| /* |
| * Copyright 1998-2009 VIA Technologies, Inc. All Rights Reserved. |
| * Copyright 2001-2008 S3 Graphics, Inc. All Rights Reserved. |
| * Copyright 2009 Jonathan Corbet <corbet@lwn.net> |
| */ |
| |
| /* |
| * Core code for the Via multifunction framebuffer device. |
| */ |
| #include <linux/via-core.h> |
| #include <linux/via_i2c.h> |
| #include <linux/via-gpio.h> |
| #include "global.h" |
| |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| |
| /* |
| * The default port config. |
| */ |
| static struct via_port_cfg adap_configs[] = { |
| [VIA_PORT_26] = { VIA_PORT_I2C, VIA_MODE_OFF, VIASR, 0x26 }, |
| [VIA_PORT_31] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x31 }, |
| [VIA_PORT_25] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x25 }, |
| [VIA_PORT_2C] = { VIA_PORT_GPIO, VIA_MODE_I2C, VIASR, 0x2c }, |
| [VIA_PORT_3D] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x3d }, |
| { 0, 0, 0, 0 } |
| }; |
| |
| /* |
| * We currently only support one viafb device (will there ever be |
| * more than one?), so just declare it globally here. |
| */ |
| static struct viafb_dev global_dev; |
| |
| |
| /* |
| * Basic register access; spinlock required. |
| */ |
| static inline void viafb_mmio_write(int reg, u32 v) |
| { |
| iowrite32(v, global_dev.engine_mmio + reg); |
| } |
| |
| static inline int viafb_mmio_read(int reg) |
| { |
| return ioread32(global_dev.engine_mmio + reg); |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| /* |
| * Interrupt management. We have a single IRQ line for a lot of |
| * different functions, so we need to share it. The design here |
| * is that we don't want to reimplement the shared IRQ code here; |
| * we also want to avoid having contention for a single handler thread. |
| * So each subdev driver which needs interrupts just requests |
| * them directly from the kernel. We just have what's needed for |
| * overall access to the interrupt control register. |
| */ |
| |
| /* |
| * Which interrupts are enabled now? |
| */ |
| static u32 viafb_enabled_ints; |
| |
| static void __devinit viafb_int_init(void) |
| { |
| viafb_enabled_ints = 0; |
| |
| viafb_mmio_write(VDE_INTERRUPT, 0); |
| } |
| |
| /* |
| * Allow subdevs to ask for specific interrupts to be enabled. These |
| * functions must be called with reg_lock held |
| */ |
| void viafb_irq_enable(u32 mask) |
| { |
| viafb_enabled_ints |= mask; |
| viafb_mmio_write(VDE_INTERRUPT, viafb_enabled_ints | VDE_I_ENABLE); |
| } |
| EXPORT_SYMBOL_GPL(viafb_irq_enable); |
| |
| void viafb_irq_disable(u32 mask) |
| { |
| viafb_enabled_ints &= ~mask; |
| if (viafb_enabled_ints == 0) |
| viafb_mmio_write(VDE_INTERRUPT, 0); /* Disable entirely */ |
| else |
| viafb_mmio_write(VDE_INTERRUPT, |
| viafb_enabled_ints | VDE_I_ENABLE); |
| } |
| EXPORT_SYMBOL_GPL(viafb_irq_disable); |
| |
| /* ---------------------------------------------------------------------- */ |
| /* |
| * Access to the DMA engine. This currently provides what the camera |
| * driver needs (i.e. outgoing only) but is easily expandable if need |
| * be. |
| */ |
| |
| /* |
| * There are four DMA channels in the vx855. For now, we only |
| * use one of them, though. Most of the time, the DMA channel |
| * will be idle, so we keep the IRQ handler unregistered except |
| * when some subsystem has indicated an interest. |
| */ |
| static int viafb_dma_users; |
| static DECLARE_COMPLETION(viafb_dma_completion); |
| /* |
| * This mutex protects viafb_dma_users and our global interrupt |
| * registration state; it also serializes access to the DMA |
| * engine. |
| */ |
| static DEFINE_MUTEX(viafb_dma_lock); |
| |
| /* |
| * The VX855 DMA descriptor (used for s/g transfers) looks |
| * like this. |
| */ |
| struct viafb_vx855_dma_descr { |
| u32 addr_low; /* Low part of phys addr */ |
| u32 addr_high; /* High 12 bits of addr */ |
| u32 fb_offset; /* Offset into FB memory */ |
| u32 seg_size; /* Size, 16-byte units */ |
| u32 tile_mode; /* "tile mode" setting */ |
| u32 next_desc_low; /* Next descriptor addr */ |
| u32 next_desc_high; |
| u32 pad; /* Fill out to 64 bytes */ |
| }; |
| |
| /* |
| * Flags added to the "next descriptor low" pointers |
| */ |
| #define VIAFB_DMA_MAGIC 0x01 /* ??? Just has to be there */ |
| #define VIAFB_DMA_FINAL_SEGMENT 0x02 /* Final segment */ |
| |
| /* |
| * The completion IRQ handler. |
| */ |
| static irqreturn_t viafb_dma_irq(int irq, void *data) |
| { |
| int csr; |
| irqreturn_t ret = IRQ_NONE; |
| |
| spin_lock(&global_dev.reg_lock); |
| csr = viafb_mmio_read(VDMA_CSR0); |
| if (csr & VDMA_C_DONE) { |
| viafb_mmio_write(VDMA_CSR0, VDMA_C_DONE); |
| complete(&viafb_dma_completion); |
| ret = IRQ_HANDLED; |
| } |
| spin_unlock(&global_dev.reg_lock); |
| return ret; |
| } |
| |
| /* |
| * Indicate a need for DMA functionality. |
| */ |
| int viafb_request_dma(void) |
| { |
| int ret = 0; |
| |
| /* |
| * Only VX855 is supported currently. |
| */ |
| if (global_dev.chip_type != UNICHROME_VX855) |
| return -ENODEV; |
| /* |
| * Note the new user and set up our interrupt handler |
| * if need be. |
| */ |
| mutex_lock(&viafb_dma_lock); |
| viafb_dma_users++; |
| if (viafb_dma_users == 1) { |
| ret = request_irq(global_dev.pdev->irq, viafb_dma_irq, |
| IRQF_SHARED, "via-dma", &viafb_dma_users); |
| if (ret) |
| viafb_dma_users--; |
| else |
| viafb_irq_enable(VDE_I_DMA0TDEN); |
| } |
| mutex_unlock(&viafb_dma_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(viafb_request_dma); |
| |
| void viafb_release_dma(void) |
| { |
| mutex_lock(&viafb_dma_lock); |
| viafb_dma_users--; |
| if (viafb_dma_users == 0) { |
| viafb_irq_disable(VDE_I_DMA0TDEN); |
| free_irq(global_dev.pdev->irq, &viafb_dma_users); |
| } |
| mutex_unlock(&viafb_dma_lock); |
| } |
| EXPORT_SYMBOL_GPL(viafb_release_dma); |
| |
| |
| #if 0 |
| /* |
| * Copy a single buffer from FB memory, synchronously. This code works |
| * but is not currently used. |
| */ |
| void viafb_dma_copy_out(unsigned int offset, dma_addr_t paddr, int len) |
| { |
| unsigned long flags; |
| int csr; |
| |
| mutex_lock(&viafb_dma_lock); |
| init_completion(&viafb_dma_completion); |
| /* |
| * Program the controller. |
| */ |
| spin_lock_irqsave(&global_dev.reg_lock, flags); |
| viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_DONE); |
| /* Enable ints; must happen after CSR0 write! */ |
| viafb_mmio_write(VDMA_MR0, VDMA_MR_TDIE); |
| viafb_mmio_write(VDMA_MARL0, (int) (paddr & 0xfffffff0)); |
| viafb_mmio_write(VDMA_MARH0, (int) ((paddr >> 28) & 0xfff)); |
| /* Data sheet suggests DAR0 should be <<4, but it lies */ |
| viafb_mmio_write(VDMA_DAR0, offset); |
| viafb_mmio_write(VDMA_DQWCR0, len >> 4); |
| viafb_mmio_write(VDMA_TMR0, 0); |
| viafb_mmio_write(VDMA_DPRL0, 0); |
| viafb_mmio_write(VDMA_DPRH0, 0); |
| viafb_mmio_write(VDMA_PMR0, 0); |
| csr = viafb_mmio_read(VDMA_CSR0); |
| viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_START); |
| spin_unlock_irqrestore(&global_dev.reg_lock, flags); |
| /* |
| * Now we just wait until the interrupt handler says |
| * we're done. |
| */ |
| wait_for_completion_interruptible(&viafb_dma_completion); |
| viafb_mmio_write(VDMA_MR0, 0); /* Reset int enable */ |
| mutex_unlock(&viafb_dma_lock); |
| } |
| EXPORT_SYMBOL_GPL(viafb_dma_copy_out); |
| #endif |
| |
| /* |
| * Do a scatter/gather DMA copy from FB memory. You must have done |
| * a successful call to viafb_request_dma() first. |
| */ |
| int viafb_dma_copy_out_sg(unsigned int offset, struct scatterlist *sg, int nsg) |
| { |
| struct viafb_vx855_dma_descr *descr; |
| void *descrpages; |
| dma_addr_t descr_handle; |
| unsigned long flags; |
| int i; |
| struct scatterlist *sgentry; |
| dma_addr_t nextdesc; |
| |
| /* |
| * Get a place to put the descriptors. |
| */ |
| descrpages = dma_alloc_coherent(&global_dev.pdev->dev, |
| nsg*sizeof(struct viafb_vx855_dma_descr), |
| &descr_handle, GFP_KERNEL); |
| if (descrpages == NULL) { |
| dev_err(&global_dev.pdev->dev, "Unable to get descr page.\n"); |
| return -ENOMEM; |
| } |
| mutex_lock(&viafb_dma_lock); |
| /* |
| * Fill them in. |
| */ |
| descr = descrpages; |
| nextdesc = descr_handle + sizeof(struct viafb_vx855_dma_descr); |
| for_each_sg(sg, sgentry, nsg, i) { |
| dma_addr_t paddr = sg_dma_address(sgentry); |
| descr->addr_low = paddr & 0xfffffff0; |
| descr->addr_high = ((u64) paddr >> 32) & 0x0fff; |
| descr->fb_offset = offset; |
| descr->seg_size = sg_dma_len(sgentry) >> 4; |
| descr->tile_mode = 0; |
| descr->next_desc_low = (nextdesc&0xfffffff0) | VIAFB_DMA_MAGIC; |
| descr->next_desc_high = ((u64) nextdesc >> 32) & 0x0fff; |
| descr->pad = 0xffffffff; /* VIA driver does this */ |
| offset += sg_dma_len(sgentry); |
| nextdesc += sizeof(struct viafb_vx855_dma_descr); |
| descr++; |
| } |
| descr[-1].next_desc_low = VIAFB_DMA_FINAL_SEGMENT|VIAFB_DMA_MAGIC; |
| /* |
| * Program the engine. |
| */ |
| spin_lock_irqsave(&global_dev.reg_lock, flags); |
| init_completion(&viafb_dma_completion); |
| viafb_mmio_write(VDMA_DQWCR0, 0); |
| viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_DONE); |
| viafb_mmio_write(VDMA_MR0, VDMA_MR_TDIE | VDMA_MR_CHAIN); |
| viafb_mmio_write(VDMA_DPRL0, descr_handle | VIAFB_DMA_MAGIC); |
| viafb_mmio_write(VDMA_DPRH0, |
| (((u64)descr_handle >> 32) & 0x0fff) | 0xf0000); |
| (void) viafb_mmio_read(VDMA_CSR0); |
| viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_START); |
| spin_unlock_irqrestore(&global_dev.reg_lock, flags); |
| /* |
| * Now we just wait until the interrupt handler says |
| * we're done. Except that, actually, we need to wait a little |
| * longer: the interrupts seem to jump the gun a little and we |
| * get corrupted frames sometimes. |
| */ |
| wait_for_completion_timeout(&viafb_dma_completion, 1); |
| msleep(1); |
| if ((viafb_mmio_read(VDMA_CSR0)&VDMA_C_DONE) == 0) |
| printk(KERN_ERR "VIA DMA timeout!\n"); |
| /* |
| * Clean up and we're done. |
| */ |
| viafb_mmio_write(VDMA_CSR0, VDMA_C_DONE); |
| viafb_mmio_write(VDMA_MR0, 0); /* Reset int enable */ |
| mutex_unlock(&viafb_dma_lock); |
| dma_free_coherent(&global_dev.pdev->dev, |
| nsg*sizeof(struct viafb_vx855_dma_descr), descrpages, |
| descr_handle); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(viafb_dma_copy_out_sg); |
| |
| |
| /* ---------------------------------------------------------------------- */ |
| /* |
| * Figure out how big our framebuffer memory is. Kind of ugly, |
| * but evidently we can't trust the information found in the |
| * fbdev configuration area. |
| */ |
| static u16 via_function3[] = { |
| CLE266_FUNCTION3, KM400_FUNCTION3, CN400_FUNCTION3, CN700_FUNCTION3, |
| CX700_FUNCTION3, KM800_FUNCTION3, KM890_FUNCTION3, P4M890_FUNCTION3, |
| P4M900_FUNCTION3, VX800_FUNCTION3, VX855_FUNCTION3, |
| }; |
| |
| /* Get the BIOS-configured framebuffer size from PCI configuration space |
| * of function 3 in the respective chipset */ |
| static int viafb_get_fb_size_from_pci(int chip_type) |
| { |
| int i; |
| u8 offset = 0; |
| u32 FBSize; |
| u32 VideoMemSize; |
| |
| /* search for the "FUNCTION3" device in this chipset */ |
| for (i = 0; i < ARRAY_SIZE(via_function3); i++) { |
| struct pci_dev *pdev; |
| |
| pdev = pci_get_device(PCI_VENDOR_ID_VIA, via_function3[i], |
| NULL); |
| if (!pdev) |
| continue; |
| |
| DEBUG_MSG(KERN_INFO "Device ID = %x\n", pdev->device); |
| |
| switch (pdev->device) { |
| case CLE266_FUNCTION3: |
| case KM400_FUNCTION3: |
| offset = 0xE0; |
| break; |
| case CN400_FUNCTION3: |
| case CN700_FUNCTION3: |
| case CX700_FUNCTION3: |
| case KM800_FUNCTION3: |
| case KM890_FUNCTION3: |
| case P4M890_FUNCTION3: |
| case P4M900_FUNCTION3: |
| case VX800_FUNCTION3: |
| case VX855_FUNCTION3: |
| /*case CN750_FUNCTION3: */ |
| offset = 0xA0; |
| break; |
| } |
| |
| if (!offset) |
| break; |
| |
| pci_read_config_dword(pdev, offset, &FBSize); |
| pci_dev_put(pdev); |
| } |
| |
| if (!offset) { |
| printk(KERN_ERR "cannot determine framebuffer size\n"); |
| return -EIO; |
| } |
| |
| FBSize = FBSize & 0x00007000; |
| DEBUG_MSG(KERN_INFO "FB Size = %x\n", FBSize); |
| |
| if (chip_type < UNICHROME_CX700) { |
| switch (FBSize) { |
| case 0x00004000: |
| VideoMemSize = (16 << 20); /*16M */ |
| break; |
| |
| case 0x00005000: |
| VideoMemSize = (32 << 20); /*32M */ |
| break; |
| |
| case 0x00006000: |
| VideoMemSize = (64 << 20); /*64M */ |
| break; |
| |
| default: |
| VideoMemSize = (32 << 20); /*32M */ |
| break; |
| } |
| } else { |
| switch (FBSize) { |
| case 0x00001000: |
| VideoMemSize = (8 << 20); /*8M */ |
| break; |
| |
| case 0x00002000: |
| VideoMemSize = (16 << 20); /*16M */ |
| break; |
| |
| case 0x00003000: |
| VideoMemSize = (32 << 20); /*32M */ |
| break; |
| |
| case 0x00004000: |
| VideoMemSize = (64 << 20); /*64M */ |
| break; |
| |
| case 0x00005000: |
| VideoMemSize = (128 << 20); /*128M */ |
| break; |
| |
| case 0x00006000: |
| VideoMemSize = (256 << 20); /*256M */ |
| break; |
| |
| case 0x00007000: /* Only on VX855/875 */ |
| VideoMemSize = (512 << 20); /*512M */ |
| break; |
| |
| default: |
| VideoMemSize = (32 << 20); /*32M */ |
| break; |
| } |
| } |
| |
| return VideoMemSize; |
| } |
| |
| |
| /* |
| * Figure out and map our MMIO regions. |
| */ |
| static int __devinit via_pci_setup_mmio(struct viafb_dev *vdev) |
| { |
| int ret; |
| /* |
| * Hook up to the device registers. Note that we soldier |
| * on if it fails; the framebuffer can operate (without |
| * acceleration) without this region. |
| */ |
| vdev->engine_start = pci_resource_start(vdev->pdev, 1); |
| vdev->engine_len = pci_resource_len(vdev->pdev, 1); |
| vdev->engine_mmio = ioremap_nocache(vdev->engine_start, |
| vdev->engine_len); |
| if (vdev->engine_mmio == NULL) |
| dev_err(&vdev->pdev->dev, |
| "Unable to map engine MMIO; operation will be " |
| "slow and crippled.\n"); |
| /* |
| * Map in framebuffer memory. For now, failure here is |
| * fatal. Unfortunately, in the absence of significant |
| * vmalloc space, failure here is also entirely plausible. |
| * Eventually we want to move away from mapping this |
| * entire region. |
| */ |
| vdev->fbmem_start = pci_resource_start(vdev->pdev, 0); |
| ret = vdev->fbmem_len = viafb_get_fb_size_from_pci(vdev->chip_type); |
| if (ret < 0) |
| goto out_unmap; |
| vdev->fbmem = ioremap_nocache(vdev->fbmem_start, vdev->fbmem_len); |
| if (vdev->fbmem == NULL) { |
| ret = -ENOMEM; |
| goto out_unmap; |
| } |
| return 0; |
| out_unmap: |
| iounmap(vdev->engine_mmio); |
| return ret; |
| } |
| |
| static void via_pci_teardown_mmio(struct viafb_dev *vdev) |
| { |
| iounmap(vdev->fbmem); |
| iounmap(vdev->engine_mmio); |
| } |
| |
| /* |
| * Create our subsidiary devices. |
| */ |
| static struct viafb_subdev_info { |
| char *name; |
| struct platform_device *platdev; |
| } viafb_subdevs[] = { |
| { |
| .name = "viafb-gpio", |
| }, |
| { |
| .name = "viafb-i2c", |
| } |
| }; |
| #define N_SUBDEVS ARRAY_SIZE(viafb_subdevs) |
| |
| static int __devinit via_create_subdev(struct viafb_dev *vdev, |
| struct viafb_subdev_info *info) |
| { |
| int ret; |
| |
| info->platdev = platform_device_alloc(info->name, -1); |
| if (!info->platdev) { |
| dev_err(&vdev->pdev->dev, "Unable to allocate pdev %s\n", |
| info->name); |
| return -ENOMEM; |
| } |
| info->platdev->dev.parent = &vdev->pdev->dev; |
| info->platdev->dev.platform_data = vdev; |
| ret = platform_device_add(info->platdev); |
| if (ret) { |
| dev_err(&vdev->pdev->dev, "Unable to add pdev %s\n", |
| info->name); |
| platform_device_put(info->platdev); |
| info->platdev = NULL; |
| } |
| return ret; |
| } |
| |
| static int __devinit via_setup_subdevs(struct viafb_dev *vdev) |
| { |
| int i; |
| |
| /* |
| * Ignore return values. Even if some of the devices |
| * fail to be created, we'll still be able to use some |
| * of the rest. |
| */ |
| for (i = 0; i < N_SUBDEVS; i++) |
| via_create_subdev(vdev, viafb_subdevs + i); |
| return 0; |
| } |
| |
| static void via_teardown_subdevs(void) |
| { |
| int i; |
| |
| for (i = 0; i < N_SUBDEVS; i++) |
| if (viafb_subdevs[i].platdev) { |
| viafb_subdevs[i].platdev->dev.platform_data = NULL; |
| platform_device_unregister(viafb_subdevs[i].platdev); |
| } |
| } |
| |
| |
| static int __devinit via_pci_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| int ret; |
| |
| ret = pci_enable_device(pdev); |
| if (ret) |
| return ret; |
| /* |
| * Global device initialization. |
| */ |
| memset(&global_dev, 0, sizeof(global_dev)); |
| global_dev.pdev = pdev; |
| global_dev.chip_type = ent->driver_data; |
| global_dev.port_cfg = adap_configs; |
| spin_lock_init(&global_dev.reg_lock); |
| ret = via_pci_setup_mmio(&global_dev); |
| if (ret) |
| goto out_disable; |
| /* |
| * Set up interrupts and create our subdevices. Continue even if |
| * some things fail. |
| */ |
| viafb_int_init(); |
| via_setup_subdevs(&global_dev); |
| /* |
| * Set up the framebuffer device |
| */ |
| ret = via_fb_pci_probe(&global_dev); |
| if (ret) |
| goto out_subdevs; |
| return 0; |
| |
| out_subdevs: |
| via_teardown_subdevs(); |
| via_pci_teardown_mmio(&global_dev); |
| out_disable: |
| pci_disable_device(pdev); |
| return ret; |
| } |
| |
| static void __devexit via_pci_remove(struct pci_dev *pdev) |
| { |
| via_teardown_subdevs(); |
| via_fb_pci_remove(pdev); |
| via_pci_teardown_mmio(&global_dev); |
| pci_disable_device(pdev); |
| } |
| |
| |
| static struct pci_device_id via_pci_table[] __devinitdata = { |
| { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CLE266_DID), |
| .driver_data = UNICHROME_CLE266 }, |
| { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K400_DID), |
| .driver_data = UNICHROME_K400 }, |
| { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K800_DID), |
| .driver_data = UNICHROME_K800 }, |
| { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_PM800_DID), |
| .driver_data = UNICHROME_PM800 }, |
| { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CN700_DID), |
| .driver_data = UNICHROME_CN700 }, |
| { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CX700_DID), |
| .driver_data = UNICHROME_CX700 }, |
| { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CN750_DID), |
| .driver_data = UNICHROME_CN750 }, |
| { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K8M890_DID), |
| .driver_data = UNICHROME_K8M890 }, |
| { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_P4M890_DID), |
| .driver_data = UNICHROME_P4M890 }, |
| { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_P4M900_DID), |
| .driver_data = UNICHROME_P4M900 }, |
| { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX800_DID), |
| .driver_data = UNICHROME_VX800 }, |
| { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX855_DID), |
| .driver_data = UNICHROME_VX855 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(pci, via_pci_table); |
| |
| static struct pci_driver via_driver = { |
| .name = "viafb", |
| .id_table = via_pci_table, |
| .probe = via_pci_probe, |
| .remove = __devexit_p(via_pci_remove), |
| }; |
| |
| static int __init via_core_init(void) |
| { |
| int ret; |
| |
| ret = viafb_init(); |
| if (ret) |
| return ret; |
| viafb_i2c_init(); |
| viafb_gpio_init(); |
| return pci_register_driver(&via_driver); |
| } |
| |
| static void __exit via_core_exit(void) |
| { |
| pci_unregister_driver(&via_driver); |
| viafb_gpio_exit(); |
| viafb_i2c_exit(); |
| viafb_exit(); |
| } |
| |
| module_init(via_core_init); |
| module_exit(via_core_exit); |