| /* |
| * Request reply cache. This is currently a global cache, but this may |
| * change in the future and be a per-client cache. |
| * |
| * This code is heavily inspired by the 44BSD implementation, although |
| * it does things a bit differently. |
| * |
| * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/sunrpc/addr.h> |
| #include <linux/highmem.h> |
| #include <net/checksum.h> |
| |
| #include "nfsd.h" |
| #include "cache.h" |
| |
| #define NFSDDBG_FACILITY NFSDDBG_REPCACHE |
| |
| #define HASHSIZE 64 |
| |
| static struct hlist_head * cache_hash; |
| static struct list_head lru_head; |
| static struct kmem_cache *drc_slab; |
| static unsigned int num_drc_entries; |
| static unsigned int max_drc_entries; |
| |
| /* |
| * Calculate the hash index from an XID. |
| */ |
| static inline u32 request_hash(u32 xid) |
| { |
| u32 h = xid; |
| h ^= (xid >> 24); |
| return h & (HASHSIZE-1); |
| } |
| |
| static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); |
| static void cache_cleaner_func(struct work_struct *unused); |
| static int nfsd_reply_cache_shrink(struct shrinker *shrink, |
| struct shrink_control *sc); |
| |
| struct shrinker nfsd_reply_cache_shrinker = { |
| .shrink = nfsd_reply_cache_shrink, |
| .seeks = 1, |
| }; |
| |
| /* |
| * locking for the reply cache: |
| * A cache entry is "single use" if c_state == RC_INPROG |
| * Otherwise, it when accessing _prev or _next, the lock must be held. |
| */ |
| static DEFINE_SPINLOCK(cache_lock); |
| static DECLARE_DELAYED_WORK(cache_cleaner, cache_cleaner_func); |
| |
| /* |
| * Put a cap on the size of the DRC based on the amount of available |
| * low memory in the machine. |
| * |
| * 64MB: 8192 |
| * 128MB: 11585 |
| * 256MB: 16384 |
| * 512MB: 23170 |
| * 1GB: 32768 |
| * 2GB: 46340 |
| * 4GB: 65536 |
| * 8GB: 92681 |
| * 16GB: 131072 |
| * |
| * ...with a hard cap of 256k entries. In the worst case, each entry will be |
| * ~1k, so the above numbers should give a rough max of the amount of memory |
| * used in k. |
| */ |
| static unsigned int |
| nfsd_cache_size_limit(void) |
| { |
| unsigned int limit; |
| unsigned long low_pages = totalram_pages - totalhigh_pages; |
| |
| limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); |
| return min_t(unsigned int, limit, 256*1024); |
| } |
| |
| static struct svc_cacherep * |
| nfsd_reply_cache_alloc(void) |
| { |
| struct svc_cacherep *rp; |
| |
| rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); |
| if (rp) { |
| rp->c_state = RC_UNUSED; |
| rp->c_type = RC_NOCACHE; |
| INIT_LIST_HEAD(&rp->c_lru); |
| INIT_HLIST_NODE(&rp->c_hash); |
| } |
| return rp; |
| } |
| |
| static void |
| nfsd_reply_cache_free_locked(struct svc_cacherep *rp) |
| { |
| if (rp->c_type == RC_REPLBUFF) |
| kfree(rp->c_replvec.iov_base); |
| hlist_del(&rp->c_hash); |
| list_del(&rp->c_lru); |
| --num_drc_entries; |
| kmem_cache_free(drc_slab, rp); |
| } |
| |
| static void |
| nfsd_reply_cache_free(struct svc_cacherep *rp) |
| { |
| spin_lock(&cache_lock); |
| nfsd_reply_cache_free_locked(rp); |
| spin_unlock(&cache_lock); |
| } |
| |
| int nfsd_reply_cache_init(void) |
| { |
| register_shrinker(&nfsd_reply_cache_shrinker); |
| drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep), |
| 0, 0, NULL); |
| if (!drc_slab) |
| goto out_nomem; |
| |
| cache_hash = kcalloc(HASHSIZE, sizeof(struct hlist_head), GFP_KERNEL); |
| if (!cache_hash) |
| goto out_nomem; |
| |
| INIT_LIST_HEAD(&lru_head); |
| max_drc_entries = nfsd_cache_size_limit(); |
| num_drc_entries = 0; |
| |
| return 0; |
| out_nomem: |
| printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); |
| nfsd_reply_cache_shutdown(); |
| return -ENOMEM; |
| } |
| |
| void nfsd_reply_cache_shutdown(void) |
| { |
| struct svc_cacherep *rp; |
| |
| unregister_shrinker(&nfsd_reply_cache_shrinker); |
| cancel_delayed_work_sync(&cache_cleaner); |
| |
| while (!list_empty(&lru_head)) { |
| rp = list_entry(lru_head.next, struct svc_cacherep, c_lru); |
| nfsd_reply_cache_free_locked(rp); |
| } |
| |
| kfree (cache_hash); |
| cache_hash = NULL; |
| |
| if (drc_slab) { |
| kmem_cache_destroy(drc_slab); |
| drc_slab = NULL; |
| } |
| } |
| |
| /* |
| * Move cache entry to end of LRU list, and queue the cleaner to run if it's |
| * not already scheduled. |
| */ |
| static void |
| lru_put_end(struct svc_cacherep *rp) |
| { |
| rp->c_timestamp = jiffies; |
| list_move_tail(&rp->c_lru, &lru_head); |
| schedule_delayed_work(&cache_cleaner, RC_EXPIRE); |
| } |
| |
| /* |
| * Move a cache entry from one hash list to another |
| */ |
| static void |
| hash_refile(struct svc_cacherep *rp) |
| { |
| hlist_del_init(&rp->c_hash); |
| hlist_add_head(&rp->c_hash, cache_hash + request_hash(rp->c_xid)); |
| } |
| |
| static inline bool |
| nfsd_cache_entry_expired(struct svc_cacherep *rp) |
| { |
| return rp->c_state != RC_INPROG && |
| time_after(jiffies, rp->c_timestamp + RC_EXPIRE); |
| } |
| |
| /* |
| * Walk the LRU list and prune off entries that are older than RC_EXPIRE. |
| * Also prune the oldest ones when the total exceeds the max number of entries. |
| */ |
| static void |
| prune_cache_entries(void) |
| { |
| struct svc_cacherep *rp, *tmp; |
| |
| list_for_each_entry_safe(rp, tmp, &lru_head, c_lru) { |
| if (!nfsd_cache_entry_expired(rp) && |
| num_drc_entries <= max_drc_entries) |
| break; |
| nfsd_reply_cache_free_locked(rp); |
| } |
| |
| /* |
| * Conditionally rearm the job. If we cleaned out the list, then |
| * cancel any pending run (since there won't be any work to do). |
| * Otherwise, we rearm the job or modify the existing one to run in |
| * RC_EXPIRE since we just ran the pruner. |
| */ |
| if (list_empty(&lru_head)) |
| cancel_delayed_work(&cache_cleaner); |
| else |
| mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE); |
| } |
| |
| static void |
| cache_cleaner_func(struct work_struct *unused) |
| { |
| spin_lock(&cache_lock); |
| prune_cache_entries(); |
| spin_unlock(&cache_lock); |
| } |
| |
| static int |
| nfsd_reply_cache_shrink(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| unsigned int num; |
| |
| spin_lock(&cache_lock); |
| if (sc->nr_to_scan) |
| prune_cache_entries(); |
| num = num_drc_entries; |
| spin_unlock(&cache_lock); |
| |
| return num; |
| } |
| |
| /* |
| * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes |
| */ |
| static __wsum |
| nfsd_cache_csum(struct svc_rqst *rqstp) |
| { |
| int idx; |
| unsigned int base; |
| __wsum csum; |
| struct xdr_buf *buf = &rqstp->rq_arg; |
| const unsigned char *p = buf->head[0].iov_base; |
| size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len, |
| RC_CSUMLEN); |
| size_t len = min(buf->head[0].iov_len, csum_len); |
| |
| /* rq_arg.head first */ |
| csum = csum_partial(p, len, 0); |
| csum_len -= len; |
| |
| /* Continue into page array */ |
| idx = buf->page_base / PAGE_SIZE; |
| base = buf->page_base & ~PAGE_MASK; |
| while (csum_len) { |
| p = page_address(buf->pages[idx]) + base; |
| len = min(PAGE_SIZE - base, csum_len); |
| csum = csum_partial(p, len, csum); |
| csum_len -= len; |
| base = 0; |
| ++idx; |
| } |
| return csum; |
| } |
| |
| /* |
| * Search the request hash for an entry that matches the given rqstp. |
| * Must be called with cache_lock held. Returns the found entry or |
| * NULL on failure. |
| */ |
| static struct svc_cacherep * |
| nfsd_cache_search(struct svc_rqst *rqstp, __wsum csum) |
| { |
| struct svc_cacherep *rp; |
| struct hlist_node *hn; |
| struct hlist_head *rh; |
| __be32 xid = rqstp->rq_xid; |
| u32 proto = rqstp->rq_prot, |
| vers = rqstp->rq_vers, |
| proc = rqstp->rq_proc; |
| |
| rh = &cache_hash[request_hash(xid)]; |
| hlist_for_each_entry(rp, hn, rh, c_hash) { |
| if (xid == rp->c_xid && proc == rp->c_proc && |
| proto == rp->c_prot && vers == rp->c_vers && |
| rqstp->rq_arg.len == rp->c_len && csum == rp->c_csum && |
| rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) && |
| rpc_get_port(svc_addr(rqstp)) == rpc_get_port((struct sockaddr *)&rp->c_addr)) |
| return rp; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Try to find an entry matching the current call in the cache. When none |
| * is found, we try to grab the oldest expired entry off the LRU list. If |
| * a suitable one isn't there, then drop the cache_lock and allocate a |
| * new one, then search again in case one got inserted while this thread |
| * didn't hold the lock. |
| */ |
| int |
| nfsd_cache_lookup(struct svc_rqst *rqstp) |
| { |
| struct svc_cacherep *rp, *found; |
| __be32 xid = rqstp->rq_xid; |
| u32 proto = rqstp->rq_prot, |
| vers = rqstp->rq_vers, |
| proc = rqstp->rq_proc; |
| __wsum csum; |
| unsigned long age; |
| int type = rqstp->rq_cachetype; |
| int rtn; |
| |
| rqstp->rq_cacherep = NULL; |
| if (type == RC_NOCACHE) { |
| nfsdstats.rcnocache++; |
| return RC_DOIT; |
| } |
| |
| csum = nfsd_cache_csum(rqstp); |
| |
| spin_lock(&cache_lock); |
| rtn = RC_DOIT; |
| |
| rp = nfsd_cache_search(rqstp, csum); |
| if (rp) |
| goto found_entry; |
| |
| /* Try to use the first entry on the LRU */ |
| if (!list_empty(&lru_head)) { |
| rp = list_first_entry(&lru_head, struct svc_cacherep, c_lru); |
| if (nfsd_cache_entry_expired(rp) || |
| num_drc_entries >= max_drc_entries) { |
| lru_put_end(rp); |
| prune_cache_entries(); |
| goto setup_entry; |
| } |
| } |
| |
| /* Drop the lock and allocate a new entry */ |
| spin_unlock(&cache_lock); |
| rp = nfsd_reply_cache_alloc(); |
| if (!rp) { |
| dprintk("nfsd: unable to allocate DRC entry!\n"); |
| return RC_DOIT; |
| } |
| spin_lock(&cache_lock); |
| ++num_drc_entries; |
| |
| /* |
| * Must search again just in case someone inserted one |
| * after we dropped the lock above. |
| */ |
| found = nfsd_cache_search(rqstp, csum); |
| if (found) { |
| nfsd_reply_cache_free_locked(rp); |
| rp = found; |
| goto found_entry; |
| } |
| |
| /* |
| * We're keeping the one we just allocated. Are we now over the |
| * limit? Prune one off the tip of the LRU in trade for the one we |
| * just allocated if so. |
| */ |
| if (num_drc_entries >= max_drc_entries) |
| nfsd_reply_cache_free_locked(list_first_entry(&lru_head, |
| struct svc_cacherep, c_lru)); |
| |
| setup_entry: |
| nfsdstats.rcmisses++; |
| rqstp->rq_cacherep = rp; |
| rp->c_state = RC_INPROG; |
| rp->c_xid = xid; |
| rp->c_proc = proc; |
| rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp)); |
| rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp))); |
| rp->c_prot = proto; |
| rp->c_vers = vers; |
| rp->c_len = rqstp->rq_arg.len; |
| rp->c_csum = csum; |
| |
| hash_refile(rp); |
| lru_put_end(rp); |
| |
| /* release any buffer */ |
| if (rp->c_type == RC_REPLBUFF) { |
| kfree(rp->c_replvec.iov_base); |
| rp->c_replvec.iov_base = NULL; |
| } |
| rp->c_type = RC_NOCACHE; |
| out: |
| spin_unlock(&cache_lock); |
| return rtn; |
| |
| found_entry: |
| nfsdstats.rchits++; |
| /* We found a matching entry which is either in progress or done. */ |
| age = jiffies - rp->c_timestamp; |
| lru_put_end(rp); |
| |
| rtn = RC_DROPIT; |
| /* Request being processed or excessive rexmits */ |
| if (rp->c_state == RC_INPROG || age < RC_DELAY) |
| goto out; |
| |
| /* From the hall of fame of impractical attacks: |
| * Is this a user who tries to snoop on the cache? */ |
| rtn = RC_DOIT; |
| if (!rqstp->rq_secure && rp->c_secure) |
| goto out; |
| |
| /* Compose RPC reply header */ |
| switch (rp->c_type) { |
| case RC_NOCACHE: |
| break; |
| case RC_REPLSTAT: |
| svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat); |
| rtn = RC_REPLY; |
| break; |
| case RC_REPLBUFF: |
| if (!nfsd_cache_append(rqstp, &rp->c_replvec)) |
| goto out; /* should not happen */ |
| rtn = RC_REPLY; |
| break; |
| default: |
| printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type); |
| nfsd_reply_cache_free_locked(rp); |
| } |
| |
| goto out; |
| } |
| |
| /* |
| * Update a cache entry. This is called from nfsd_dispatch when |
| * the procedure has been executed and the complete reply is in |
| * rqstp->rq_res. |
| * |
| * We're copying around data here rather than swapping buffers because |
| * the toplevel loop requires max-sized buffers, which would be a waste |
| * of memory for a cache with a max reply size of 100 bytes (diropokres). |
| * |
| * If we should start to use different types of cache entries tailored |
| * specifically for attrstat and fh's, we may save even more space. |
| * |
| * Also note that a cachetype of RC_NOCACHE can legally be passed when |
| * nfsd failed to encode a reply that otherwise would have been cached. |
| * In this case, nfsd_cache_update is called with statp == NULL. |
| */ |
| void |
| nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) |
| { |
| struct svc_cacherep *rp = rqstp->rq_cacherep; |
| struct kvec *resv = &rqstp->rq_res.head[0], *cachv; |
| int len; |
| |
| if (!rp) |
| return; |
| |
| len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); |
| len >>= 2; |
| |
| /* Don't cache excessive amounts of data and XDR failures */ |
| if (!statp || len > (256 >> 2)) { |
| nfsd_reply_cache_free(rp); |
| return; |
| } |
| |
| switch (cachetype) { |
| case RC_REPLSTAT: |
| if (len != 1) |
| printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); |
| rp->c_replstat = *statp; |
| break; |
| case RC_REPLBUFF: |
| cachv = &rp->c_replvec; |
| cachv->iov_base = kmalloc(len << 2, GFP_KERNEL); |
| if (!cachv->iov_base) { |
| nfsd_reply_cache_free(rp); |
| return; |
| } |
| cachv->iov_len = len << 2; |
| memcpy(cachv->iov_base, statp, len << 2); |
| break; |
| case RC_NOCACHE: |
| nfsd_reply_cache_free(rp); |
| return; |
| } |
| spin_lock(&cache_lock); |
| lru_put_end(rp); |
| rp->c_secure = rqstp->rq_secure; |
| rp->c_type = cachetype; |
| rp->c_state = RC_DONE; |
| spin_unlock(&cache_lock); |
| return; |
| } |
| |
| /* |
| * Copy cached reply to current reply buffer. Should always fit. |
| * FIXME as reply is in a page, we should just attach the page, and |
| * keep a refcount.... |
| */ |
| static int |
| nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) |
| { |
| struct kvec *vec = &rqstp->rq_res.head[0]; |
| |
| if (vec->iov_len + data->iov_len > PAGE_SIZE) { |
| printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n", |
| data->iov_len); |
| return 0; |
| } |
| memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len); |
| vec->iov_len += data->iov_len; |
| return 1; |
| } |