |
| c->Request.CDBLen = 6; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_READ; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = CISS_INQUIRY; |
| c->Request.CDB[4] = size & 0xFF; |
| break; |
| case CISS_REPORT_LOG: |
| case CISS_REPORT_PHYS: |
| /* Talking to controller so It's a physical command |
| mode = 00 target = 0. Nothing to write. |
| */ |
| c->Request.CDBLen = 12; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_READ; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; |
| c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB |
| c->Request.CDB[7] = (size >> 16) & 0xFF; |
| c->Request.CDB[8] = (size >> 8) & 0xFF; |
| c->Request.CDB[9] = size & 0xFF; |
| break; |
| |
| case CCISS_READ_CAPACITY: |
| c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID; |
| c->Header.LUN.LogDev.Mode = 1; |
| c->Request.CDBLen = 10; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_READ; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; |
| break; |
| case CCISS_READ_CAPACITY_16: |
| c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID; |
| c->Header.LUN.LogDev.Mode = 1; |
| c->Request.CDBLen = 16; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_READ; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; |
| c->Request.CDB[1] = 0x10; |
| c->Request.CDB[10] = (size >> 24) & 0xFF; |
| c->Request.CDB[11] = (size >> 16) & 0xFF; |
| c->Request.CDB[12] = (size >> 8) & 0xFF; |
| c->Request.CDB[13] = size & 0xFF; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; |
| break; |
| case CCISS_CACHE_FLUSH: |
| c->Request.CDBLen = 12; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_WRITE; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = BMIC_WRITE; |
| c->Request.CDB[6] = BMIC_CACHE_FLUSH; |
| break; |
| default: |
| printk(KERN_WARNING |
| "cciss%d: Unknown Command 0x%c\n", ctlr, cmd); |
| return IO_ERROR; |
| } |
| } else if (cmd_type == TYPE_MSG) { |
| switch (cmd) { |
| case 0: /* ABORT message */ |
| c->Request.CDBLen = 12; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_WRITE; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; /* abort */ |
| c->Request.CDB[1] = 0; /* abort a command */ |
| /* buff contains the tag of the command to abort */ |
| memcpy(&c->Request.CDB[4], buff, 8); |
| break; |
| case 1: /* RESET message */ |
| c->Request.CDBLen = 12; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_WRITE; |
| c->Request.Timeout = 0; |
| memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); |
| c->Request.CDB[0] = cmd; /* reset */ |
| c->Request.CDB[1] = 0x04; /* reset a LUN */ |
| break; |
| case 3: /* No-Op message */ |
| c->Request.CDBLen = 1; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_WRITE; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; |
| break; |
| default: |
| printk(KERN_WARNING |
| "cciss%d: unknown message type %d\n", ctlr, cmd); |
| return IO_ERROR; |
| } |
| } else { |
| printk(KERN_WARNING |
| "cciss%d: unknown command type %d\n", ctlr, cmd_type); |
| return IO_ERROR; |
| } |
| /* Fill in the scatter gather information */ |
| if (size > 0) { |
| buff_dma_handle.val = (__u64) pci_map_single(h->pdev, |
| buff, size, |
| PCI_DMA_BIDIRECTIONAL); |
| c->SG[0].Addr.lower = buff_dma_handle.val32.lower; |
| c->SG[0].Addr.upper = buff_dma_handle.val32.upper; |
| c->SG[0].Len = size; |
| c->SG[0].Ext = 0; /* we are not chaining */ |
| } |
| return status; |
| } |
| |
| static int sendcmd_withirq(__u8 cmd, |
| int ctlr, |
| void *buff, |
| size_t size, |
| unsigned int use_unit_num, |
| unsigned int log_unit, __u8 page_code, int cmd_type) |
| { |
| ctlr_info_t *h = hba[ctlr]; |
| CommandList_struct *c; |
| u64bit buff_dma_handle; |
| unsigned long flags; |
| int return_status; |
| DECLARE_COMPLETION_ONSTACK(wait); |
| |
| if ((c = cmd_alloc(h, 0)) == NULL) |
| return -ENOMEM; |
| return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num, |
| log_unit, page_code, NULL, cmd_type); |
| if (return_status != IO_OK) { |
| cmd_free(h, c, 0); |
| return return_status; |
| } |
| resend_cmd2: |
| c->waiting = &wait; |
| |
| /* Put the request on the tail of the queue and send it */ |
| spin_lock_irqsave(CCISS_LOCK(ctlr), flags); |
| addQ(&h->reqQ, c); |
| h->Qdepth++; |
| start_io(h); |
| spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); |
| |
| wait_for_completion(&wait); |
| |
| if (c->err_info->CommandStatus != 0) { /* an error has occurred */ |
| switch (c->err_info->CommandStatus) { |
| case CMD_TARGET_STATUS: |
| printk(KERN_WARNING "cciss: cmd %p has " |
| " completed with errors\n", c); |
| if (c->err_info->ScsiStatus) { |
| printk(KERN_WARNING "cciss: cmd %p " |
| "has SCSI Status = %x\n", |
| c, c->err_info->ScsiStatus); |
| } |
| |
| break; |
| case CMD_DATA_UNDERRUN: |
| case CMD_DATA_OVERRUN: |
| /* expected for inquire and report lun commands */ |
| break; |
| case CMD_INVALID: |
| printk(KERN_WARNING "cciss: Cmd %p is " |
| "reported invalid\n", c); |
| return_status = IO_ERROR; |
| break; |
| case CMD_PROTOCOL_ERR: |
| printk(KERN_WARNING "cciss: cmd %p has " |
| "protocol error \n", c); |
| return_status = IO_ERROR; |
| break; |
| case CMD_HARDWARE_ERR: |
| printk(KERN_WARNING "cciss: cmd %p had " |
| " hardware error\n", c); |
| return_status = IO_ERROR; |
| break; |
| case CMD_CONNECTION_LOST: |
| printk(KERN_WARNING "cciss: cmd %p had " |
| "connection lost\n", c); |
| return_status = IO_ERROR; |
| break; |
| case CMD_ABORTED: |
| printk(KERN_WARNING "cciss: cmd %p was " |
| "aborted\n", c); |
| return_status = IO_ERROR; |
| break; |
| case CMD_ABORT_FAILED: |
| printk(KERN_WARNING "cciss: cmd %p reports " |
| "abort failed\n", c); |
| return_status = IO_ERROR; |
| break; |
| case CMD_UNSOLICITED_ABORT: |
| printk(KERN_WARNING |
| "cciss%d: unsolicited abort %p\n", ctlr, c); |
| if (c->retry_count < MAX_CMD_RETRIES) { |
| printk(KERN_WARNING |
| "cciss%d: retrying %p\n", ctlr, c); |
| c->retry_count++; |
| /* erase the old error information */ |
| memset(c->err_info, 0, |
| sizeof(ErrorInfo_struct)); |
| return_status = IO_OK; |
| INIT_COMPLETION(wait); |
| goto resend_cmd2; |
| } |
| return_status = IO_ERROR; |
| break; |
| default: |
| printk(KERN_WARNING "cciss: cmd %p returned " |
| "unknown status %x\n", c, |
| c->err_info->CommandStatus); |
| return_status = IO_ERROR; |
| } |
| } |
| /* unlock the buffers from DMA */ |
| buff_dma_handle.val32.lower = c->SG[0].Addr.lower; |
| buff_dma_handle.val32.upper = c->SG[0].Addr.upper; |
| pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val, |
| c->SG[0].Len, PCI_DMA_BIDIRECTIONAL); |
| cmd_free(h, c, 0); |
| return return_status; |
| } |
| |
| static void cciss_geometry_inquiry(int ctlr, int logvol, |
| int withirq, sector_t total_size, |
| unsigned int block_size, |
| InquiryData_struct *inq_buff, |
| drive_info_struct *drv) |
| { |
| int return_code; |
| unsigned long t; |
| |
| memset(inq_buff, 0, sizeof(InquiryData_struct)); |
| if (withirq) |
| return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, |
| inq_buff, sizeof(*inq_buff), 1, |
| logvol, 0xC1, TYPE_CMD); |
| else |
| return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff, |
| sizeof(*inq_buff), 1, logvol, 0xC1, NULL, |
| TYPE_CMD); |
| if (return_code == IO_OK) { |
| if (inq_buff->data_byte[8] == 0xFF) { |
| printk(KERN_WARNING |
| "cciss: reading geometry failed, volume " |
| "does not support reading geometry\n"); |
| drv->heads = 255; |
| drv->sectors = 32; // Sectors per track |
| drv->cylinders = total_size + 1; |
| drv->raid_level = RAID_UNKNOWN; |
| } else { |
| drv->heads = inq_buff->data_byte[6]; |
| drv->sectors = inq_buff->data_byte[7]; |
| drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8; |
| drv->cylinders += inq_buff->data_byte[5]; |
| drv->raid_level = inq_buff->data_byte[8]; |
| } |
| drv->block_size = block_size; |
| drv->nr_blocks = total_size + 1; |
| t = drv->heads * drv->sectors; |
| if (t > 1) { |
| sector_t real_size = total_size + 1; |
| unsigned long rem = sector_div(real_size, t); |
| if (rem) |
| real_size++; |
| drv->cylinders = real_size; |
| } |
| } else { /* Get geometry failed */ |
| printk(KERN_WARNING "cciss: reading geometry failed\n"); |
| } |
| printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n", |
| drv->heads, drv->sectors, drv->cylinders); |
| } |
| |
| static void |
| cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size, |
| unsigned int *block_size) |
| { |
| ReadCapdata_struct *buf; |
| int return_code; |
| |
| buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL); |
| if (!buf) { |
| printk(KERN_WARNING "cciss: out of memory\n"); |
| return; |
| } |
| |
| if (withirq) |
| return_code = sendcmd_withirq(CCISS_READ_CAPACITY, |
| ctlr, buf, sizeof(ReadCapdata_struct), |
| 1, logvol, 0, TYPE_CMD); |
| else |
| return_code = sendcmd(CCISS_READ_CAPACITY, |
| ctlr, buf, sizeof(ReadCapdata_struct), |
| 1, logvol, 0, NULL, TYPE_CMD); |
| if (return_code == IO_OK) { |
| *total_size = be32_to_cpu(*(__be32 *) buf->total_size); |
| *block_size = be32_to_cpu(*(__be32 *) buf->block_size); |
| } else { /* read capacity command failed */ |
| printk(KERN_WARNING "cciss: read capacity failed\n"); |
| *total_size = 0; |
| *block_size = BLOCK_SIZE; |
| } |
| if (*total_size != 0) |
| printk(KERN_INFO " blocks= %llu block_size= %d\n", |
| (unsigned long long)*total_size+1, *block_size); |
| kfree(buf); |
| } |
| |
| static void |
| cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size) |
| { |
| ReadCapdata_struct_16 *buf; |
| int return_code; |
| |
| buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL); |
| if (!buf) { |
| printk(KERN_WARNING "cciss: out of memory\n"); |
| return; |
| } |
| |
| if (withirq) { |
| return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16, |
| ctlr, buf, sizeof(ReadCapdata_struct_16), |
| 1, logvol, 0, TYPE_CMD); |
| } |
| else { |
| return_code = sendcmd(CCISS_READ_CAPACITY_16, |
| ctlr, buf, sizeof(ReadCapdata_struct_16), |
| 1, logvol, 0, NULL, TYPE_CMD); |
| } |
| if (return_code == IO_OK) { |
| *total_size = be64_to_cpu(*(__be64 *) buf->total_size); |
| *block_size = be32_to_cpu(*(__be32 *) buf->block_size); |
| } else { /* read capacity command failed */ |
| printk(KERN_WARNING "cciss: read capacity failed\n"); |
| *total_size = 0; |
| *block_size = BLOCK_SIZE; |
| } |
| printk(KERN_INFO " blocks= %llu block_size= %d\n", |
| (unsigned long long)*total_size+1, *block_size); |
| kfree(buf); |
| } |
| |
| static int cciss_revalidate(struct gendisk *disk) |
| { |
| ctlr_info_t *h = get_host(disk); |
| drive_info_struct *drv = get_drv(disk); |
| int logvol; |
| int FOUND = 0; |
| unsigned int block_size; |
| sector_t total_size; |
| InquiryData_struct *inq_buff = NULL; |
| |
| for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) { |
| if (h->drv[logvol].LunID == drv->LunID) { |
| FOUND = 1; |
| break; |
| } |
| } |
| |
| if (!FOUND) |
| return 1; |
| |
| inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL); |
| if (inq_buff == NULL) { |
| printk(KERN_WARNING "cciss: out of memory\n"); |
| return 1; |
| } |
| if (h->cciss_read == CCISS_READ_10) { |
| cciss_read_capacity(h->ctlr, logvol, 1, |
| &total_size, &block_size); |
| } else { |
| cciss_read_capacity_16(h->ctlr, logvol, 1, |
| &total_size, &block_size); |
| } |
| cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size, |
| inq_buff, drv); |
| |
| blk_queue_hardsect_size(drv->queue, drv->block_size); |
| set_capacity(disk, drv->nr_blocks); |
| |
| kfree(inq_buff); |
| return 0; |
| } |
| |
| /* |
| * Wait polling for a command to complete. |
| * The memory mapped FIFO is polled for the completion. |
| * Used only at init time, interrupts from the HBA are disabled. |
| */ |
| static unsigned long pollcomplete(int ctlr) |
| { |
| unsigned long done; |
| int i; |
| |
| /* Wait (up to 20 seconds) for a command to complete */ |
| |
| for (i = 20 * HZ; i > 0; i--) { |
| done = hba[ctlr]->access.command_completed(hba[ctlr]); |
| if (done == FIFO_EMPTY) |
| schedule_timeout_uninterruptible(1); |
| else |
| return done; |
| } |
| /* Invalid address to tell caller we ran out of time */ |
| return 1; |
| } |
| |
| static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete) |
| { |
| /* We get in here if sendcmd() is polling for completions |
| and gets some command back that it wasn't expecting -- |
| something other than that which it just sent down. |
| Ordinarily, that shouldn't happen, but it can happen when |
| the scsi tape stuff gets into error handling mode, and |
| starts using sendcmd() to try to abort commands and |
| reset tape drives. In that case, sendcmd may pick up |
| completions of commands that were sent to logical drives |
| through the block i/o system, or cciss ioctls completing, etc. |
| In that case, we need to save those completions for later |
| processing by the interrupt handler. |
| */ |
| |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects; |
| |
| /* If it's not the scsi tape stuff doing error handling, (abort */ |
| /* or reset) then we don't expect anything weird. */ |
| if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) { |
| #endif |
| printk(KERN_WARNING "cciss cciss%d: SendCmd " |
| "Invalid command list address returned! (%lx)\n", |
| ctlr, complete); |
| /* not much we can do. */ |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| return 1; |
| } |
| |
| /* We've sent down an abort or reset, but something else |
| has completed */ |
| if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) { |
| /* Uh oh. No room to save it for later... */ |
| printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, " |
| "reject list overflow, command lost!\n", ctlr); |
| return 1; |
| } |
| /* Save it for later */ |
| srl->complete[srl->ncompletions] = complete; |
| srl->ncompletions++; |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Send a command to the controller, and wait for it to complete. |
| * Only used at init time. |
| */ |
| static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller, |
| 1: address logical volume log_unit, |
| 2: periph device address is scsi3addr */ |
| unsigned int log_unit, |
| __u8 page_code, unsigned char *scsi3addr, int cmd_type) |
| { |
| CommandList_struct *c; |
| int i; |
| unsigned long complete; |
| ctlr_info_t *info_p = hba[ctlr]; |
| u64bit buff_dma_handle; |
| int status, done = 0; |
| |
| if ((c = cmd_alloc(info_p, 1)) == NULL) { |
| printk(KERN_WARNING "cciss: unable to get memory"); |
| return IO_ERROR; |
| } |
| status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num, |
| log_unit, page_code, scsi3addr, cmd_type); |
| if (status != IO_OK) { |
| cmd_free(info_p, c, 1); |
| return status; |
| } |
| resend_cmd1: |
| /* |
| * Disable interrupt |
| */ |
| #ifdef CCISS_DEBUG |
| printk(KERN_DEBUG "cciss: turning intr off\n"); |
| #endif /* CCISS_DEBUG */ |
| info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF); |
| |
| /* Make sure there is room in the command FIFO */ |
| /* Actually it should be completely empty at this time */ |
| /* unless we are in here doing error handling for the scsi */ |
| /* tape side of the driver. */ |
| for (i = 200000; i > 0; i--) { |
| /* if fifo isn't full go */ |
| if (!(info_p->access.fifo_full(info_p))) { |
| |
| break; |
| } |
| udelay(10); |
| printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full," |
| " waiting!\n", ctlr); |
| } |
| /* |
| * Send the cmd |
| */ |
| info_p->access.submit_command(info_p, c); |
| done = 0; |
| do { |
| complete = pollcomplete(ctlr); |
| |
| #ifdef CCISS_DEBUG |
| printk(KERN_DEBUG "cciss: command completed\n"); |
| #endif /* CCISS_DEBUG */ |
| |
| if (complete == 1) { |
| printk(KERN_WARNING |
| "cciss cciss%d: SendCmd Timeout out, " |
| "No command list address returned!\n", ctlr); |
| status = IO_ERROR; |
| done = 1; |
| break; |
| } |
| |
| /* This will need to change for direct lookup completions */ |
| if ((complete & CISS_ERROR_BIT) |
| && (complete & ~CISS_ERROR_BIT) == c->busaddr) { |
| /* if data overrun or underun on Report command |
| ignore it |
| */ |
| if (((c->Request.CDB[0] == CISS_REPORT_LOG) || |
| (c->Request.CDB[0] == CISS_REPORT_PHYS) || |
| (c->Request.CDB[0] == CISS_INQUIRY)) && |
| ((c->err_info->CommandStatus == |
| CMD_DATA_OVERRUN) || |
| (c->err_info->CommandStatus == CMD_DATA_UNDERRUN) |
| )) { |
| complete = c->busaddr; |
| } else { |
| if (c->err_info->CommandStatus == |
| CMD_UNSOLICITED_ABORT) { |
| printk(KERN_WARNING "cciss%d: " |
| "unsolicited abort %p\n", |
| ctlr, c); |
| if (c->retry_count < MAX_CMD_RETRIES) { |
| printk(KERN_WARNING |
| "cciss%d: retrying %p\n", |
| ctlr, c); |
| c->retry_count++; |
| /* erase the old error */ |
| /* information */ |
| memset(c->err_info, 0, |
| sizeof |
| (ErrorInfo_struct)); |
| goto resend_cmd1; |
| } else { |
| printk(KERN_WARNING |
| "cciss%d: retried %p too " |
| "many times\n", ctlr, c); |
| status = IO_ERROR; |
| goto cleanup1; |
| } |
| } else if (c->err_info->CommandStatus == |
| CMD_UNABORTABLE) { |
| printk(KERN_WARNING |
| "cciss%d: command could not be aborted.\n", |
| ctlr); |
| status = IO_ERROR; |
| goto cleanup1; |
| } |
| printk(KERN_WARNING "ciss ciss%d: sendcmd" |
| " Error %x \n", ctlr, |
| c->err_info->CommandStatus); |
| printk(KERN_WARNING "ciss ciss%d: sendcmd" |
| " offensive info\n" |
| " size %x\n num %x value %x\n", |
| ctlr, |
| c->err_info->MoreErrInfo.Invalid_Cmd. |
| offense_size, |
| c->err_info->MoreErrInfo.Invalid_Cmd. |
| offense_num, |
| c->err_info->MoreErrInfo.Invalid_Cmd. |
| offense_value); |
| status = IO_ERROR; |
| goto cleanup1; |
| } |
| } |
| /* This will need changing for direct lookup completions */ |
| if (complete != c->busaddr) { |
| if (add_sendcmd_reject(cmd, ctlr, complete) != 0) { |
| BUG(); /* we are pretty much hosed if we get here. */ |
| } |
| continue; |
| } else |
| done = 1; |
| } while (!done); |
| |
| cleanup1: |
| /* unlock the data buffer from DMA */ |
| buff_dma_handle.val32.lower = c->SG[0].Addr.lower; |
| buff_dma_handle.val32.upper = c->SG[0].Addr.upper; |
| pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val, |
| c->SG[0].Len, PCI_DMA_BIDIRECTIONAL); |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| /* if we saved some commands for later, process them now. */ |
| if (info_p->scsi_rejects.ncompletions > 0) |
| do_cciss_intr(0, info_p); |
| #endif |
| cmd_free(info_p, c, 1); |
| return status; |
| } |
| |
| /* |
| * Map (physical) PCI mem into (virtual) kernel space |
| */ |
| static void __iomem *remap_pci_mem(ulong base, ulong size) |
| { |
| ulong page_base = ((ulong) base) & PAGE_MASK; |
| ulong page_offs = ((ulong) base) - page_base; |
| void __iomem *page_remapped = ioremap(page_base, page_offs + size); |
| |
| return page_remapped ? (page_remapped + page_offs) : NULL; |
| } |
| |
| /* |
| * Takes jobs of the Q and sends them to the hardware, then puts it on |
| * the Q to wait for completion. |
| */ |
| static void start_io(ctlr_info_t *h) |
| { |
| CommandList_struct *c; |
| |
| while (!hlist_empty(&h->reqQ)) { |
| c = hlist_entry(h->reqQ.first, CommandList_struct, list); |
| /* can't do anything if fifo is full */ |
| if ((h->access.fifo_full(h))) { |
| printk(KERN_WARNING "cciss: fifo full\n"); |
| break; |
| } |
| |
| /* Get the first entry from the Request Q */ |
| removeQ(c); |
| h->Qdepth--; |
| |
| /* Tell the controller execute command */ |
| h->access.submit_command(h, c); |
| |
| /* Put job onto the completed Q */ |
| addQ(&h->cmpQ, c); |
| } |
| } |
| |
| /* Assumes that CCISS_LOCK(h->ctlr) is held. */ |
| /* Zeros out the error record and then resends the command back */ |
| /* to the controller */ |
| static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c) |
| { |
| /* erase the old error information */ |
| memset(c->err_info, 0, sizeof(ErrorInfo_struct)); |
| |
| /* add it to software queue and then send it to the controller */ |
| addQ(&h->reqQ, c); |
| h->Qdepth++; |
| if (h->Qdepth > h->maxQsinceinit) |
| h->maxQsinceinit = h->Qdepth; |
| |
| start_io(h); |
| } |
| |
| static inline unsigned int make_status_bytes(unsigned int scsi_status_byte, |
| unsigned int msg_byte, unsigned int host_byte, |
| unsigned int driver_byte) |
| { |
| /* inverse of macros in scsi.h */ |
| return (scsi_status_byte & 0xff) | |
| ((msg_byte & 0xff) << 8) | |
| ((host_byte & 0xff) << 16) | |
| ((driver_byte & 0xff) << 24); |
| } |
| |
| static inline int evaluate_target_status(ctlr_info_t *h, |
| CommandList_struct *cmd, int *retry_cmd) |
| { |
| unsigned char sense_key; |
| unsigned char status_byte, msg_byte, host_byte, driver_byte; |
| int error_value; |
| |
| *retry_cmd = 0; |
| /* If we get in here, it means we got "target status", that is, scsi status */ |
| status_byte = cmd->err_info->ScsiStatus; |
| driver_byte = DRIVER_OK; |
| msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */ |
| |
| if (blk_pc_request(cmd->rq)) |
| host_byte = DID_PASSTHROUGH; |
| else |
| host_byte = DID_OK; |
| |
| error_value = make_status_bytes(status_byte, msg_byte, |
| host_byte, driver_byte); |
| |
| if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) { |
| if (!blk_pc_request(cmd->rq)) |
| printk(KERN_WARNING "cciss: cmd %p " |
| "has SCSI Status 0x%x\n", |
| cmd, cmd->err_info->ScsiStatus); |
| return error_value; |
| } |
| |
| /* check the sense key */ |
| sense_key = 0xf & cmd->err_info->SenseInfo[2]; |
| /* no status or recovered error */ |
| if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq)) |
| error_value = 0; |
| |
| if (check_for_unit_attention(h, cmd)) { |
| *retry_cmd = !blk_pc_request(cmd->rq); |
| return 0; |
| } |
| |
| if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */ |
| if (error_value != 0) |
| printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION" |
| " sense key = 0x%x\n", cmd, sense_key); |
| return error_value; |
| } |
| |
| /* SG_IO or similar, copy sense data back */ |
| if (cmd->rq->sense) { |
| if (cmd->rq->sense_len > cmd->err_info->SenseLen) |
| cmd->rq->sense_len = cmd->err_info->SenseLen; |
| memcpy(cmd->rq->sense, cmd->err_info->SenseInfo, |
| cmd->rq->sense_len); |
| } else |
| cmd->rq->sense_len = 0; |
| |
| return error_value; |
| } |
| |
| /* checks the status of the job and calls complete buffers to mark all |
| * buffers for the completed job. Note that this function does not need |
| * to hold the hba/queue lock. |
| */ |
| static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd, |
| int timeout) |
| { |
| int retry_cmd = 0; |
| struct request *rq = cmd->rq; |
| |
| rq->errors = 0; |
| |
| if (timeout) |
| rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT); |
| |
| if (cmd->err_info->CommandStatus == 0) /* no error has occurred */ |
| goto after_error_processing; |
| |
| switch (cmd->err_info->CommandStatus) { |
| case CMD_TARGET_STATUS: |
| rq->errors = evaluate_target_status(h, cmd, &retry_cmd); |
| break; |
| case CMD_DATA_UNDERRUN: |
| if (blk_fs_request(cmd->rq)) { |
| printk(KERN_WARNING "cciss: cmd %p has" |
| " completed with data underrun " |
| "reported\n", cmd); |
| cmd->rq->data_len = cmd->err_info->ResidualCnt; |
| } |
| break; |
| case CMD_DATA_OVERRUN: |
| if (blk_fs_request(cmd->rq)) |
| printk(KERN_WARNING "cciss: cmd %p has" |
| " completed with data overrun " |
| "reported\n", cmd); |
| break; |
| case CMD_INVALID: |
| printk(KERN_WARNING "cciss: cmd %p is " |
| "reported invalid\n", cmd); |
| rq->errors = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); |
| break; |
| case CMD_PROTOCOL_ERR: |
| printk(KERN_WARNING "cciss: cmd %p has " |
| "protocol error \n", cmd); |
| rq->errors = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); |
| break; |
| case CMD_HARDWARE_ERR: |
| printk(KERN_WARNING "cciss: cmd %p had " |
| " hardware error\n", cmd); |
| rq->errors = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); |
| break; |
| case CMD_CONNECTION_LOST: |
| printk(KERN_WARNING "cciss: cmd %p had " |
| "connection lost\n", cmd); |
| rq->errors = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); |
| break; |
| case CMD_ABORTED: |
| printk(KERN_WARNING "cciss: cmd %p was " |
| "aborted\n", cmd); |
| rq->errors = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT); |
| break; |
| case CMD_ABORT_FAILED: |
| printk(KERN_WARNING "cciss: cmd %p reports " |
| "abort failed\n", cmd); |
| rq->errors = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); |
| break; |
| case CMD_UNSOLICITED_ABORT: |
| printk(KERN_WARNING "cciss%d: unsolicited " |
| "abort %p\n", h->ctlr, cmd); |
| if (cmd->retry_count < MAX_CMD_RETRIES) { |
| retry_cmd = 1; |
| printk(KERN_WARNING |
| "cciss%d: retrying %p\n", h->ctlr, cmd); |
| cmd->retry_count++; |
| } else |
| printk(KERN_WARNING |
| "cciss%d: %p retried too " |
| "many times\n", h->ctlr, cmd); |
| rq->errors = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT); |
| break; |
| case CMD_TIMEOUT: |
| printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd); |
| rq->errors = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); |
| break; |
| default: |
| printk(KERN_WARNING "cciss: cmd %p returned " |
| "unknown status %x\n", cmd, |
| cmd->err_info->CommandStatus); |
| rq->errors = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); |
| } |
| |
| after_error_processing: |
| |
| /* We need to return this command */ |
| if (retry_cmd) { |
| resend_cciss_cmd(h, cmd); |
| return; |
| } |
| cmd->rq->completion_data = cmd; |
| blk_complete_request(cmd->rq); |
| } |
| |
| /* |
| * Get a request and submit it to the controller. |
| */ |
| static void do_cciss_request(struct request_queue *q) |
| { |
| ctlr_info_t *h = q->queuedata; |
| CommandList_struct *c; |
| sector_t start_blk; |
| int seg; |
| struct request *creq; |
| u64bit temp64; |
| struct scatterlist tmp_sg[MAXSGENTRIES]; |
| drive_info_struct *drv; |
| int i, dir; |
| |
| /* We call start_io here in case there is a command waiting on the |
| * queue that has not been sent. |
| */ |
| if (blk_queue_plugged(q)) |
| goto startio; |
| |
| queue: |
| creq = elv_next_request(q); |
| if (!creq) |
| goto startio; |
| |
| BUG_ON(creq->nr_phys_segments > MAXSGENTRIES); |
| |
| if ((c = cmd_alloc(h, 1)) == NULL) |
| goto full; |
| |
| blkdev_dequeue_request(creq); |
| |
| spin_unlock_irq(q->queue_lock); |
| |
| c->cmd_type = CMD_RWREQ; |
| c->rq = creq; |
| |
| /* fill in the request */ |
| drv = creq->rq_disk->private_data; |
| c->Header.ReplyQueue = 0; // unused in simple mode |
| /* got command from pool, so use the command block index instead */ |
| /* for direct lookups. */ |
| /* The first 2 bits are reserved for controller error reporting. */ |
| c->Header.Tag.lower = (c->cmdindex << 3); |
| c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */ |
| c->Header.LUN.LogDev.VolId = drv->LunID; |
| c->Header.LUN.LogDev.Mode = 1; |
| c->Request.CDBLen = 10; // 12 byte commands not in FW yet; |
| c->Request.Type.Type = TYPE_CMD; // It is a command. |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = |
| (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE; |
| c->Request.Timeout = 0; // Don't time out |
| c->Request.CDB[0] = |
| (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write; |
| start_blk = creq->sector; |
| #ifdef CCISS_DEBUG |
| printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector, |
| (int)creq->nr_sectors); |
| #endif /* CCISS_DEBUG */ |
| |
| sg_init_table(tmp_sg, MAXSGENTRIES); |
| seg = blk_rq_map_sg(q, creq, tmp_sg); |
| |
| /* get the DMA records for the setup */ |
| if (c->Request.Type.Direction == XFER_READ) |
| dir = PCI_DMA_FROMDEVICE; |
| else |
| dir = PCI_DMA_TODEVICE; |
| |
| for (i = 0; i < seg; i++) { |
| c->SG[i].Len = tmp_sg[i].length; |
| temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]), |
| tmp_sg[i].offset, |
| tmp_sg[i].length, dir); |
| c->SG[i].Addr.lower = temp64.val32.lower; |
| c->SG[i].Addr.upper = temp64.val32.upper; |
| c->SG[i].Ext = 0; // we are not chaining |
| } |
| /* track how many SG entries we are using */ |
| if (seg > h->maxSG) |
| h->maxSG = seg; |
| |
| #ifdef CCISS_DEBUG |
| printk(KERN_DEBUG "cciss: Submitting %lu sectors in %d segments\n", |
| creq->nr_sectors, seg); |
| #endif /* CCISS_DEBUG */ |
| |
| c->Header.SGList = c->Header.SGTotal = seg; |
| if (likely(blk_fs_request(creq))) { |
| if(h->cciss_read == CCISS_READ_10) { |
| c->Request.CDB[1] = 0; |
| c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB |
| c->Request.CDB[3] = (start_blk >> 16) & 0xff; |
| c->Request.CDB[4] = (start_blk >> 8) & 0xff; |
| c->Request.CDB[5] = start_blk & 0xff; |
| c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB |
| c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff; |
| c->Request.CDB[8] = creq->nr_sectors & 0xff; |
| c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0; |
| } else { |
| u32 upper32 = upper_32_bits(start_blk); |
| |
| c->Request.CDBLen = 16; |
| c->Request.CDB[1]= 0; |
| c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB |
| c->Request.CDB[3]= (upper32 >> 16) & 0xff; |
| c->Request.CDB[4]= (upper32 >> 8) & 0xff; |
| c->Request.CDB[5]= upper32 & 0xff; |
| c->Request.CDB[6]= (start_blk >> 24) & 0xff; |
| c->Request.CDB[7]= (start_blk >> 16) & 0xff; |
| c->Request.CDB[8]= (start_blk >> 8) & 0xff; |
| c->Request.CDB[9]= start_blk & 0xff; |
| c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff; |
| c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff; |
| c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff; |
| c->Request.CDB[13]= creq->nr_sectors & 0xff; |
| c->Request.CDB[14] = c->Request.CDB[15] = 0; |
| } |
| } else if (blk_pc_request(creq)) { |
| c->Request.CDBLen = creq->cmd_len; |
| memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB); |
| } else { |
| printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type); |
| BUG(); |
| } |
| |
| spin_lock_irq(q->queue_lock); |
| |
| addQ(&h->reqQ, c); |
| h->Qdepth++; |
| if (h->Qdepth > h->maxQsinceinit) |
| h->maxQsinceinit = h->Qdepth; |
| |
| goto queue; |
| full: |
| blk_stop_queue(q); |
| startio: |
| /* We will already have the driver lock here so not need |
| * to lock it. |
| */ |
| start_io(h); |
| } |
| |
| static inline unsigned long get_next_completion(ctlr_info_t *h) |
| { |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| /* Any rejects from sendcmd() lying around? Process them first */ |
| if (h->scsi_rejects.ncompletions == 0) |
| return h->access.command_completed(h); |
| else { |
| struct sendcmd_reject_list *srl; |
| int n; |
| srl = &h->scsi_rejects; |
| n = --srl->ncompletions; |
| /* printk("cciss%d: processing saved reject\n", h->ctlr); */ |
| printk("p"); |
| return srl->complete[n]; |
| } |
| #else |
| return h->access.command_completed(h); |
| #endif |
| } |
| |
| static inline int interrupt_pending(ctlr_info_t *h) |
| { |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| return (h->access.intr_pending(h) |
| || (h->scsi_rejects.ncompletions > 0)); |
| #else |
| return h->access.intr_pending(h); |
| #endif |
| } |
| |
| static inline long interrupt_not_for_us(ctlr_info_t *h) |
| { |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| return (((h->access.intr_pending(h) == 0) || |
| (h->interrupts_enabled == 0)) |
| && (h->scsi_rejects.ncompletions == 0)); |
| #else |
| return (((h->access.intr_pending(h) == 0) || |
| (h->interrupts_enabled == 0))); |
| #endif |
| } |
| |
| static irqreturn_t do_cciss_intr(int irq, void *dev_id) |
| { |
| ctlr_info_t *h = dev_id; |
| CommandList_struct *c; |
| unsigned long flags; |
| __u32 a, a1, a2; |
| |
| if (interrupt_not_for_us(h)) |
| return IRQ_NONE; |
| /* |
| * If there are completed commands in the completion queue, |
| * we had better do something about it. |
| */ |
| spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); |
| while (interrupt_pending(h)) { |
| while ((a = get_next_completion(h)) != FIFO_EMPTY) { |
| a1 = a; |
| if ((a & 0x04)) { |
| a2 = (a >> 3); |
| if (a2 >= h->nr_cmds) { |
| printk(KERN_WARNING |
| "cciss: controller cciss%d failed, stopping.\n", |
| h->ctlr); |
| fail_all_cmds(h->ctlr); |
| return IRQ_HANDLED; |
| } |
| |
| c = h->cmd_pool + a2; |
| a = c->busaddr; |
| |
| } else { |
| struct hlist_node *tmp; |
| |
| a &= ~3; |
| c = NULL; |
| hlist_for_each_entry(c, tmp, &h->cmpQ, list) { |
| if (c->busaddr == a) |
| break; |
| } |
| } |
| /* |
| * If we've found the command, take it off the |
| * completion Q and free it |
| */ |
| if (c && c->busaddr == a) { |
| removeQ(c); |
| if (c->cmd_type == CMD_RWREQ) { |
| complete_command(h, c, 0); |
| } else if (c->cmd_type == CMD_IOCTL_PEND) { |
| complete(c->waiting); |
| } |
| # ifdef CONFIG_CISS_SCSI_TAPE |
| else if (c->cmd_type == CMD_SCSI) |
| complete_scsi_command(c, 0, a1); |
| # endif |
| continue; |
| } |
| } |
| } |
| |
| spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); |
| return IRQ_HANDLED; |
| } |
| |
| static int scan_thread(void *data) |
| { |
| ctlr_info_t *h = data; |
| int rc; |
| DECLARE_COMPLETION_ONSTACK(wait); |
| h->rescan_wait = &wait; |
| |
| for (;;) { |
| rc = wait_for_completion_interruptible(&wait); |
| if (kthread_should_stop()) |
| break; |
| if (!rc) |
| rebuild_lun_table(h, 0); |
| } |
| return 0; |
| } |
| |
| static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c) |
| { |
| if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) |
| return 0; |
| |
| switch (c->err_info->SenseInfo[12]) { |
| case STATE_CHANGED: |
| printk(KERN_WARNING "cciss%d: a state change " |
| "detected, command retried\n", h->ctlr); |
| return 1; |
| break; |
| case LUN_FAILED: |
| printk(KERN_WARNING "cciss%d: LUN failure " |
| "detected, action required\n", h->ctlr); |
| return 1; |
| break; |
| case REPORT_LUNS_CHANGED: |
| printk(KERN_WARNING "cciss%d: report LUN data " |
| "changed\n", h->ctlr); |
| if (h->rescan_wait) |
| complete(h->rescan_wait); |
| return 1; |
| break; |
| case POWER_OR_RESET: |
| printk(KERN_WARNING "cciss%d: a power on " |
| "or device reset detected\n", h->ctlr); |
| return 1; |
| break; |
| case UNIT_ATTENTION_CLEARED: |
| printk(KERN_WARNING "cciss%d: unit attention " |
| "cleared by another initiator\n", h->ctlr); |
| return 1; |
| break; |
| default: |
| printk(KERN_WARNING "cciss%d: unknown " |
| "unit attention detected\n", h->ctlr); |
| return 1; |
| } |
| } |
| |
| /* |
| * We cannot read the structure directly, for portability we must use |
| * the io functions. |
| * This is for debug only. |
| */ |
| #ifdef CCISS_DEBUG |
| static void print_cfg_table(CfgTable_struct *tb) |
| { |
| int i; |
| char temp_name[17]; |
| |
| printk("Controller Configuration information\n"); |
| printk("------------------------------------\n"); |
| for (i = 0; i < 4; i++) |
| temp_name[i] = readb(&(tb->Signature[i])); |
| temp_name[4] = '\0'; |
| printk(" Signature = %s\n", temp_name); |
| printk(" Spec Number = %d\n", readl(&(tb->SpecValence))); |
| printk(" Transport methods supported = 0x%x\n", |
| readl(&(tb->TransportSupport))); |
| printk(" Transport methods active = 0x%x\n", |
| readl(&(tb->TransportActive))); |
| printk(" Requested transport Method = 0x%x\n", |
| readl(&(tb->HostWrite.TransportRequest))); |
| printk(" Coalesce Interrupt Delay = 0x%x\n", |
| readl(&(tb->HostWrite.CoalIntDelay))); |
| printk(" Coalesce Interrupt Count = 0x%x\n", |
| readl(&(tb->HostWrite.CoalIntCount))); |
| printk(" Max outstanding commands = 0x%d\n", |
| readl(&(tb->CmdsOutMax))); |
| printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes))); |
| for (i = 0; i < 16; i++) |
| temp_name[i] = readb(&(tb->ServerName[i])); |
| temp_name[16] = '\0'; |
| printk(" Server Name = %s\n", temp_name); |
| printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat))); |
| } |
| #endif /* CCISS_DEBUG */ |
| |
| static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) |
| { |
| int i, offset, mem_type, bar_type; |
| if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ |
| return 0; |
| offset = 0; |
| for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
| bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; |
| if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) |
| offset += 4; |
| else { |
| mem_type = pci_resource_flags(pdev, i) & |
| PCI_BASE_ADDRESS_MEM_TYPE_MASK; |
| switch (mem_type) { |
| case PCI_BASE_ADDRESS_MEM_TYPE_32: |
| case PCI_BASE_ADDRESS_MEM_TYPE_1M: |
| offset += 4; /* 32 bit */ |
| break; |
| case PCI_BASE_ADDRESS_MEM_TYPE_64: |
| offset += 8; |
| break; |
| default: /* reserved in PCI 2.2 */ |
| printk(KERN_WARNING |
| "Base address is invalid\n"); |
| return -1; |
| break; |
| } |
| } |
| if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) |
| return i + 1; |
| } |
| return -1; |
| } |
| |
| /* If MSI/MSI-X is supported by the kernel we will try to enable it on |
| * controllers that are capable. If not, we use IO-APIC mode. |
| */ |
| |
| static void __devinit cciss_interrupt_mode(ctlr_info_t *c, |
| struct pci_dev *pdev, __u32 board_id) |
| { |
| #ifdef CONFIG_PCI_MSI |
| int err; |
| struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1}, |
| {0, 2}, {0, 3} |
| }; |
| |
| /* Some boards advertise MSI but don't really support it */ |
| if ((board_id == 0x40700E11) || |
| (board_id == 0x40800E11) || |
| (board_id == 0x40820E11) || (board_id == 0x40830E11)) |
| goto default_int_mode; |
| |
| if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) { |
| err = pci_enable_msix(pdev, cciss_msix_entries, 4); |
| if (!err) { |
| c->intr[0] = cciss_msix_entries[0].vector; |
| c->intr[1] = cciss_msix_entries[1].vector; |
| c->intr[2] = cciss_msix_entries[2].vector; |
| c->intr[3] = cciss_msix_entries[3].vector; |
| c->msix_vector = 1; |
| return; |
| } |
| if (err > 0) { |
| printk(KERN_WARNING "cciss: only %d MSI-X vectors " |
| "available\n", err); |
| goto default_int_mode; |
| } else { |
| printk(KERN_WARNING "cciss: MSI-X init failed %d\n", |
| err); |
| goto default_int_mode; |
| } |
| } |
| if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) { |
| if (!pci_enable_msi(pdev)) { |
| c->msi_vector = 1; |
| } else { |
| printk(KERN_WARNING "cciss: MSI init failed\n"); |
| } |
| } |
| default_int_mode: |
| #endif /* CONFIG_PCI_MSI */ |
| /* if we get here we're going to use the default interrupt mode */ |
| c->intr[SIMPLE_MODE_INT] = pdev->irq; |
| return; |
| } |
| |
| static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev) |
| { |
| ushort subsystem_vendor_id, subsystem_device_id, command; |
| __u32 board_id, scratchpad = 0; |
| __u64 cfg_offset; |
| __u32 cfg_base_addr; |
| __u64 cfg_base_addr_index; |
| int i, err; |
| |
| /* check to see if controller has been disabled */ |
| /* BEFORE trying to enable it */ |
| (void)pci_read_config_word(pdev, PCI_COMMAND, &command); |
| if (!(command & 0x02)) { |
| printk(KERN_WARNING |
| "cciss: controller appears to be disabled\n"); |
| return -ENODEV; |
| } |
| |
| err = pci_enable_device(pdev); |
| if (err) { |
| printk(KERN_ERR "cciss: Unable to Enable PCI device\n"); |
| return err; |
| } |
| |
| err = pci_request_regions(pdev, "cciss"); |
| if (err) { |
| printk(KERN_ERR "cciss: Cannot obtain PCI resources, " |
| "aborting\n"); |
| return err; |
| } |
| |
| subsystem_vendor_id = pdev->subsystem_vendor; |
| subsystem_device_id = pdev->subsystem_device; |
| board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) | |
| subsystem_vendor_id); |
| |
| #ifdef CCISS_DEBUG |
| printk("command = %x\n", command); |
| printk("irq = %x\n", pdev->irq); |
| printk("board_id = %x\n", board_id); |
| #endif /* CCISS_DEBUG */ |
| |
| /* If the kernel supports MSI/MSI-X we will try to enable that functionality, |
| * else we use the IO-APIC interrupt assigned to us by system ROM. |
| */ |
| cciss_interrupt_mode(c, pdev, board_id); |
| |
| /* find the memory BAR */ |
| for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
| if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) |
| break; |
| } |
| if (i == DEVICE_COUNT_RESOURCE) { |
| printk(KERN_WARNING "cciss: No memory BAR found\n"); |
| err = -ENODEV; |
| goto err_out_free_res; |
| } |
| |
| c->paddr = pci_resource_start(pdev, i); /* addressing mode bits |
| * already removed |
| */ |
| |
| #ifdef CCISS_DEBUG |
| printk("address 0 = %lx\n", c->paddr); |
| #endif /* CCISS_DEBUG */ |
| c->vaddr = remap_pci_mem(c->paddr, 0x250); |
| |
| /* Wait for the board to become ready. (PCI hotplug needs this.) |
| * We poll for up to 120 secs, once per 100ms. */ |
| for (i = 0; i < 1200; i++) { |
| scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET); |
| if (scratchpad == CCISS_FIRMWARE_READY) |
| break; |
| set_current_state(TASK_INTERRUPTIBLE); |
| schedule_timeout(HZ / 10); /* wait 100ms */ |
| } |
| if (scratchpad != CCISS_FIRMWARE_READY) { |
| printk(KERN_WARNING "cciss: Board not ready. Timed out.\n"); |
| err = -ENODEV; |
| goto err_out_free_res; |
| } |
| |
| /* get the address index number */ |
| cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET); |
| cfg_base_addr &= (__u32) 0x0000ffff; |
| #ifdef CCISS_DEBUG |
| printk("cfg base address = %x\n", cfg_base_addr); |
| #endif /* CCISS_DEBUG */ |
| cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr); |
| #ifdef CCISS_DEBUG |
| printk("cfg base address index = %llx\n", |
| (unsigned long long)cfg_base_addr_index); |
| #endif /* CCISS_DEBUG */ |
| if (cfg_base_addr_index == -1) { |
| printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n"); |
| err = -ENODEV; |
| goto err_out_free_res; |
| } |
| |
| cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET); |
| #ifdef CCISS_DEBUG |
| printk("cfg offset = %llx\n", (unsigned long long)cfg_offset); |
| #endif /* CCISS_DEBUG */ |
| c->cfgtable = remap_pci_mem(pci_resource_start(pdev, |
| cfg_base_addr_index) + |
| cfg_offset, sizeof(CfgTable_struct)); |
| c->board_id = board_id; |
| |
| #ifdef CCISS_DEBUG |
| print_cfg_table(c->cfgtable); |
| #endif /* CCISS_DEBUG */ |
| |
| /* Some controllers support Zero Memory Raid (ZMR). |
| * When configured in ZMR mode the number of supported |
| * commands drops to 64. So instead of just setting an |
| * arbitrary value we make the driver a little smarter. |
| * We read the config table to tell us how many commands |
| * are supported on the controller then subtract 4 to |
| * leave a little room for ioctl calls. |
| */ |
| c->max_commands = readl(&(c->cfgtable->CmdsOutMax)); |
| for (i = 0; i < ARRAY_SIZE(products); i++) { |
| if (board_id == products[i].board_id) { |
| c->product_name = products[i].product_name; |
| c->access = *(products[i].access); |
| c->nr_cmds = c->max_commands - 4; |
| break; |
| } |
| } |
| if ((readb(&c->cfgtable->Signature[0]) != 'C') || |
| (readb(&c->cfgtable->Signature[1]) != 'I') || |
| (readb(&c->cfgtable->Signature[2]) != 'S') || |
| (readb(&c->cfgtable->Signature[3]) != 'S')) { |
| printk("Does not appear to be a valid CISS config table\n"); |
| err = -ENODEV; |
| goto err_out_free_res; |
| } |
| /* We didn't find the controller in our list. We know the |
| * signature is valid. If it's an HP device let's try to |
| * bind to the device and fire it up. Otherwise we bail. |
| */ |
| if (i == ARRAY_SIZE(products)) { |
| if (subsystem_vendor_id == PCI_VENDOR_ID_HP) { |
| c->product_name = products[i-1].product_name; |
| c->access = *(products[i-1].access); |
| c->nr_cmds = c->max_commands - 4; |
| printk(KERN_WARNING "cciss: This is an unknown " |
| "Smart Array controller.\n" |
| "cciss: Please update to the latest driver " |
| "available from www.hp.com.\n"); |
| } else { |
| printk(KERN_WARNING "cciss: Sorry, I don't know how" |
| " to access the Smart Array controller %08lx\n" |
| , (unsigned long)board_id); |
| err = -ENODEV; |
| goto err_out_free_res; |
| } |
| } |
| #ifdef CONFIG_X86 |
| { |
| /* Need to enable prefetch in the SCSI core for 6400 in x86 */ |
| __u32 prefetch; |
| prefetch = readl(&(c->cfgtable->SCSI_Prefetch)); |
| prefetch |= 0x100; |
| writel(prefetch, &(c->cfgtable->SCSI_Prefetch)); |
| } |
| #endif |
| |
| /* Disabling DMA prefetch and refetch for the P600. |
| * An ASIC bug may result in accesses to invalid memory addresses. |
| * We've disabled prefetch for some time now. Testing with XEN |
| * kernels revealed a bug in the refetch if dom0 resides on a P600. |
| */ |
| if(board_id == 0x3225103C) { |
| __u32 dma_prefetch; |
| __u32 dma_refetch; |
| dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG); |
| dma_prefetch |= 0x8000; |
| writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG); |
| pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch); |
| dma_refetch |= 0x1; |
| pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch); |
| } |
| |
| #ifdef CCISS_DEBUG |
| printk("Trying to put board into Simple mode\n"); |
| #endif /* CCISS_DEBUG */ |
| c->max_commands = readl(&(c->cfgtable->CmdsOutMax)); |
| /* Update the field, and then ring the doorbell */ |
| writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest)); |
| writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL); |
| |
| /* under certain very rare conditions, this can take awhile. |
| * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right |
| * as we enter this code.) */ |
| for (i = 0; i < MAX_CONFIG_WAIT; i++) { |
| if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) |
| break; |
| /* delay and try again */ |
| set_current_state(TASK_INTERRUPTIBLE); |
| schedule_timeout(10); |
| } |
| |
| #ifdef CCISS_DEBUG |
| printk(KERN_DEBUG "I counter got to %d %x\n", i, |
| readl(c->vaddr + SA5_DOORBELL)); |
| #endif /* CCISS_DEBUG */ |
| #ifdef CCISS_DEBUG |
| print_cfg_table(c->cfgtable); |
| #endif /* CCISS_DEBUG */ |
| |
| if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { |
| printk(KERN_WARNING "cciss: unable to get board into" |
| " simple mode\n"); |
| err = -ENODEV; |
| goto err_out_free_res; |
| } |
| return 0; |
| |
| err_out_free_res: |
| /* |
| * Deliberately omit pci_disable_device(): it does something nasty to |
| * Smart Array controllers that pci_enable_device does not undo |
| */ |
| pci_release_regions(pdev); |
| return err; |
| } |
| |
| /* Function to find the first free pointer into our hba[] array |
| * Returns -1 if no free entries are left. |
| */ |
| static int alloc_cciss_hba(void) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_CTLR; i++) { |
| if (!hba[i]) { |
| ctlr_info_t *p; |
| |
| p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL); |
| if (!p) |
| goto Enomem; |
| hba[i] = p; |
| return i; |
| } |
| } |
| printk(KERN_WARNING "cciss: This driver supports a maximum" |
| " of %d controllers.\n", MAX_CTLR); |
| return -1; |
| Enomem: |
| printk(KERN_ERR "cciss: out of memory.\n"); |
| return -1; |
| } |
| |
| static void free_hba(int i) |
| { |
| ctlr_info_t *p = hba[i]; |
| int n; |
| |
| hba[i] = NULL; |
| for (n = 0; n < CISS_MAX_LUN; n++) |
| put_disk(p->gendisk[n]); |
| kfree(p); |
| } |
| |
| /* Send a message CDB to the firmware. */ |
| static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type) |
| { |
| typedef struct { |
| CommandListHeader_struct CommandHeader; |
| RequestBlock_struct Request; |
| ErrDescriptor_struct ErrorDescriptor; |
| } Command; |
| static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct); |
| Command *cmd; |
| dma_addr_t paddr64; |
| uint32_t paddr32, tag; |
| void __iomem *vaddr; |
| int i, err; |
| |
| vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); |
| if (vaddr == NULL) |
| return -ENOMEM; |
| |
| /* The Inbound Post Queue only accepts 32-bit physical addresses for the |
| CCISS commands, so they must be allocated from the lower 4GiB of |
| memory. */ |
| err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); |
| if (err) { |
| iounmap(vaddr); |
| return -ENOMEM; |
| } |
| |
| cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); |
| if (cmd == NULL) { |
| iounmap(vaddr); |
| return -ENOMEM; |
| } |
| |
| /* This must fit, because of the 32-bit consistent DMA mask. Also, |
| although there's no guarantee, we assume that the address is at |
| least 4-byte aligned (most likely, it's page-aligned). */ |
| paddr32 = paddr64; |
| |
| cmd->CommandHeader.ReplyQueue = 0; |
| cmd->CommandHeader.SGList = 0; |
| cmd->CommandHeader.SGTotal = 0; |
| cmd->CommandHeader.Tag.lower = paddr32; |
| cmd->CommandHeader.Tag.upper = 0; |
| memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); |
| |
| cmd->Request.CDBLen = 16; |
| cmd->Request.Type.Type = TYPE_MSG; |
| cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; |
| cmd->Request.Type.Direction = XFER_NONE; |
| cmd->Request.Timeout = 0; /* Don't time out */ |
| cmd->Request.CDB[0] = opcode; |
| cmd->Request.CDB[1] = type; |
| memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */ |
| |
| cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command); |
| cmd->ErrorDescriptor.Addr.upper = 0; |
| cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct); |
| |
| writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); |
| |
| for (i = 0; i < 10; i++) { |
| tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); |
| if ((tag & ~3) == paddr32) |
| break; |
| schedule_timeout_uninterruptible(HZ); |
| } |
| |
| iounmap(vaddr); |
| |
| /* we leak the DMA buffer here ... no choice since the controller could |
| still complete the command. */ |
| if (i == 10) { |
| printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n", |
| opcode, type); |
| return -ETIMEDOUT; |
| } |
| |
| pci_free_consistent(pdev, cmd_sz, cmd, paddr64); |
| |
| if (tag & 2) { |
| printk(KERN_ERR "cciss: controller message %02x:%02x failed\n", |
| opcode, type); |
| return -EIO; |
| } |
| |
| printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n", |
| opcode, type); |
| return 0; |
| } |
| |
| #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0) |
| #define cciss_noop(p) cciss_message(p, 3, 0) |
| |
| static __devinit int cciss_reset_msi(struct pci_dev *pdev) |
| { |
| /* the #defines are stolen from drivers/pci/msi.h. */ |
| #define msi_control_reg(base) (base + PCI_MSI_FLAGS) |
| #define PCI_MSIX_FLAGS_ENABLE (1 << 15) |
| |
| int pos; |
| u16 control = 0; |
| |
| pos = pci_find_capability(pdev, PCI_CAP_ID_MSI); |
| if (pos) { |
| pci_read_config_word(pdev, msi_control_reg(pos), &control); |
| if (control & PCI_MSI_FLAGS_ENABLE) { |
| printk(KERN_INFO "cciss: resetting MSI\n"); |
| pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE); |
| } |
| } |
| |
| pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); |
| if (pos) { |
| pci_read_config_word(pdev, msi_control_reg(pos), &control); |
| if (control & PCI_MSIX_FLAGS_ENABLE) { |
| printk(KERN_INFO "cciss: resetting MSI-X\n"); |
| pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* This does a hard reset of the controller using PCI power management |
| * states. */ |
| static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev) |
| { |
| u16 pmcsr, saved_config_space[32]; |
| int i, pos; |
| |
| printk(KERN_INFO "cciss: using PCI PM to reset controller\n"); |
| |
| /* This is very nearly the same thing as |
| |
| pci_save_state(pci_dev); |
| pci_set_power_state(pci_dev, PCI_D3hot); |
| pci_set_power_state(pci_dev, PCI_D0); |
| pci_restore_state(pci_dev); |
| |
| but we can't use these nice canned kernel routines on |
| kexec, because they also check the MSI/MSI-X state in PCI |
| configuration space and do the wrong thing when it is |
| set/cleared. Also, the pci_save/restore_state functions |
| violate the ordering requirements for restoring the |
| configuration space from the CCISS document (see the |
| comment below). So we roll our own .... */ |
| |
| for (i = 0; i < 32; i++) |
| pci_read_config_word(pdev, 2*i, &saved_config_space[i]); |
| |
| pos = pci_find_capability(pdev, PCI_CAP_ID_PM); |
| if (pos == 0) { |
| printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n"); |
| return -ENODEV; |
| } |
| |
| /* Quoting from the Open CISS Specification: "The Power |
| * Management Control/Status Register (CSR) controls the power |
| * state of the device. The normal operating state is D0, |
| * CSR=00h. The software off state is D3, CSR=03h. To reset |
| * the controller, place the interface device in D3 then to |
| * D0, this causes a secondary PCI reset which will reset the |
| * controller." */ |
| |
| /* enter the D3hot power management state */ |
| pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); |
| pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| pmcsr |= PCI_D3hot; |
| pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); |
| |
| schedule_timeout_uninterruptible(HZ >> 1); |
| |
| /* enter the D0 power management state */ |
| pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| pmcsr |= PCI_D0; |
| pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); |
| |
| schedule_timeout_uninterruptible(HZ >> 1); |
| |
| /* Restore the PCI configuration space. The Open CISS |
| * Specification says, "Restore the PCI Configuration |
| * Registers, offsets 00h through 60h. It is important to |
| * restore the command register, 16-bits at offset 04h, |
| * last. Do not restore the configuration status register, |
| * 16-bits at offset 06h." Note that the offset is 2*i. */ |
| for (i = 0; i < 32; i++) { |
| if (i == 2 || i == 3) |
| continue; |
| pci_write_config_word(pdev, 2*i, saved_config_space[i]); |
| } |
| wmb(); |
| pci_write_config_word(pdev, 4, saved_config_space[2]); |
| |
| return 0; |
| } |
| |
| /* |
| * This is it. Find all the controllers and register them. I really hate |
| * stealing all these major device numbers. |
| * returns the number of block devices registered. |
| */ |
| static int __devinit cciss_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| int i; |
| int j = 0; |
| int rc; |
| int dac, return_code; |
| InquiryData_struct *inq_buff = NULL; |
| |
| if (reset_devices) { |
| /* Reset the controller with a PCI power-cycle */ |
| if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev)) |
| return -ENODEV; |
| |
| /* Now try to get the controller to respond to a no-op. Some |
| devices (notably the HP Smart Array 5i Controller) need |
| up to 30 seconds to respond. */ |
| for (i=0; i<30; i++) { |
| if (cciss_noop(pdev) == 0) |
| break; |
| |
| schedule_timeout_uninterruptible(HZ); |
| } |
| if (i == 30) { |
| printk(KERN_ERR "cciss: controller seems dead\n"); |
| return -EBUSY; |
| } |
| } |
| |
| i = alloc_cciss_hba(); |
| if (i < 0) |
| return -1; |
| |
| hba[i]->busy_initializing = 1; |
| INIT_HLIST_HEAD(&hba[i]->cmpQ); |
| INIT_HLIST_HEAD(&hba[i]->reqQ); |
| |
| if (cciss_pci_init(hba[i], pdev) != 0) |
| goto clean1; |
| |
| sprintf(hba[i]->devname, "cciss%d", i); |
| hba[i]->ctlr = i; |
| hba[i]->pdev = pdev; |
| |
| /* configure PCI DMA stuff */ |
| if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) |
| dac = 1; |
| else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) |
| dac = 0; |
| else { |
| printk(KERN_ERR "cciss: no suitable DMA available\n"); |
| goto clean1; |
| } |
| |
| /* |
| * register with the major number, or get a dynamic major number |
| * by passing 0 as argument. This is done for greater than |
| * 8 controller support. |
| */ |
| if (i < MAX_CTLR_ORIG) |
| hba[i]->major = COMPAQ_CISS_MAJOR + i; |
| rc = register_blkdev(hba[i]->major, hba[i]->devname); |
| if (rc == -EBUSY || rc == -EINVAL) { |
| printk(KERN_ERR |
| "cciss: Unable to get major number %d for %s " |
| "on hba %d\n", hba[i]->major, hba[i]->devname, i); |
| goto clean1; |
| } else { |
| if (i >= MAX_CTLR_ORIG) |
| hba[i]->major = rc; |
| } |
| |
| /* make sure the board interrupts are off */ |
| hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF); |
| if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr, |
| IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) { |
| printk(KERN_ERR "cciss: Unable to get irq %d for %s\n", |
| hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname); |
| goto clean2; |
| } |
| |
| printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n", |
| hba[i]->devname, pdev->device, pci_name(pdev), |
| hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not"); |
| |
| hba[i]->cmd_pool_bits = |
| kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG) |
| * sizeof(unsigned long), GFP_KERNEL); |
| hba[i]->cmd_pool = (CommandList_struct *) |
| pci_alloc_consistent(hba[i]->pdev, |
| hba[i]->nr_cmds * sizeof(CommandList_struct), |
| &(hba[i]->cmd_pool_dhandle)); |
| hba[i]->errinfo_pool = (ErrorInfo_struct *) |
| pci_alloc_consistent(hba[i]->pdev, |
| hba[i]->nr_cmds * sizeof(ErrorInfo_struct), |
| &(hba[i]->errinfo_pool_dhandle)); |
| if ((hba[i]->cmd_pool_bits == NULL) |
| || (hba[i]->cmd_pool == NULL) |
| || (hba[i]->errinfo_pool == NULL)) { |
| printk(KERN_ERR "cciss: out of memory"); |
| goto clean4; |
| } |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| hba[i]->scsi_rejects.complete = |
| kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) * |
| (hba[i]->nr_cmds + 5), GFP_KERNEL); |
| if (hba[i]->scsi_rejects.complete == NULL) { |
| printk(KERN_ERR "cciss: out of memory"); |
| goto clean4; |
| } |
| #endif |
| spin_lock_init(&hba[i]->lock); |
| |
| /* Initialize the pdev driver private data. |
| have it point to hba[i]. */ |
| pci_set_drvdata(pdev, hba[i]); |
| /* command and error info recs zeroed out before |
| they are used */ |
| memset(hba[i]->cmd_pool_bits, 0, |
| DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG) |
| * sizeof(unsigned long)); |
| |
| hba[i]->num_luns = 0; |
| hba[i]->highest_lun = -1; |
| for (j = 0; j < CISS_MAX_LUN; j++) { |
| hba[i]->drv[j].raid_level = -1; |
| hba[i]->drv[j].queue = NULL; |
| hba[i]->gendisk[j] = NULL; |
| } |
| |
| cciss_scsi_setup(i); |
| |
| /* Turn the interrupts on so we can service requests */ |
| hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON); |
| |
| /* Get the firmware version */ |
| inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL); |
| if (inq_buff == NULL) { |
| printk(KERN_ERR "cciss: out of memory\n"); |
| goto clean4; |
| } |
| |
| return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff, |
| sizeof(InquiryData_struct), 0, 0 , 0, TYPE_CMD); |
| if (return_code == IO_OK) { |
| hba[i]->firm_ver[0] = inq_buff->data_byte[32]; |
| hba[i]->firm_ver[1] = inq_buff->data_byte[33]; |
| hba[i]->firm_ver[2] = inq_buff->data_byte[34]; |
| hba[i]->firm_ver[3] = inq_buff->data_byte[35]; |
| } else { /* send command failed */ |
| printk(KERN_WARNING "cciss: unable to determine firmware" |
| " version of controller\n"); |
| } |
| |
| cciss_procinit(i); |
| |
| hba[i]->cciss_max_sectors = 2048; |
| |
| hba[i]->busy_initializing = 0; |
| |
| rebuild_lun_table(hba[i], 1); |
| hba[i]->cciss_scan_thread = kthread_run(scan_thread, hba[i], |
| "cciss_scan%02d", i); |
| if (IS_ERR(hba[i]->cciss_scan_thread)) |
| return PTR_ERR(hba[i]->cciss_scan_thread); |
| |
| return 1; |
| |
| clean4: |
| kfree(inq_buff); |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| kfree(hba[i]->scsi_rejects.complete); |
| #endif |
| kfree(hba[i]->cmd_pool_bits); |
| if (hba[i]->cmd_pool) |
| pci_free_consistent(hba[i]->pdev, |
| hba[i]->nr_cmds * sizeof(CommandList_struct), |
| hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle); |
| if (hba[i]->errinfo_pool) |
| pci_free_consistent(hba[i]->pdev, |
| hba[i]->nr_cmds * sizeof(ErrorInfo_struct), |
| hba[i]->errinfo_pool, |
| hba[i]->errinfo_pool_dhandle); |
| free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]); |
| clean2: |
| unregister_blkdev(hba[i]->major, hba[i]->devname); |
| clean1: |
| hba[i]->busy_initializing = 0; |
| /* cleanup any queues that may have been initialized */ |
| for (j=0; j <= hba[i]->highest_lun; j++){ |
| drive_info_struct *drv = &(hba[i]->drv[j]); |
| if (drv->queue) |
| blk_cleanup_queue(drv->queue); |
| } |
| /* |
| * Deliberately omit pci_disable_device(): it does something nasty to |
| * Smart Array controllers that pci_enable_device does not undo |
| */ |
| pci_release_regions(pdev); |
| pci_set_drvdata(pdev, NULL); |
| free_hba(i); |
| return -1; |
| } |
| |
| static void cciss_shutdown(struct pci_dev *pdev) |
| { |
| ctlr_info_t *tmp_ptr; |
| int i; |
| char flush_buf[4]; |
| int return_code; |
| |
| tmp_ptr = pci_get_drvdata(pdev); |
| if (tmp_ptr == NULL) |
| return; |
| i = tmp_ptr->ctlr; |
| if (hba[i] == NULL) |
| return; |
| |
| /* Turn board interrupts off and send the flush cache command */ |
| /* sendcmd will turn off interrupt, and send the flush... |
| * To write all data in the battery backed cache to disks */ |
| memset(flush_buf, 0, 4); |
| return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL, |
| TYPE_CMD); |
| if (return_code == IO_OK) { |
| printk(KERN_INFO "Completed flushing cache on controller %d\n", i); |
| } else { |
| printk(KERN_WARNING "Error flushing cache on controller %d\n", i); |
| } |
| free_irq(hba[i]->intr[2], hba[i]); |
| } |
| |
| static void __devexit cciss_remove_one(struct pci_dev *pdev) |
| { |
| ctlr_info_t *tmp_ptr; |
| int i, j; |
| |
| if (pci_get_drvdata(pdev) == NULL) { |
| printk(KERN_ERR "cciss: Unable to remove device \n"); |
| return; |
| } |
| |
| tmp_ptr = pci_get_drvdata(pdev); |
| i = tmp_ptr->ctlr; |
| if (hba[i] == NULL) { |
| printk(KERN_ERR "cciss: device appears to " |
| "already be removed \n"); |
| return; |
| } |
| |
| kthread_stop(hba[i]->cciss_scan_thread); |
| |
| remove_proc_entry(hba[i]->devname, proc_cciss); |
| unregister_blkdev(hba[i]->major, hba[i]->devname); |
| |
| /* remove it from the disk list */ |
| for (j = 0; j < CISS_MAX_LUN; j++) { |
| struct gendisk *disk = hba[i]->gendisk[j]; |
| if (disk) { |
| struct request_queue *q = disk->queue; |
| |
| if (disk->flags & GENHD_FL_UP) |
| del_gendisk(disk); |
| if (q) |
| blk_cleanup_queue(q); |
| } |
| } |
| |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| cciss_unregister_scsi(i); /* unhook from SCSI subsystem */ |
| #endif |
| |
| cciss_shutdown(pdev); |
| |
| #ifdef CONFIG_PCI_MSI |
| if (hba[i]->msix_vector) |
| pci_disable_msix(hba[i]->pdev); |
| else if (hba[i]->msi_vector) |
| pci_disable_msi(hba[i]->pdev); |
| #endif /* CONFIG_PCI_MSI */ |
| |
| iounmap(hba[i]->vaddr); |
| |
| pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct), |
| hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle); |
| pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct), |
| hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle); |
| kfree(hba[i]->cmd_pool_bits); |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| kfree(hba[i]->scsi_rejects.complete); |
| #endif |
| /* |
| * Deliberately omit pci_disable_device(): it does something nasty to |
| * Smart Array controllers that pci_enable_device does not undo |
| */ |
| pci_release_regions(pdev); |
| pci_set_drvdata(pdev, NULL); |
| free_hba(i); |
| } |
| |
| static struct pci_driver cciss_pci_driver = { |
| .name = "cciss", |
| .probe = cciss_init_one, |
| .remove = __devexit_p(cciss_remove_one), |
| .id_table = cciss_pci_device_id, /* id_table */ |
| .shutdown = cciss_shutdown, |
| }; |
| |
| /* |
| * This is it. Register the PCI driver information for the cards we control |
| * the OS will call our registered routines when it finds one of our cards. |
| */ |
| static int __init cciss_init(void) |
| { |
| /* |
| * The hardware requires that commands are aligned on a 64-bit |
| * boundary. Given that we use pci_alloc_consistent() to allocate an |
| * array of them, the size must be a multiple of 8 bytes. |
| */ |
| BUILD_BUG_ON(sizeof(CommandList_struct) % 8); |
| |
| printk(KERN_INFO DRIVER_NAME "\n"); |
| |
| /* Register for our PCI devices */ |
| return pci_register_driver(&cciss_pci_driver); |
| } |
| |
| static void __exit cciss_cleanup(void) |
| { |
| int i; |
| |
| pci_unregister_driver(&cciss_pci_driver); |
| /* double check that all controller entrys have been removed */ |
| for (i = 0; i < MAX_CTLR; i++) { |
| if (hba[i] != NULL) { |
| printk(KERN_WARNING "cciss: had to remove" |
| " controller %d\n", i); |
| cciss_remove_one(hba[i]->pdev); |
| } |
| } |
| remove_proc_entry("driver/cciss", NULL); |
| } |
| |
| static void fail_all_cmds(unsigned long ctlr) |
| { |
| /* If we get here, the board is apparently dead. */ |
| ctlr_info_t *h = hba[ctlr]; |
| CommandList_struct *c; |
| unsigned long flags; |
| |
| printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr); |
| h->alive = 0; /* the controller apparently died... */ |
| |
| spin_lock_irqsave(CCISS_LOCK(ctlr), flags); |
| |
| pci_disable_device(h->pdev); /* Make sure it is really dead. */ |
| |
| /* move everything off the request queue onto the completed queue */ |
| while (!hlist_empty(&h->reqQ)) { |
| c = hlist_entry(h->reqQ.first, CommandList_struct, list); |
| removeQ(c); |
| h->Qdepth--; |
| addQ(&h->cmpQ, c); |
| } |
| |
| /* Now, fail everything on the completed queue with a HW error */ |
| while (!hlist_empty(&h->cmpQ)) { |
| c = hlist_entry(h->cmpQ.first, CommandList_struct, list); |
| removeQ(c); |
| c->err_info->CommandStatus = CMD_HARDWARE_ERR; |
| if (c->cmd_type == CMD_RWREQ) { |
| complete_command(h, c, 0); |
| } else if (c->cmd_type == CMD_IOCTL_PEND) |
| complete(c->waiting); |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| else if (c->cmd_type == CMD_SCSI) |
| complete_scsi_command(c, 0, 0); |
| #endif |
| } |
| spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); |
| return; |
| } |
| |
| module_init(cciss_init); |
| module_exit(cciss_cleanup); |