| /* |
| * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver |
| * |
| * Author: Timur Tabi <timur@freescale.com> |
| * |
| * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed |
| * under the terms of the GNU General Public License version 2. This |
| * program is licensed "as is" without any warranty of any kind, whether |
| * express or implied. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/device.h> |
| #include <linux/delay.h> |
| |
| #include <sound/core.h> |
| #include <sound/pcm.h> |
| #include <sound/pcm_params.h> |
| #include <sound/initval.h> |
| #include <sound/soc.h> |
| |
| #include <asm/immap_86xx.h> |
| |
| #include "fsl_ssi.h" |
| |
| /** |
| * FSLSSI_I2S_RATES: sample rates supported by the I2S |
| * |
| * This driver currently only supports the SSI running in I2S slave mode, |
| * which means the codec determines the sample rate. Therefore, we tell |
| * ALSA that we support all rates and let the codec driver decide what rates |
| * are really supported. |
| */ |
| #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ |
| SNDRV_PCM_RATE_CONTINUOUS) |
| |
| /** |
| * FSLSSI_I2S_FORMATS: audio formats supported by the SSI |
| * |
| * This driver currently only supports the SSI running in I2S slave mode. |
| * |
| * The SSI has a limitation in that the samples must be in the same byte |
| * order as the host CPU. This is because when multiple bytes are written |
| * to the STX register, the bytes and bits must be written in the same |
| * order. The STX is a shift register, so all the bits need to be aligned |
| * (bit-endianness must match byte-endianness). Processors typically write |
| * the bits within a byte in the same order that the bytes of a word are |
| * written in. So if the host CPU is big-endian, then only big-endian |
| * samples will be written to STX properly. |
| */ |
| #ifdef __BIG_ENDIAN |
| #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \ |
| SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \ |
| SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE) |
| #else |
| #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \ |
| SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \ |
| SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE) |
| #endif |
| |
| /** |
| * fsl_ssi_private: per-SSI private data |
| * |
| * @name: short name for this device ("SSI0", "SSI1", etc) |
| * @ssi: pointer to the SSI's registers |
| * @ssi_phys: physical address of the SSI registers |
| * @irq: IRQ of this SSI |
| * @first_stream: pointer to the stream that was opened first |
| * @second_stream: pointer to second stream |
| * @dev: struct device pointer |
| * @playback: the number of playback streams opened |
| * @capture: the number of capture streams opened |
| * @cpu_dai: the CPU DAI for this device |
| * @dev_attr: the sysfs device attribute structure |
| * @stats: SSI statistics |
| */ |
| struct fsl_ssi_private { |
| char name[8]; |
| struct ccsr_ssi __iomem *ssi; |
| dma_addr_t ssi_phys; |
| unsigned int irq; |
| struct snd_pcm_substream *first_stream; |
| struct snd_pcm_substream *second_stream; |
| struct device *dev; |
| unsigned int playback; |
| unsigned int capture; |
| struct snd_soc_dai cpu_dai; |
| struct device_attribute dev_attr; |
| |
| struct { |
| unsigned int rfrc; |
| unsigned int tfrc; |
| unsigned int cmdau; |
| unsigned int cmddu; |
| unsigned int rxt; |
| unsigned int rdr1; |
| unsigned int rdr0; |
| unsigned int tde1; |
| unsigned int tde0; |
| unsigned int roe1; |
| unsigned int roe0; |
| unsigned int tue1; |
| unsigned int tue0; |
| unsigned int tfs; |
| unsigned int rfs; |
| unsigned int tls; |
| unsigned int rls; |
| unsigned int rff1; |
| unsigned int rff0; |
| unsigned int tfe1; |
| unsigned int tfe0; |
| } stats; |
| }; |
| |
| /** |
| * fsl_ssi_isr: SSI interrupt handler |
| * |
| * Although it's possible to use the interrupt handler to send and receive |
| * data to/from the SSI, we use the DMA instead. Programming is more |
| * complicated, but the performance is much better. |
| * |
| * This interrupt handler is used only to gather statistics. |
| * |
| * @irq: IRQ of the SSI device |
| * @dev_id: pointer to the ssi_private structure for this SSI device |
| */ |
| static irqreturn_t fsl_ssi_isr(int irq, void *dev_id) |
| { |
| struct fsl_ssi_private *ssi_private = dev_id; |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| irqreturn_t ret = IRQ_NONE; |
| __be32 sisr; |
| __be32 sisr2 = 0; |
| |
| /* We got an interrupt, so read the status register to see what we |
| were interrupted for. We mask it with the Interrupt Enable register |
| so that we only check for events that we're interested in. |
| */ |
| sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier); |
| |
| if (sisr & CCSR_SSI_SISR_RFRC) { |
| ssi_private->stats.rfrc++; |
| sisr2 |= CCSR_SSI_SISR_RFRC; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_TFRC) { |
| ssi_private->stats.tfrc++; |
| sisr2 |= CCSR_SSI_SISR_TFRC; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_CMDAU) { |
| ssi_private->stats.cmdau++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_CMDDU) { |
| ssi_private->stats.cmddu++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_RXT) { |
| ssi_private->stats.rxt++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_RDR1) { |
| ssi_private->stats.rdr1++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_RDR0) { |
| ssi_private->stats.rdr0++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_TDE1) { |
| ssi_private->stats.tde1++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_TDE0) { |
| ssi_private->stats.tde0++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_ROE1) { |
| ssi_private->stats.roe1++; |
| sisr2 |= CCSR_SSI_SISR_ROE1; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_ROE0) { |
| ssi_private->stats.roe0++; |
| sisr2 |= CCSR_SSI_SISR_ROE0; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_TUE1) { |
| ssi_private->stats.tue1++; |
| sisr2 |= CCSR_SSI_SISR_TUE1; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_TUE0) { |
| ssi_private->stats.tue0++; |
| sisr2 |= CCSR_SSI_SISR_TUE0; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_TFS) { |
| ssi_private->stats.tfs++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_RFS) { |
| ssi_private->stats.rfs++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_TLS) { |
| ssi_private->stats.tls++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_RLS) { |
| ssi_private->stats.rls++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_RFF1) { |
| ssi_private->stats.rff1++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_RFF0) { |
| ssi_private->stats.rff0++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_TFE1) { |
| ssi_private->stats.tfe1++; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sisr & CCSR_SSI_SISR_TFE0) { |
| ssi_private->stats.tfe0++; |
| ret = IRQ_HANDLED; |
| } |
| |
| /* Clear the bits that we set */ |
| if (sisr2) |
| out_be32(&ssi->sisr, sisr2); |
| |
| return ret; |
| } |
| |
| /** |
| * fsl_ssi_startup: create a new substream |
| * |
| * This is the first function called when a stream is opened. |
| * |
| * If this is the first stream open, then grab the IRQ and program most of |
| * the SSI registers. |
| */ |
| static int fsl_ssi_startup(struct snd_pcm_substream *substream) |
| { |
| struct snd_soc_pcm_runtime *rtd = substream->private_data; |
| struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; |
| |
| /* |
| * If this is the first stream opened, then request the IRQ |
| * and initialize the SSI registers. |
| */ |
| if (!ssi_private->playback && !ssi_private->capture) { |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| int ret; |
| |
| ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, |
| ssi_private->name, ssi_private); |
| if (ret < 0) { |
| dev_err(substream->pcm->card->dev, |
| "could not claim irq %u\n", ssi_private->irq); |
| return ret; |
| } |
| |
| /* |
| * Section 16.5 of the MPC8610 reference manual says that the |
| * SSI needs to be disabled before updating the registers we set |
| * here. |
| */ |
| clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); |
| |
| /* |
| * Program the SSI into I2S Slave Non-Network Synchronous mode. |
| * Also enable the transmit and receive FIFO. |
| * |
| * FIXME: Little-endian samples require a different shift dir |
| */ |
| clrsetbits_be32(&ssi->scr, CCSR_SSI_SCR_I2S_MODE_MASK, |
| CCSR_SSI_SCR_TFR_CLK_DIS | |
| CCSR_SSI_SCR_I2S_MODE_SLAVE | CCSR_SSI_SCR_SYN); |
| |
| out_be32(&ssi->stcr, |
| CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 | |
| CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS | |
| CCSR_SSI_STCR_TSCKP); |
| |
| out_be32(&ssi->srcr, |
| CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 | |
| CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS | |
| CCSR_SSI_SRCR_RSCKP); |
| |
| /* |
| * The DC and PM bits are only used if the SSI is the clock |
| * master. |
| */ |
| |
| /* 4. Enable the interrupts and DMA requests */ |
| out_be32(&ssi->sier, |
| CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | |
| CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | |
| CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | |
| CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | |
| CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN); |
| |
| /* |
| * Set the watermark for transmit FIFI 0 and receive FIFO 0. We |
| * don't use FIFO 1. Since the SSI only supports stereo, the |
| * watermark should never be an odd number. |
| */ |
| out_be32(&ssi->sfcsr, |
| CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2)); |
| |
| /* |
| * We keep the SSI disabled because if we enable it, then the |
| * DMA controller will start. It's not supposed to start until |
| * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The |
| * DMA controller will transfer one "BWC" of data (i.e. the |
| * amount of data that the MR.BWC bits are set to). The reason |
| * this is bad is because at this point, the PCM driver has not |
| * finished initializing the DMA controller. |
| */ |
| } |
| |
| if (!ssi_private->first_stream) |
| ssi_private->first_stream = substream; |
| else { |
| /* This is the second stream open, so we need to impose sample |
| * rate and maybe sample size constraints. Note that this can |
| * cause a race condition if the second stream is opened before |
| * the first stream is fully initialized. |
| * |
| * We provide some protection by checking to make sure the first |
| * stream is initialized, but it's not perfect. ALSA sometimes |
| * re-initializes the driver with a different sample rate or |
| * size. If the second stream is opened before the first stream |
| * has received its final parameters, then the second stream may |
| * be constrained to the wrong sample rate or size. |
| * |
| * FIXME: This code does not handle opening and closing streams |
| * repeatedly. If you open two streams and then close the first |
| * one, you may not be able to open another stream until you |
| * close the second one as well. |
| */ |
| struct snd_pcm_runtime *first_runtime = |
| ssi_private->first_stream->runtime; |
| |
| if (!first_runtime->rate || !first_runtime->sample_bits) { |
| dev_err(substream->pcm->card->dev, |
| "set sample rate and size in %s stream first\n", |
| substream->stream == SNDRV_PCM_STREAM_PLAYBACK |
| ? "capture" : "playback"); |
| return -EAGAIN; |
| } |
| |
| snd_pcm_hw_constraint_minmax(substream->runtime, |
| SNDRV_PCM_HW_PARAM_RATE, |
| first_runtime->rate, first_runtime->rate); |
| |
| snd_pcm_hw_constraint_minmax(substream->runtime, |
| SNDRV_PCM_HW_PARAM_SAMPLE_BITS, |
| first_runtime->sample_bits, |
| first_runtime->sample_bits); |
| |
| ssi_private->second_stream = substream; |
| } |
| |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) |
| ssi_private->playback++; |
| |
| if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) |
| ssi_private->capture++; |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_ssi_prepare: prepare the SSI. |
| * |
| * Most of the SSI registers have been programmed in the startup function, |
| * but the word length must be programmed here. Unfortunately, programming |
| * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can |
| * cause a problem with supporting simultaneous playback and capture. If |
| * the SSI is already playing a stream, then that stream may be temporarily |
| * stopped when you start capture. |
| * |
| * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the |
| * clock master. |
| */ |
| static int fsl_ssi_prepare(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct snd_soc_pcm_runtime *rtd = substream->private_data; |
| struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; |
| |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| |
| if (substream == ssi_private->first_stream) { |
| u32 wl; |
| |
| /* The SSI should always be disabled at this points (SSIEN=0) */ |
| wl = CCSR_SSI_SxCCR_WL(snd_pcm_format_width(runtime->format)); |
| |
| /* In synchronous mode, the SSI uses STCCR for capture */ |
| clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_ssi_trigger: start and stop the DMA transfer. |
| * |
| * This function is called by ALSA to start, stop, pause, and resume the DMA |
| * transfer of data. |
| * |
| * The DMA channel is in external master start and pause mode, which |
| * means the SSI completely controls the flow of data. |
| */ |
| static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd) |
| { |
| struct snd_soc_pcm_runtime *rtd = substream->private_data; |
| struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| |
| switch (cmd) { |
| case SNDRV_PCM_TRIGGER_START: |
| case SNDRV_PCM_TRIGGER_RESUME: |
| case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { |
| clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); |
| setbits32(&ssi->scr, |
| CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE); |
| } else { |
| clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); |
| setbits32(&ssi->scr, |
| CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE); |
| |
| /* |
| * I think we need this delay to allow time for the SSI |
| * to put data into its FIFO. Without it, ALSA starts |
| * to complain about overruns. |
| */ |
| mdelay(1); |
| } |
| break; |
| |
| case SNDRV_PCM_TRIGGER_STOP: |
| case SNDRV_PCM_TRIGGER_SUSPEND: |
| case SNDRV_PCM_TRIGGER_PAUSE_PUSH: |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) |
| clrbits32(&ssi->scr, CCSR_SSI_SCR_TE); |
| else |
| clrbits32(&ssi->scr, CCSR_SSI_SCR_RE); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_ssi_shutdown: shutdown the SSI |
| * |
| * Shutdown the SSI if there are no other substreams open. |
| */ |
| static void fsl_ssi_shutdown(struct snd_pcm_substream *substream) |
| { |
| struct snd_soc_pcm_runtime *rtd = substream->private_data; |
| struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; |
| |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) |
| ssi_private->playback--; |
| |
| if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) |
| ssi_private->capture--; |
| |
| if (ssi_private->first_stream == substream) |
| ssi_private->first_stream = ssi_private->second_stream; |
| |
| ssi_private->second_stream = NULL; |
| |
| /* |
| * If this is the last active substream, disable the SSI and release |
| * the IRQ. |
| */ |
| if (!ssi_private->playback && !ssi_private->capture) { |
| struct ccsr_ssi __iomem *ssi = ssi_private->ssi; |
| |
| clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); |
| |
| free_irq(ssi_private->irq, ssi_private); |
| } |
| } |
| |
| /** |
| * fsl_ssi_set_sysclk: set the clock frequency and direction |
| * |
| * This function is called by the machine driver to tell us what the clock |
| * frequency and direction are. |
| * |
| * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN), |
| * and we don't care about the frequency. Return an error if the direction |
| * is not SND_SOC_CLOCK_IN. |
| * |
| * @clk_id: reserved, should be zero |
| * @freq: the frequency of the given clock ID, currently ignored |
| * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master) |
| */ |
| static int fsl_ssi_set_sysclk(struct snd_soc_dai *cpu_dai, |
| int clk_id, unsigned int freq, int dir) |
| { |
| |
| return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL; |
| } |
| |
| /** |
| * fsl_ssi_set_fmt: set the serial format. |
| * |
| * This function is called by the machine driver to tell us what serial |
| * format to use. |
| * |
| * Currently, we only support I2S mode. Return an error if the format is |
| * not SND_SOC_DAIFMT_I2S. |
| * |
| * @format: one of SND_SOC_DAIFMT_xxx |
| */ |
| static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format) |
| { |
| return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL; |
| } |
| |
| /** |
| * fsl_ssi_dai_template: template CPU DAI for the SSI |
| */ |
| static struct snd_soc_dai fsl_ssi_dai_template = { |
| .playback = { |
| /* The SSI does not support monaural audio. */ |
| .channels_min = 2, |
| .channels_max = 2, |
| .rates = FSLSSI_I2S_RATES, |
| .formats = FSLSSI_I2S_FORMATS, |
| }, |
| .capture = { |
| .channels_min = 2, |
| .channels_max = 2, |
| .rates = FSLSSI_I2S_RATES, |
| .formats = FSLSSI_I2S_FORMATS, |
| }, |
| .ops = { |
| .startup = fsl_ssi_startup, |
| .prepare = fsl_ssi_prepare, |
| .shutdown = fsl_ssi_shutdown, |
| .trigger = fsl_ssi_trigger, |
| }, |
| .dai_ops = { |
| .set_sysclk = fsl_ssi_set_sysclk, |
| .set_fmt = fsl_ssi_set_fmt, |
| }, |
| }; |
| |
| /** |
| * fsl_sysfs_ssi_show: display SSI statistics |
| * |
| * Display the statistics for the current SSI device. |
| */ |
| static ssize_t fsl_sysfs_ssi_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct fsl_ssi_private *ssi_private = |
| container_of(attr, struct fsl_ssi_private, dev_attr); |
| ssize_t length; |
| |
| length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc); |
| length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc); |
| length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau); |
| length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu); |
| length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt); |
| length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1); |
| length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0); |
| length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1); |
| length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0); |
| length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1); |
| length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0); |
| length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1); |
| length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0); |
| length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs); |
| length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs); |
| length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls); |
| length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls); |
| length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1); |
| length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0); |
| length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1); |
| length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0); |
| |
| return length; |
| } |
| |
| /** |
| * fsl_ssi_create_dai: create a snd_soc_dai structure |
| * |
| * This function is called by the machine driver to create a snd_soc_dai |
| * structure. The function creates an ssi_private object, which contains |
| * the snd_soc_dai. It also creates the sysfs statistics device. |
| */ |
| struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info) |
| { |
| struct snd_soc_dai *fsl_ssi_dai; |
| struct fsl_ssi_private *ssi_private; |
| int ret = 0; |
| struct device_attribute *dev_attr; |
| |
| ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL); |
| if (!ssi_private) { |
| dev_err(ssi_info->dev, "could not allocate DAI object\n"); |
| return NULL; |
| } |
| memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template, |
| sizeof(struct snd_soc_dai)); |
| |
| fsl_ssi_dai = &ssi_private->cpu_dai; |
| dev_attr = &ssi_private->dev_attr; |
| |
| sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id); |
| ssi_private->ssi = ssi_info->ssi; |
| ssi_private->ssi_phys = ssi_info->ssi_phys; |
| ssi_private->irq = ssi_info->irq; |
| ssi_private->dev = ssi_info->dev; |
| |
| ssi_private->dev->driver_data = fsl_ssi_dai; |
| |
| /* Initialize the the device_attribute structure */ |
| dev_attr->attr.name = "ssi-stats"; |
| dev_attr->attr.mode = S_IRUGO; |
| dev_attr->show = fsl_sysfs_ssi_show; |
| |
| ret = device_create_file(ssi_private->dev, dev_attr); |
| if (ret) { |
| dev_err(ssi_info->dev, "could not create sysfs %s file\n", |
| ssi_private->dev_attr.attr.name); |
| kfree(fsl_ssi_dai); |
| return NULL; |
| } |
| |
| fsl_ssi_dai->private_data = ssi_private; |
| fsl_ssi_dai->name = ssi_private->name; |
| fsl_ssi_dai->id = ssi_info->id; |
| |
| return fsl_ssi_dai; |
| } |
| EXPORT_SYMBOL_GPL(fsl_ssi_create_dai); |
| |
| /** |
| * fsl_ssi_destroy_dai: destroy the snd_soc_dai object |
| * |
| * This function undoes the operations of fsl_ssi_create_dai() |
| */ |
| void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai) |
| { |
| struct fsl_ssi_private *ssi_private = |
| container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai); |
| |
| device_remove_file(ssi_private->dev, &ssi_private->dev_attr); |
| |
| kfree(ssi_private); |
| } |
| EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai); |
| |
| MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); |
| MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver"); |
| MODULE_LICENSE("GPL"); |