blob: bd56a033bfd06b9ff5babaa175bdcc0f7a54f373 [file] [log] [blame]
/*
* Real Time Clock interface for XScale PXA27x and PXA3xx
*
* Copyright (C) 2008 Robert Jarzmik
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/seq_file.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <mach/hardware.h>
#define TIMER_FREQ CLOCK_TICK_RATE
#define RTC_DEF_DIVIDER (32768 - 1)
#define RTC_DEF_TRIM 0
#define MAXFREQ_PERIODIC 1000
/*
* PXA Registers and bits definitions
*/
#define RTSR_PICE (1 << 15) /* Periodic interrupt count enable */
#define RTSR_PIALE (1 << 14) /* Periodic interrupt Alarm enable */
#define RTSR_PIAL (1 << 13) /* Periodic interrupt detected */
#define RTSR_SWALE2 (1 << 11) /* RTC stopwatch alarm2 enable */
#define RTSR_SWAL2 (1 << 10) /* RTC stopwatch alarm2 detected */
#define RTSR_SWALE1 (1 << 9) /* RTC stopwatch alarm1 enable */
#define RTSR_SWAL1 (1 << 8) /* RTC stopwatch alarm1 detected */
#define RTSR_RDALE2 (1 << 7) /* RTC alarm2 enable */
#define RTSR_RDAL2 (1 << 6) /* RTC alarm2 detected */
#define RTSR_RDALE1 (1 << 5) /* RTC alarm1 enable */
#define RTSR_RDAL1 (1 << 4) /* RTC alarm1 detected */
#define RTSR_HZE (1 << 3) /* HZ interrupt enable */
#define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */
#define RTSR_HZ (1 << 1) /* HZ rising-edge detected */
#define RTSR_AL (1 << 0) /* RTC alarm detected */
#define RTSR_TRIG_MASK (RTSR_AL | RTSR_HZ | RTSR_RDAL1 | RTSR_RDAL2\
| RTSR_SWAL1 | RTSR_SWAL2)
#define RYxR_YEAR_S 9
#define RYxR_YEAR_MASK (0xfff << RYxR_YEAR_S)
#define RYxR_MONTH_S 5
#define RYxR_MONTH_MASK (0xf << RYxR_MONTH_S)
#define RYxR_DAY_MASK 0x1f
#define RDxR_HOUR_S 12
#define RDxR_HOUR_MASK (0x1f << RDxR_HOUR_S)
#define RDxR_MIN_S 6
#define RDxR_MIN_MASK (0x3f << RDxR_MIN_S)
#define RDxR_SEC_MASK 0x3f
#define RTSR 0x08
#define RTTR 0x0c
#define RDCR 0x10
#define RYCR 0x14
#define RDAR1 0x18
#define RYAR1 0x1c
#define RTCPICR 0x34
#define PIAR 0x38
#define rtc_readl(pxa_rtc, reg) \
__raw_readl((pxa_rtc)->base + (reg))
#define rtc_writel(pxa_rtc, reg, value) \
__raw_writel((value), (pxa_rtc)->base + (reg))
struct pxa_rtc {
struct resource *ress;
void __iomem *base;
int irq_1Hz;
int irq_Alrm;
struct rtc_device *rtc;
spinlock_t lock; /* Protects this structure */
struct rtc_time rtc_alarm;
};
static u32 ryxr_calc(struct rtc_time *tm)
{
return ((tm->tm_year + 1900) << RYxR_YEAR_S)
| ((tm->tm_mon + 1) << RYxR_MONTH_S)
| tm->tm_mday;
}
static u32 rdxr_calc(struct rtc_time *tm)
{
return (tm->tm_hour << RDxR_HOUR_S) | (tm->tm_min << RDxR_MIN_S)
| tm->tm_sec;
}
static void tm_calc(u32 rycr, u32 rdcr, struct rtc_time *tm)
{
tm->tm_year = ((rycr & RYxR_YEAR_MASK) >> RYxR_YEAR_S) - 1900;
tm->tm_mon = (((rycr & RYxR_MONTH_MASK) >> RYxR_MONTH_S)) - 1;
tm->tm_mday = (rycr & RYxR_DAY_MASK);
tm->tm_hour = (rdcr & RDxR_HOUR_MASK) >> RDxR_HOUR_S;
tm->tm_min = (rdcr & RDxR_MIN_MASK) >> RDxR_MIN_S;
tm->tm_sec = rdcr & RDxR_SEC_MASK;
}
static void rtsr_clear_bits(struct pxa_rtc *pxa_rtc, u32 mask)
{
u32 rtsr;
rtsr = rtc_readl(pxa_rtc, RTSR);
rtsr &= ~RTSR_TRIG_MASK;
rtsr &= ~mask;
rtc_writel(pxa_rtc, RTSR, rtsr);
}
static void rtsr_set_bits(struct pxa_rtc *pxa_rtc, u32 mask)
{
u32 rtsr;
rtsr = rtc_readl(pxa_rtc, RTSR);
rtsr &= ~RTSR_TRIG_MASK;
rtsr |= mask;
rtc_writel(pxa_rtc, RTSR, rtsr);
}
static irqreturn_t pxa_rtc_irq(int irq, void *dev_id)
{
struct platform_device *pdev = to_platform_device(dev_id);
struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
u32 rtsr;
unsigned long events = 0;
spin_lock(&pxa_rtc->lock);
/* clear interrupt sources */
rtsr = rtc_readl(pxa_rtc, RTSR);
rtc_writel(pxa_rtc, RTSR, rtsr);
/* temporary disable rtc interrupts */
rtsr_clear_bits(pxa_rtc, RTSR_RDALE1 | RTSR_PIALE | RTSR_HZE);
/* clear alarm interrupt if it has occurred */
if (rtsr & RTSR_RDAL1)
rtsr &= ~RTSR_RDALE1;
/* update irq data & counter */
if (rtsr & RTSR_RDAL1)
events |= RTC_AF | RTC_IRQF;
if (rtsr & RTSR_HZ)
events |= RTC_UF | RTC_IRQF;
if (rtsr & RTSR_PIAL)
events |= RTC_PF | RTC_IRQF;
rtc_update_irq(pxa_rtc->rtc, 1, events);
/* enable back rtc interrupts */
rtc_writel(pxa_rtc, RTSR, rtsr & ~RTSR_TRIG_MASK);
spin_unlock(&pxa_rtc->lock);
return IRQ_HANDLED;
}
static int pxa_rtc_open(struct device *dev)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
int ret;
ret = request_irq(pxa_rtc->irq_1Hz, pxa_rtc_irq, IRQF_DISABLED,
"rtc 1Hz", dev);
if (ret < 0) {
dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_1Hz,
ret);
goto err_irq_1Hz;
}
ret = request_irq(pxa_rtc->irq_Alrm, pxa_rtc_irq, IRQF_DISABLED,
"rtc Alrm", dev);
if (ret < 0) {
dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_Alrm,
ret);
goto err_irq_Alrm;
}
return 0;
err_irq_Alrm:
free_irq(pxa_rtc->irq_1Hz, dev);
err_irq_1Hz:
return ret;
}
static void pxa_rtc_release(struct device *dev)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
spin_lock_irq(&pxa_rtc->lock);
rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
spin_unlock_irq(&pxa_rtc->lock);
free_irq(pxa_rtc->irq_Alrm, dev);
free_irq(pxa_rtc->irq_1Hz, dev);
}
static int pxa_periodic_irq_set_freq(struct device *dev, int freq)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
int period_ms;
if (freq < 1 || freq > MAXFREQ_PERIODIC)
return -EINVAL;
period_ms = 1000 / freq;
rtc_writel(pxa_rtc, PIAR, period_ms);
return 0;
}
static int pxa_periodic_irq_set_state(struct device *dev, int enabled)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
if (enabled)
rtsr_set_bits(pxa_rtc, RTSR_PIALE | RTSR_PICE);
else
rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_PICE);
return 0;
}
static int pxa_rtc_ioctl(struct device *dev, unsigned int cmd,
unsigned long arg)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
int ret = 0;
spin_lock_irq(&pxa_rtc->lock);
switch (cmd) {
case RTC_AIE_OFF:
rtsr_clear_bits(pxa_rtc, RTSR_RDALE1);
break;
case RTC_AIE_ON:
rtsr_set_bits(pxa_rtc, RTSR_RDALE1);
break;
case RTC_UIE_OFF:
rtsr_clear_bits(pxa_rtc, RTSR_HZE);
break;
case RTC_UIE_ON:
rtsr_set_bits(pxa_rtc, RTSR_HZE);
break;
default:
ret = -ENOIOCTLCMD;
}
spin_unlock_irq(&pxa_rtc->lock);
return ret;
}
static int pxa_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
u32 rycr, rdcr;
rycr = rtc_readl(pxa_rtc, RYCR);
rdcr = rtc_readl(pxa_rtc, RDCR);
tm_calc(rycr, rdcr, tm);
return 0;
}
static int pxa_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
rtc_writel(pxa_rtc, RYCR, ryxr_calc(tm));
rtc_writel(pxa_rtc, RDCR, rdxr_calc(tm));
return 0;
}
static int pxa_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
u32 rtsr, ryar, rdar;
ryar = rtc_readl(pxa_rtc, RYAR1);
rdar = rtc_readl(pxa_rtc, RDAR1);
tm_calc(ryar, rdar, &alrm->time);
rtsr = rtc_readl(pxa_rtc, RTSR);
alrm->enabled = (rtsr & RTSR_RDALE1) ? 1 : 0;
alrm->pending = (rtsr & RTSR_RDAL1) ? 1 : 0;
return 0;
}
static int pxa_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
u32 rtsr;
spin_lock_irq(&pxa_rtc->lock);
rtc_writel(pxa_rtc, RYAR1, ryxr_calc(&alrm->time));
rtc_writel(pxa_rtc, RDAR1, rdxr_calc(&alrm->time));
rtsr = rtc_readl(pxa_rtc, RTSR);
if (alrm->enabled)
rtsr |= RTSR_RDALE1;
else
rtsr &= ~RTSR_RDALE1;
rtc_writel(pxa_rtc, RTSR, rtsr);
spin_unlock_irq(&pxa_rtc->lock);
return 0;
}
static int pxa_rtc_proc(struct device *dev, struct seq_file *seq)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
seq_printf(seq, "trim/divider\t: 0x%08x\n", rtc_readl(pxa_rtc, RTTR));
seq_printf(seq, "update_IRQ\t: %s\n",
(rtc_readl(pxa_rtc, RTSR) & RTSR_HZE) ? "yes" : "no");
seq_printf(seq, "periodic_IRQ\t: %s\n",
(rtc_readl(pxa_rtc, RTSR) & RTSR_PIALE) ? "yes" : "no");
seq_printf(seq, "periodic_freq\t: %u\n", rtc_readl(pxa_rtc, PIAR));
return 0;
}
static const struct rtc_class_ops pxa_rtc_ops = {
.open = pxa_rtc_open,
.release = pxa_rtc_release,
.ioctl = pxa_rtc_ioctl,
.read_time = pxa_rtc_read_time,
.set_time = pxa_rtc_set_time,
.read_alarm = pxa_rtc_read_alarm,
.set_alarm = pxa_rtc_set_alarm,
.proc = pxa_rtc_proc,
.irq_set_state = pxa_periodic_irq_set_state,
.irq_set_freq = pxa_periodic_irq_set_freq,
};
static int __init pxa_rtc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct pxa_rtc *pxa_rtc;
int ret;
u32 rttr;
pxa_rtc = kzalloc(sizeof(struct pxa_rtc), GFP_KERNEL);
if (!pxa_rtc)
return -ENOMEM;
spin_lock_init(&pxa_rtc->lock);
platform_set_drvdata(pdev, pxa_rtc);
ret = -ENXIO;
pxa_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!pxa_rtc->ress) {
dev_err(dev, "No I/O memory resource defined\n");
goto err_ress;
}
pxa_rtc->irq_1Hz = platform_get_irq(pdev, 0);
if (pxa_rtc->irq_1Hz < 0) {
dev_err(dev, "No 1Hz IRQ resource defined\n");
goto err_ress;
}
pxa_rtc->irq_Alrm = platform_get_irq(pdev, 1);
if (pxa_rtc->irq_Alrm < 0) {
dev_err(dev, "No alarm IRQ resource defined\n");
goto err_ress;
}
ret = -ENOMEM;
pxa_rtc->base = ioremap(pxa_rtc->ress->start,
resource_size(pxa_rtc->ress));
if (!pxa_rtc->base) {
dev_err(&pdev->dev, "Unable to map pxa RTC I/O memory\n");
goto err_map;
}
/*
* If the clock divider is uninitialized then reset it to the
* default value to get the 1Hz clock.
*/
if (rtc_readl(pxa_rtc, RTTR) == 0) {
rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
rtc_writel(pxa_rtc, RTTR, rttr);
dev_warn(dev, "warning: initializing default clock"
" divider/trim value\n");
}
rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
pxa_rtc->rtc = rtc_device_register("pxa-rtc", &pdev->dev, &pxa_rtc_ops,
THIS_MODULE);
ret = PTR_ERR(pxa_rtc->rtc);
if (IS_ERR(pxa_rtc->rtc)) {
dev_err(dev, "Failed to register RTC device -> %d\n", ret);
goto err_rtc_reg;
}
device_init_wakeup(dev, 1);
return 0;
err_rtc_reg:
iounmap(pxa_rtc->base);
err_ress:
err_map:
kfree(pxa_rtc);
return ret;
}
static int __exit pxa_rtc_remove(struct platform_device *pdev)
{
struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
rtc_device_unregister(pxa_rtc->rtc);
spin_lock_irq(&pxa_rtc->lock);
iounmap(pxa_rtc->base);
spin_unlock_irq(&pxa_rtc->lock);
kfree(pxa_rtc);
return 0;
}
#ifdef CONFIG_PM
static int pxa_rtc_suspend(struct platform_device *pdev, pm_message_t state)
{
struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
if (device_may_wakeup(&pdev->dev))
enable_irq_wake(pxa_rtc->irq_Alrm);
return 0;
}
static int pxa_rtc_resume(struct platform_device *pdev)
{
struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
if (device_may_wakeup(&pdev->dev))
disable_irq_wake(pxa_rtc->irq_Alrm);
return 0;
}
#else
#define pxa_rtc_suspend NULL
#define pxa_rtc_resume NULL
#endif
static struct platform_driver pxa_rtc_driver = {
.remove = __exit_p(pxa_rtc_remove),
.suspend = pxa_rtc_suspend,
.resume = pxa_rtc_resume,
.driver = {
.name = "pxa-rtc",
},
};
static int __init pxa_rtc_init(void)
{
if (cpu_is_pxa27x() || cpu_is_pxa3xx())
return platform_driver_probe(&pxa_rtc_driver, pxa_rtc_probe);
return -ENODEV;
}
static void __exit pxa_rtc_exit(void)
{
platform_driver_unregister(&pxa_rtc_driver);
}
module_init(pxa_rtc_init);
module_exit(pxa_rtc_exit);
MODULE_AUTHOR("Robert Jarzmik");
MODULE_DESCRIPTION("PXA27x/PXA3xx Realtime Clock Driver (RTC)");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:pxa-rtc");