| /* |
| * Lockless get_user_pages_fast for x86 |
| * |
| * Copyright (C) 2008 Nick Piggin |
| * Copyright (C) 2008 Novell Inc. |
| */ |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/vmstat.h> |
| #include <linux/highmem.h> |
| #include <linux/swap.h> |
| |
| #include <asm/pgtable.h> |
| |
| static inline pte_t gup_get_pte(pte_t *ptep) |
| { |
| #ifndef CONFIG_X86_PAE |
| return ACCESS_ONCE(*ptep); |
| #else |
| /* |
| * With get_user_pages_fast, we walk down the pagetables without taking |
| * any locks. For this we would like to load the pointers atomically, |
| * but that is not possible (without expensive cmpxchg8b) on PAE. What |
| * we do have is the guarantee that a pte will only either go from not |
| * present to present, or present to not present or both -- it will not |
| * switch to a completely different present page without a TLB flush in |
| * between; something that we are blocking by holding interrupts off. |
| * |
| * Setting ptes from not present to present goes: |
| * ptep->pte_high = h; |
| * smp_wmb(); |
| * ptep->pte_low = l; |
| * |
| * And present to not present goes: |
| * ptep->pte_low = 0; |
| * smp_wmb(); |
| * ptep->pte_high = 0; |
| * |
| * We must ensure here that the load of pte_low sees l iff pte_high |
| * sees h. We load pte_high *after* loading pte_low, which ensures we |
| * don't see an older value of pte_high. *Then* we recheck pte_low, |
| * which ensures that we haven't picked up a changed pte high. We might |
| * have got rubbish values from pte_low and pte_high, but we are |
| * guaranteed that pte_low will not have the present bit set *unless* |
| * it is 'l'. And get_user_pages_fast only operates on present ptes, so |
| * we're safe. |
| * |
| * gup_get_pte should not be used or copied outside gup.c without being |
| * very careful -- it does not atomically load the pte or anything that |
| * is likely to be useful for you. |
| */ |
| pte_t pte; |
| |
| retry: |
| pte.pte_low = ptep->pte_low; |
| smp_rmb(); |
| pte.pte_high = ptep->pte_high; |
| smp_rmb(); |
| if (unlikely(pte.pte_low != ptep->pte_low)) |
| goto retry; |
| |
| return pte; |
| #endif |
| } |
| |
| /* |
| * The performance critical leaf functions are made noinline otherwise gcc |
| * inlines everything into a single function which results in too much |
| * register pressure. |
| */ |
| static noinline int gup_pte_range(pmd_t pmd, unsigned long addr, |
| unsigned long end, int write, struct page **pages, int *nr) |
| { |
| unsigned long mask; |
| pte_t *ptep; |
| |
| mask = _PAGE_PRESENT|_PAGE_USER; |
| if (write) |
| mask |= _PAGE_RW; |
| |
| ptep = pte_offset_map(&pmd, addr); |
| do { |
| pte_t pte = gup_get_pte(ptep); |
| struct page *page; |
| |
| /* Similar to the PMD case, NUMA hinting must take slow path */ |
| if (pte_numa(pte)) { |
| pte_unmap(ptep); |
| return 0; |
| } |
| |
| if ((pte_flags(pte) & (mask | _PAGE_SPECIAL)) != mask) { |
| pte_unmap(ptep); |
| return 0; |
| } |
| VM_BUG_ON(!pfn_valid(pte_pfn(pte))); |
| page = pte_page(pte); |
| get_page(page); |
| SetPageReferenced(page); |
| pages[*nr] = page; |
| (*nr)++; |
| |
| } while (ptep++, addr += PAGE_SIZE, addr != end); |
| pte_unmap(ptep - 1); |
| |
| return 1; |
| } |
| |
| static inline void get_head_page_multiple(struct page *page, int nr) |
| { |
| VM_BUG_ON_PAGE(page != compound_head(page), page); |
| VM_BUG_ON_PAGE(page_count(page) == 0, page); |
| atomic_add(nr, &page->_count); |
| SetPageReferenced(page); |
| } |
| |
| static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr, |
| unsigned long end, int write, struct page **pages, int *nr) |
| { |
| unsigned long mask; |
| pte_t pte = *(pte_t *)&pmd; |
| struct page *head, *page; |
| int refs; |
| |
| mask = _PAGE_PRESENT|_PAGE_USER; |
| if (write) |
| mask |= _PAGE_RW; |
| if ((pte_flags(pte) & mask) != mask) |
| return 0; |
| /* hugepages are never "special" */ |
| VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL); |
| VM_BUG_ON(!pfn_valid(pte_pfn(pte))); |
| |
| refs = 0; |
| head = pte_page(pte); |
| page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
| do { |
| VM_BUG_ON_PAGE(compound_head(page) != head, page); |
| pages[*nr] = page; |
| if (PageTail(page)) |
| get_huge_page_tail(page); |
| (*nr)++; |
| page++; |
| refs++; |
| } while (addr += PAGE_SIZE, addr != end); |
| get_head_page_multiple(head, refs); |
| |
| return 1; |
| } |
| |
| static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, |
| int write, struct page **pages, int *nr) |
| { |
| unsigned long next; |
| pmd_t *pmdp; |
| |
| pmdp = pmd_offset(&pud, addr); |
| do { |
| pmd_t pmd = *pmdp; |
| |
| next = pmd_addr_end(addr, end); |
| /* |
| * The pmd_trans_splitting() check below explains why |
| * pmdp_splitting_flush has to flush the tlb, to stop |
| * this gup-fast code from running while we set the |
| * splitting bit in the pmd. Returning zero will take |
| * the slow path that will call wait_split_huge_page() |
| * if the pmd is still in splitting state. gup-fast |
| * can't because it has irq disabled and |
| * wait_split_huge_page() would never return as the |
| * tlb flush IPI wouldn't run. |
| */ |
| if (pmd_none(pmd) || pmd_trans_splitting(pmd)) |
| return 0; |
| if (unlikely(pmd_large(pmd))) { |
| /* |
| * NUMA hinting faults need to be handled in the GUP |
| * slowpath for accounting purposes and so that they |
| * can be serialised against THP migration. |
| */ |
| if (pmd_numa(pmd)) |
| return 0; |
| if (!gup_huge_pmd(pmd, addr, next, write, pages, nr)) |
| return 0; |
| } else { |
| if (!gup_pte_range(pmd, addr, next, write, pages, nr)) |
| return 0; |
| } |
| } while (pmdp++, addr = next, addr != end); |
| |
| return 1; |
| } |
| |
| static noinline int gup_huge_pud(pud_t pud, unsigned long addr, |
| unsigned long end, int write, struct page **pages, int *nr) |
| { |
| unsigned long mask; |
| pte_t pte = *(pte_t *)&pud; |
| struct page *head, *page; |
| int refs; |
| |
| mask = _PAGE_PRESENT|_PAGE_USER; |
| if (write) |
| mask |= _PAGE_RW; |
| if ((pte_flags(pte) & mask) != mask) |
| return 0; |
| /* hugepages are never "special" */ |
| VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL); |
| VM_BUG_ON(!pfn_valid(pte_pfn(pte))); |
| |
| refs = 0; |
| head = pte_page(pte); |
| page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
| do { |
| VM_BUG_ON_PAGE(compound_head(page) != head, page); |
| pages[*nr] = page; |
| if (PageTail(page)) |
| get_huge_page_tail(page); |
| (*nr)++; |
| page++; |
| refs++; |
| } while (addr += PAGE_SIZE, addr != end); |
| get_head_page_multiple(head, refs); |
| |
| return 1; |
| } |
| |
| static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end, |
| int write, struct page **pages, int *nr) |
| { |
| unsigned long next; |
| pud_t *pudp; |
| |
| pudp = pud_offset(&pgd, addr); |
| do { |
| pud_t pud = *pudp; |
| |
| next = pud_addr_end(addr, end); |
| if (pud_none(pud)) |
| return 0; |
| if (unlikely(pud_large(pud))) { |
| if (!gup_huge_pud(pud, addr, next, write, pages, nr)) |
| return 0; |
| } else { |
| if (!gup_pmd_range(pud, addr, next, write, pages, nr)) |
| return 0; |
| } |
| } while (pudp++, addr = next, addr != end); |
| |
| return 1; |
| } |
| |
| /* |
| * Like get_user_pages_fast() except its IRQ-safe in that it won't fall |
| * back to the regular GUP. |
| */ |
| int __get_user_pages_fast(unsigned long start, int nr_pages, int write, |
| struct page **pages) |
| { |
| struct mm_struct *mm = current->mm; |
| unsigned long addr, len, end; |
| unsigned long next; |
| unsigned long flags; |
| pgd_t *pgdp; |
| int nr = 0; |
| |
| start &= PAGE_MASK; |
| addr = start; |
| len = (unsigned long) nr_pages << PAGE_SHIFT; |
| end = start + len; |
| if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, |
| (void __user *)start, len))) |
| return 0; |
| |
| /* |
| * XXX: batch / limit 'nr', to avoid large irq off latency |
| * needs some instrumenting to determine the common sizes used by |
| * important workloads (eg. DB2), and whether limiting the batch size |
| * will decrease performance. |
| * |
| * It seems like we're in the clear for the moment. Direct-IO is |
| * the main guy that batches up lots of get_user_pages, and even |
| * they are limited to 64-at-a-time which is not so many. |
| */ |
| /* |
| * This doesn't prevent pagetable teardown, but does prevent |
| * the pagetables and pages from being freed on x86. |
| * |
| * So long as we atomically load page table pointers versus teardown |
| * (which we do on x86, with the above PAE exception), we can follow the |
| * address down to the the page and take a ref on it. |
| */ |
| local_irq_save(flags); |
| pgdp = pgd_offset(mm, addr); |
| do { |
| pgd_t pgd = *pgdp; |
| |
| next = pgd_addr_end(addr, end); |
| if (pgd_none(pgd)) |
| break; |
| if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) |
| break; |
| } while (pgdp++, addr = next, addr != end); |
| local_irq_restore(flags); |
| |
| return nr; |
| } |
| |
| /** |
| * get_user_pages_fast() - pin user pages in memory |
| * @start: starting user address |
| * @nr_pages: number of pages from start to pin |
| * @write: whether pages will be written to |
| * @pages: array that receives pointers to the pages pinned. |
| * Should be at least nr_pages long. |
| * |
| * Attempt to pin user pages in memory without taking mm->mmap_sem. |
| * If not successful, it will fall back to taking the lock and |
| * calling get_user_pages(). |
| * |
| * Returns number of pages pinned. This may be fewer than the number |
| * requested. If nr_pages is 0 or negative, returns 0. If no pages |
| * were pinned, returns -errno. |
| */ |
| int get_user_pages_fast(unsigned long start, int nr_pages, int write, |
| struct page **pages) |
| { |
| struct mm_struct *mm = current->mm; |
| unsigned long addr, len, end; |
| unsigned long next; |
| pgd_t *pgdp; |
| int nr = 0; |
| |
| start &= PAGE_MASK; |
| addr = start; |
| len = (unsigned long) nr_pages << PAGE_SHIFT; |
| |
| end = start + len; |
| if (end < start) |
| goto slow_irqon; |
| |
| #ifdef CONFIG_X86_64 |
| if (end >> __VIRTUAL_MASK_SHIFT) |
| goto slow_irqon; |
| #endif |
| |
| /* |
| * XXX: batch / limit 'nr', to avoid large irq off latency |
| * needs some instrumenting to determine the common sizes used by |
| * important workloads (eg. DB2), and whether limiting the batch size |
| * will decrease performance. |
| * |
| * It seems like we're in the clear for the moment. Direct-IO is |
| * the main guy that batches up lots of get_user_pages, and even |
| * they are limited to 64-at-a-time which is not so many. |
| */ |
| /* |
| * This doesn't prevent pagetable teardown, but does prevent |
| * the pagetables and pages from being freed on x86. |
| * |
| * So long as we atomically load page table pointers versus teardown |
| * (which we do on x86, with the above PAE exception), we can follow the |
| * address down to the the page and take a ref on it. |
| */ |
| local_irq_disable(); |
| pgdp = pgd_offset(mm, addr); |
| do { |
| pgd_t pgd = *pgdp; |
| |
| next = pgd_addr_end(addr, end); |
| if (pgd_none(pgd)) |
| goto slow; |
| if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) |
| goto slow; |
| } while (pgdp++, addr = next, addr != end); |
| local_irq_enable(); |
| |
| VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT); |
| return nr; |
| |
| { |
| int ret; |
| |
| slow: |
| local_irq_enable(); |
| slow_irqon: |
| /* Try to get the remaining pages with get_user_pages */ |
| start += nr << PAGE_SHIFT; |
| pages += nr; |
| |
| down_read(&mm->mmap_sem); |
| ret = get_user_pages(current, mm, start, |
| (end - start) >> PAGE_SHIFT, write, 0, pages, NULL); |
| up_read(&mm->mmap_sem); |
| |
| /* Have to be a bit careful with return values */ |
| if (nr > 0) { |
| if (ret < 0) |
| ret = nr; |
| else |
| ret += nr; |
| } |
| |
| return ret; |
| } |
| } |