| /* SCTP kernel implementation |
| * (C) Copyright IBM Corp. 2001, 2004 |
| * Copyright (c) 1999-2000 Cisco, Inc. |
| * Copyright (c) 1999-2001 Motorola, Inc. |
| * Copyright (c) 2001-2003 Intel Corp. |
| * Copyright (c) 2001-2002 Nokia, Inc. |
| * Copyright (c) 2001 La Monte H.P. Yarroll |
| * |
| * This file is part of the SCTP kernel implementation |
| * |
| * These functions interface with the sockets layer to implement the |
| * SCTP Extensions for the Sockets API. |
| * |
| * Note that the descriptions from the specification are USER level |
| * functions--this file is the functions which populate the struct proto |
| * for SCTP which is the BOTTOM of the sockets interface. |
| * |
| * This SCTP implementation is free software; |
| * you can redistribute it and/or modify it under the terms of |
| * the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This SCTP implementation is distributed in the hope that it |
| * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| * ************************ |
| * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| * See the GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with GNU CC; see the file COPYING. If not, see |
| * <http://www.gnu.org/licenses/>. |
| * |
| * Please send any bug reports or fixes you make to the |
| * email address(es): |
| * lksctp developers <linux-sctp@vger.kernel.org> |
| * |
| * Written or modified by: |
| * La Monte H.P. Yarroll <piggy@acm.org> |
| * Narasimha Budihal <narsi@refcode.org> |
| * Karl Knutson <karl@athena.chicago.il.us> |
| * Jon Grimm <jgrimm@us.ibm.com> |
| * Xingang Guo <xingang.guo@intel.com> |
| * Daisy Chang <daisyc@us.ibm.com> |
| * Sridhar Samudrala <samudrala@us.ibm.com> |
| * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> |
| * Ardelle Fan <ardelle.fan@intel.com> |
| * Ryan Layer <rmlayer@us.ibm.com> |
| * Anup Pemmaiah <pemmaiah@cc.usu.edu> |
| * Kevin Gao <kevin.gao@intel.com> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <crypto/hash.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/wait.h> |
| #include <linux/time.h> |
| #include <linux/ip.h> |
| #include <linux/capability.h> |
| #include <linux/fcntl.h> |
| #include <linux/poll.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/file.h> |
| #include <linux/compat.h> |
| |
| #include <net/ip.h> |
| #include <net/icmp.h> |
| #include <net/route.h> |
| #include <net/ipv6.h> |
| #include <net/inet_common.h> |
| #include <net/busy_poll.h> |
| |
| #include <linux/socket.h> /* for sa_family_t */ |
| #include <linux/export.h> |
| #include <net/sock.h> |
| #include <net/sctp/sctp.h> |
| #include <net/sctp/sm.h> |
| |
| /* Forward declarations for internal helper functions. */ |
| static int sctp_writeable(struct sock *sk); |
| static void sctp_wfree(struct sk_buff *skb); |
| static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, |
| size_t msg_len); |
| static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); |
| static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); |
| static int sctp_wait_for_accept(struct sock *sk, long timeo); |
| static void sctp_wait_for_close(struct sock *sk, long timeo); |
| static void sctp_destruct_sock(struct sock *sk); |
| static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, |
| union sctp_addr *addr, int len); |
| static int sctp_bindx_add(struct sock *, struct sockaddr *, int); |
| static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); |
| static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); |
| static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); |
| static int sctp_send_asconf(struct sctp_association *asoc, |
| struct sctp_chunk *chunk); |
| static int sctp_do_bind(struct sock *, union sctp_addr *, int); |
| static int sctp_autobind(struct sock *sk); |
| static void sctp_sock_migrate(struct sock *, struct sock *, |
| struct sctp_association *, sctp_socket_type_t); |
| |
| static int sctp_memory_pressure; |
| static atomic_long_t sctp_memory_allocated; |
| struct percpu_counter sctp_sockets_allocated; |
| |
| static void sctp_enter_memory_pressure(struct sock *sk) |
| { |
| sctp_memory_pressure = 1; |
| } |
| |
| |
| /* Get the sndbuf space available at the time on the association. */ |
| static inline int sctp_wspace(struct sctp_association *asoc) |
| { |
| int amt; |
| |
| if (asoc->ep->sndbuf_policy) |
| amt = asoc->sndbuf_used; |
| else |
| amt = sk_wmem_alloc_get(asoc->base.sk); |
| |
| if (amt >= asoc->base.sk->sk_sndbuf) { |
| if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) |
| amt = 0; |
| else { |
| amt = sk_stream_wspace(asoc->base.sk); |
| if (amt < 0) |
| amt = 0; |
| } |
| } else { |
| amt = asoc->base.sk->sk_sndbuf - amt; |
| } |
| return amt; |
| } |
| |
| /* Increment the used sndbuf space count of the corresponding association by |
| * the size of the outgoing data chunk. |
| * Also, set the skb destructor for sndbuf accounting later. |
| * |
| * Since it is always 1-1 between chunk and skb, and also a new skb is always |
| * allocated for chunk bundling in sctp_packet_transmit(), we can use the |
| * destructor in the data chunk skb for the purpose of the sndbuf space |
| * tracking. |
| */ |
| static inline void sctp_set_owner_w(struct sctp_chunk *chunk) |
| { |
| struct sctp_association *asoc = chunk->asoc; |
| struct sock *sk = asoc->base.sk; |
| |
| /* The sndbuf space is tracked per association. */ |
| sctp_association_hold(asoc); |
| |
| skb_set_owner_w(chunk->skb, sk); |
| |
| chunk->skb->destructor = sctp_wfree; |
| /* Save the chunk pointer in skb for sctp_wfree to use later. */ |
| skb_shinfo(chunk->skb)->destructor_arg = chunk; |
| |
| asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + |
| sizeof(struct sk_buff) + |
| sizeof(struct sctp_chunk); |
| |
| atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); |
| sk->sk_wmem_queued += chunk->skb->truesize; |
| sk_mem_charge(sk, chunk->skb->truesize); |
| } |
| |
| /* Verify that this is a valid address. */ |
| static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, |
| int len) |
| { |
| struct sctp_af *af; |
| |
| /* Verify basic sockaddr. */ |
| af = sctp_sockaddr_af(sctp_sk(sk), addr, len); |
| if (!af) |
| return -EINVAL; |
| |
| /* Is this a valid SCTP address? */ |
| if (!af->addr_valid(addr, sctp_sk(sk), NULL)) |
| return -EINVAL; |
| |
| if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* Look up the association by its id. If this is not a UDP-style |
| * socket, the ID field is always ignored. |
| */ |
| struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) |
| { |
| struct sctp_association *asoc = NULL; |
| |
| /* If this is not a UDP-style socket, assoc id should be ignored. */ |
| if (!sctp_style(sk, UDP)) { |
| /* Return NULL if the socket state is not ESTABLISHED. It |
| * could be a TCP-style listening socket or a socket which |
| * hasn't yet called connect() to establish an association. |
| */ |
| if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) |
| return NULL; |
| |
| /* Get the first and the only association from the list. */ |
| if (!list_empty(&sctp_sk(sk)->ep->asocs)) |
| asoc = list_entry(sctp_sk(sk)->ep->asocs.next, |
| struct sctp_association, asocs); |
| return asoc; |
| } |
| |
| /* Otherwise this is a UDP-style socket. */ |
| if (!id || (id == (sctp_assoc_t)-1)) |
| return NULL; |
| |
| spin_lock_bh(&sctp_assocs_id_lock); |
| asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); |
| spin_unlock_bh(&sctp_assocs_id_lock); |
| |
| if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) |
| return NULL; |
| |
| return asoc; |
| } |
| |
| /* Look up the transport from an address and an assoc id. If both address and |
| * id are specified, the associations matching the address and the id should be |
| * the same. |
| */ |
| static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, |
| struct sockaddr_storage *addr, |
| sctp_assoc_t id) |
| { |
| struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; |
| struct sctp_transport *transport; |
| union sctp_addr *laddr = (union sctp_addr *)addr; |
| |
| addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, |
| laddr, |
| &transport); |
| |
| if (!addr_asoc) |
| return NULL; |
| |
| id_asoc = sctp_id2assoc(sk, id); |
| if (id_asoc && (id_asoc != addr_asoc)) |
| return NULL; |
| |
| sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), |
| (union sctp_addr *)addr); |
| |
| return transport; |
| } |
| |
| /* API 3.1.2 bind() - UDP Style Syntax |
| * The syntax of bind() is, |
| * |
| * ret = bind(int sd, struct sockaddr *addr, int addrlen); |
| * |
| * sd - the socket descriptor returned by socket(). |
| * addr - the address structure (struct sockaddr_in or struct |
| * sockaddr_in6 [RFC 2553]), |
| * addr_len - the size of the address structure. |
| */ |
| static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) |
| { |
| int retval = 0; |
| |
| lock_sock(sk); |
| |
| pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, |
| addr, addr_len); |
| |
| /* Disallow binding twice. */ |
| if (!sctp_sk(sk)->ep->base.bind_addr.port) |
| retval = sctp_do_bind(sk, (union sctp_addr *)addr, |
| addr_len); |
| else |
| retval = -EINVAL; |
| |
| release_sock(sk); |
| |
| return retval; |
| } |
| |
| static long sctp_get_port_local(struct sock *, union sctp_addr *); |
| |
| /* Verify this is a valid sockaddr. */ |
| static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, |
| union sctp_addr *addr, int len) |
| { |
| struct sctp_af *af; |
| |
| /* Check minimum size. */ |
| if (len < sizeof (struct sockaddr)) |
| return NULL; |
| |
| /* V4 mapped address are really of AF_INET family */ |
| if (addr->sa.sa_family == AF_INET6 && |
| ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { |
| if (!opt->pf->af_supported(AF_INET, opt)) |
| return NULL; |
| } else { |
| /* Does this PF support this AF? */ |
| if (!opt->pf->af_supported(addr->sa.sa_family, opt)) |
| return NULL; |
| } |
| |
| /* If we get this far, af is valid. */ |
| af = sctp_get_af_specific(addr->sa.sa_family); |
| |
| if (len < af->sockaddr_len) |
| return NULL; |
| |
| return af; |
| } |
| |
| /* Bind a local address either to an endpoint or to an association. */ |
| static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) |
| { |
| struct net *net = sock_net(sk); |
| struct sctp_sock *sp = sctp_sk(sk); |
| struct sctp_endpoint *ep = sp->ep; |
| struct sctp_bind_addr *bp = &ep->base.bind_addr; |
| struct sctp_af *af; |
| unsigned short snum; |
| int ret = 0; |
| |
| /* Common sockaddr verification. */ |
| af = sctp_sockaddr_af(sp, addr, len); |
| if (!af) { |
| pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", |
| __func__, sk, addr, len); |
| return -EINVAL; |
| } |
| |
| snum = ntohs(addr->v4.sin_port); |
| |
| pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", |
| __func__, sk, &addr->sa, bp->port, snum, len); |
| |
| /* PF specific bind() address verification. */ |
| if (!sp->pf->bind_verify(sp, addr)) |
| return -EADDRNOTAVAIL; |
| |
| /* We must either be unbound, or bind to the same port. |
| * It's OK to allow 0 ports if we are already bound. |
| * We'll just inhert an already bound port in this case |
| */ |
| if (bp->port) { |
| if (!snum) |
| snum = bp->port; |
| else if (snum != bp->port) { |
| pr_debug("%s: new port %d doesn't match existing port " |
| "%d\n", __func__, snum, bp->port); |
| return -EINVAL; |
| } |
| } |
| |
| if (snum && snum < PROT_SOCK && |
| !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) |
| return -EACCES; |
| |
| /* See if the address matches any of the addresses we may have |
| * already bound before checking against other endpoints. |
| */ |
| if (sctp_bind_addr_match(bp, addr, sp)) |
| return -EINVAL; |
| |
| /* Make sure we are allowed to bind here. |
| * The function sctp_get_port_local() does duplicate address |
| * detection. |
| */ |
| addr->v4.sin_port = htons(snum); |
| if ((ret = sctp_get_port_local(sk, addr))) { |
| return -EADDRINUSE; |
| } |
| |
| /* Refresh ephemeral port. */ |
| if (!bp->port) |
| bp->port = inet_sk(sk)->inet_num; |
| |
| /* Add the address to the bind address list. |
| * Use GFP_ATOMIC since BHs will be disabled. |
| */ |
| ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, |
| SCTP_ADDR_SRC, GFP_ATOMIC); |
| |
| /* Copy back into socket for getsockname() use. */ |
| if (!ret) { |
| inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); |
| sp->pf->to_sk_saddr(addr, sk); |
| } |
| |
| return ret; |
| } |
| |
| /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks |
| * |
| * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged |
| * at any one time. If a sender, after sending an ASCONF chunk, decides |
| * it needs to transfer another ASCONF Chunk, it MUST wait until the |
| * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a |
| * subsequent ASCONF. Note this restriction binds each side, so at any |
| * time two ASCONF may be in-transit on any given association (one sent |
| * from each endpoint). |
| */ |
| static int sctp_send_asconf(struct sctp_association *asoc, |
| struct sctp_chunk *chunk) |
| { |
| struct net *net = sock_net(asoc->base.sk); |
| int retval = 0; |
| |
| /* If there is an outstanding ASCONF chunk, queue it for later |
| * transmission. |
| */ |
| if (asoc->addip_last_asconf) { |
| list_add_tail(&chunk->list, &asoc->addip_chunk_list); |
| goto out; |
| } |
| |
| /* Hold the chunk until an ASCONF_ACK is received. */ |
| sctp_chunk_hold(chunk); |
| retval = sctp_primitive_ASCONF(net, asoc, chunk); |
| if (retval) |
| sctp_chunk_free(chunk); |
| else |
| asoc->addip_last_asconf = chunk; |
| |
| out: |
| return retval; |
| } |
| |
| /* Add a list of addresses as bind addresses to local endpoint or |
| * association. |
| * |
| * Basically run through each address specified in the addrs/addrcnt |
| * array/length pair, determine if it is IPv6 or IPv4 and call |
| * sctp_do_bind() on it. |
| * |
| * If any of them fails, then the operation will be reversed and the |
| * ones that were added will be removed. |
| * |
| * Only sctp_setsockopt_bindx() is supposed to call this function. |
| */ |
| static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) |
| { |
| int cnt; |
| int retval = 0; |
| void *addr_buf; |
| struct sockaddr *sa_addr; |
| struct sctp_af *af; |
| |
| pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, |
| addrs, addrcnt); |
| |
| addr_buf = addrs; |
| for (cnt = 0; cnt < addrcnt; cnt++) { |
| /* The list may contain either IPv4 or IPv6 address; |
| * determine the address length for walking thru the list. |
| */ |
| sa_addr = addr_buf; |
| af = sctp_get_af_specific(sa_addr->sa_family); |
| if (!af) { |
| retval = -EINVAL; |
| goto err_bindx_add; |
| } |
| |
| retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, |
| af->sockaddr_len); |
| |
| addr_buf += af->sockaddr_len; |
| |
| err_bindx_add: |
| if (retval < 0) { |
| /* Failed. Cleanup the ones that have been added */ |
| if (cnt > 0) |
| sctp_bindx_rem(sk, addrs, cnt); |
| return retval; |
| } |
| } |
| |
| return retval; |
| } |
| |
| /* Send an ASCONF chunk with Add IP address parameters to all the peers of the |
| * associations that are part of the endpoint indicating that a list of local |
| * addresses are added to the endpoint. |
| * |
| * If any of the addresses is already in the bind address list of the |
| * association, we do not send the chunk for that association. But it will not |
| * affect other associations. |
| * |
| * Only sctp_setsockopt_bindx() is supposed to call this function. |
| */ |
| static int sctp_send_asconf_add_ip(struct sock *sk, |
| struct sockaddr *addrs, |
| int addrcnt) |
| { |
| struct net *net = sock_net(sk); |
| struct sctp_sock *sp; |
| struct sctp_endpoint *ep; |
| struct sctp_association *asoc; |
| struct sctp_bind_addr *bp; |
| struct sctp_chunk *chunk; |
| struct sctp_sockaddr_entry *laddr; |
| union sctp_addr *addr; |
| union sctp_addr saveaddr; |
| void *addr_buf; |
| struct sctp_af *af; |
| struct list_head *p; |
| int i; |
| int retval = 0; |
| |
| if (!net->sctp.addip_enable) |
| return retval; |
| |
| sp = sctp_sk(sk); |
| ep = sp->ep; |
| |
| pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", |
| __func__, sk, addrs, addrcnt); |
| |
| list_for_each_entry(asoc, &ep->asocs, asocs) { |
| if (!asoc->peer.asconf_capable) |
| continue; |
| |
| if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) |
| continue; |
| |
| if (!sctp_state(asoc, ESTABLISHED)) |
| continue; |
| |
| /* Check if any address in the packed array of addresses is |
| * in the bind address list of the association. If so, |
| * do not send the asconf chunk to its peer, but continue with |
| * other associations. |
| */ |
| addr_buf = addrs; |
| for (i = 0; i < addrcnt; i++) { |
| addr = addr_buf; |
| af = sctp_get_af_specific(addr->v4.sin_family); |
| if (!af) { |
| retval = -EINVAL; |
| goto out; |
| } |
| |
| if (sctp_assoc_lookup_laddr(asoc, addr)) |
| break; |
| |
| addr_buf += af->sockaddr_len; |
| } |
| if (i < addrcnt) |
| continue; |
| |
| /* Use the first valid address in bind addr list of |
| * association as Address Parameter of ASCONF CHUNK. |
| */ |
| bp = &asoc->base.bind_addr; |
| p = bp->address_list.next; |
| laddr = list_entry(p, struct sctp_sockaddr_entry, list); |
| chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, |
| addrcnt, SCTP_PARAM_ADD_IP); |
| if (!chunk) { |
| retval = -ENOMEM; |
| goto out; |
| } |
| |
| /* Add the new addresses to the bind address list with |
| * use_as_src set to 0. |
| */ |
| addr_buf = addrs; |
| for (i = 0; i < addrcnt; i++) { |
| addr = addr_buf; |
| af = sctp_get_af_specific(addr->v4.sin_family); |
| memcpy(&saveaddr, addr, af->sockaddr_len); |
| retval = sctp_add_bind_addr(bp, &saveaddr, |
| sizeof(saveaddr), |
| SCTP_ADDR_NEW, GFP_ATOMIC); |
| addr_buf += af->sockaddr_len; |
| } |
| if (asoc->src_out_of_asoc_ok) { |
| struct sctp_transport *trans; |
| |
| list_for_each_entry(trans, |
| &asoc->peer.transport_addr_list, transports) { |
| /* Clear the source and route cache */ |
| dst_release(trans->dst); |
| trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, |
| 2*asoc->pathmtu, 4380)); |
| trans->ssthresh = asoc->peer.i.a_rwnd; |
| trans->rto = asoc->rto_initial; |
| sctp_max_rto(asoc, trans); |
| trans->rtt = trans->srtt = trans->rttvar = 0; |
| sctp_transport_route(trans, NULL, |
| sctp_sk(asoc->base.sk)); |
| } |
| } |
| retval = sctp_send_asconf(asoc, chunk); |
| } |
| |
| out: |
| return retval; |
| } |
| |
| /* Remove a list of addresses from bind addresses list. Do not remove the |
| * last address. |
| * |
| * Basically run through each address specified in the addrs/addrcnt |
| * array/length pair, determine if it is IPv6 or IPv4 and call |
| * sctp_del_bind() on it. |
| * |
| * If any of them fails, then the operation will be reversed and the |
| * ones that were removed will be added back. |
| * |
| * At least one address has to be left; if only one address is |
| * available, the operation will return -EBUSY. |
| * |
| * Only sctp_setsockopt_bindx() is supposed to call this function. |
| */ |
| static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) |
| { |
| struct sctp_sock *sp = sctp_sk(sk); |
| struct sctp_endpoint *ep = sp->ep; |
| int cnt; |
| struct sctp_bind_addr *bp = &ep->base.bind_addr; |
| int retval = 0; |
| void *addr_buf; |
| union sctp_addr *sa_addr; |
| struct sctp_af *af; |
| |
| pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", |
| __func__, sk, addrs, addrcnt); |
| |
| addr_buf = addrs; |
| for (cnt = 0; cnt < addrcnt; cnt++) { |
| /* If the bind address list is empty or if there is only one |
| * bind address, there is nothing more to be removed (we need |
| * at least one address here). |
| */ |
| if (list_empty(&bp->address_list) || |
| (sctp_list_single_entry(&bp->address_list))) { |
| retval = -EBUSY; |
| goto err_bindx_rem; |
| } |
| |
| sa_addr = addr_buf; |
| af = sctp_get_af_specific(sa_addr->sa.sa_family); |
| if (!af) { |
| retval = -EINVAL; |
| goto err_bindx_rem; |
| } |
| |
| if (!af->addr_valid(sa_addr, sp, NULL)) { |
| retval = -EADDRNOTAVAIL; |
| goto err_bindx_rem; |
| } |
| |
| if (sa_addr->v4.sin_port && |
| sa_addr->v4.sin_port != htons(bp->port)) { |
| retval = -EINVAL; |
| goto err_bindx_rem; |
| } |
| |
| if (!sa_addr->v4.sin_port) |
| sa_addr->v4.sin_port = htons(bp->port); |
| |
| /* FIXME - There is probably a need to check if sk->sk_saddr and |
| * sk->sk_rcv_addr are currently set to one of the addresses to |
| * be removed. This is something which needs to be looked into |
| * when we are fixing the outstanding issues with multi-homing |
| * socket routing and failover schemes. Refer to comments in |
| * sctp_do_bind(). -daisy |
| */ |
| retval = sctp_del_bind_addr(bp, sa_addr); |
| |
| addr_buf += af->sockaddr_len; |
| err_bindx_rem: |
| if (retval < 0) { |
| /* Failed. Add the ones that has been removed back */ |
| if (cnt > 0) |
| sctp_bindx_add(sk, addrs, cnt); |
| return retval; |
| } |
| } |
| |
| return retval; |
| } |
| |
| /* Send an ASCONF chunk with Delete IP address parameters to all the peers of |
| * the associations that are part of the endpoint indicating that a list of |
| * local addresses are removed from the endpoint. |
| * |
| * If any of the addresses is already in the bind address list of the |
| * association, we do not send the chunk for that association. But it will not |
| * affect other associations. |
| * |
| * Only sctp_setsockopt_bindx() is supposed to call this function. |
| */ |
| static int sctp_send_asconf_del_ip(struct sock *sk, |
| struct sockaddr *addrs, |
| int addrcnt) |
| { |
| struct net *net = sock_net(sk); |
| struct sctp_sock *sp; |
| struct sctp_endpoint *ep; |
| struct sctp_association *asoc; |
| struct sctp_transport *transport; |
| struct sctp_bind_addr *bp; |
| struct sctp_chunk *chunk; |
| union sctp_addr *laddr; |
| void *addr_buf; |
| struct sctp_af *af; |
| struct sctp_sockaddr_entry *saddr; |
| int i; |
| int retval = 0; |
| int stored = 0; |
| |
| chunk = NULL; |
| if (!net->sctp.addip_enable) |
| return retval; |
| |
| sp = sctp_sk(sk); |
| ep = sp->ep; |
| |
| pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", |
| __func__, sk, addrs, addrcnt); |
| |
| list_for_each_entry(asoc, &ep->asocs, asocs) { |
| |
| if (!asoc->peer.asconf_capable) |
| continue; |
| |
| if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) |
| continue; |
| |
| if (!sctp_state(asoc, ESTABLISHED)) |
| continue; |
| |
| /* Check if any address in the packed array of addresses is |
| * not present in the bind address list of the association. |
| * If so, do not send the asconf chunk to its peer, but |
| * continue with other associations. |
| */ |
| addr_buf = addrs; |
| for (i = 0; i < addrcnt; i++) { |
| laddr = addr_buf; |
| af = sctp_get_af_specific(laddr->v4.sin_family); |
| if (!af) { |
| retval = -EINVAL; |
| goto out; |
| } |
| |
| if (!sctp_assoc_lookup_laddr(asoc, laddr)) |
| break; |
| |
| addr_buf += af->sockaddr_len; |
| } |
| if (i < addrcnt) |
| continue; |
| |
| /* Find one address in the association's bind address list |
| * that is not in the packed array of addresses. This is to |
| * make sure that we do not delete all the addresses in the |
| * association. |
| */ |
| bp = &asoc->base.bind_addr; |
| laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, |
| addrcnt, sp); |
| if ((laddr == NULL) && (addrcnt == 1)) { |
| if (asoc->asconf_addr_del_pending) |
| continue; |
| asoc->asconf_addr_del_pending = |
| kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); |
| if (asoc->asconf_addr_del_pending == NULL) { |
| retval = -ENOMEM; |
| goto out; |
| } |
| asoc->asconf_addr_del_pending->sa.sa_family = |
| addrs->sa_family; |
| asoc->asconf_addr_del_pending->v4.sin_port = |
| htons(bp->port); |
| if (addrs->sa_family == AF_INET) { |
| struct sockaddr_in *sin; |
| |
| sin = (struct sockaddr_in *)addrs; |
| asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; |
| } else if (addrs->sa_family == AF_INET6) { |
| struct sockaddr_in6 *sin6; |
| |
| sin6 = (struct sockaddr_in6 *)addrs; |
| asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; |
| } |
| |
| pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", |
| __func__, asoc, &asoc->asconf_addr_del_pending->sa, |
| asoc->asconf_addr_del_pending); |
| |
| asoc->src_out_of_asoc_ok = 1; |
| stored = 1; |
| goto skip_mkasconf; |
| } |
| |
| if (laddr == NULL) |
| return -EINVAL; |
| |
| /* We do not need RCU protection throughout this loop |
| * because this is done under a socket lock from the |
| * setsockopt call. |
| */ |
| chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, |
| SCTP_PARAM_DEL_IP); |
| if (!chunk) { |
| retval = -ENOMEM; |
| goto out; |
| } |
| |
| skip_mkasconf: |
| /* Reset use_as_src flag for the addresses in the bind address |
| * list that are to be deleted. |
| */ |
| addr_buf = addrs; |
| for (i = 0; i < addrcnt; i++) { |
| laddr = addr_buf; |
| af = sctp_get_af_specific(laddr->v4.sin_family); |
| list_for_each_entry(saddr, &bp->address_list, list) { |
| if (sctp_cmp_addr_exact(&saddr->a, laddr)) |
| saddr->state = SCTP_ADDR_DEL; |
| } |
| addr_buf += af->sockaddr_len; |
| } |
| |
| /* Update the route and saddr entries for all the transports |
| * as some of the addresses in the bind address list are |
| * about to be deleted and cannot be used as source addresses. |
| */ |
| list_for_each_entry(transport, &asoc->peer.transport_addr_list, |
| transports) { |
| dst_release(transport->dst); |
| sctp_transport_route(transport, NULL, |
| sctp_sk(asoc->base.sk)); |
| } |
| |
| if (stored) |
| /* We don't need to transmit ASCONF */ |
| continue; |
| retval = sctp_send_asconf(asoc, chunk); |
| } |
| out: |
| return retval; |
| } |
| |
| /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ |
| int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) |
| { |
| struct sock *sk = sctp_opt2sk(sp); |
| union sctp_addr *addr; |
| struct sctp_af *af; |
| |
| /* It is safe to write port space in caller. */ |
| addr = &addrw->a; |
| addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); |
| af = sctp_get_af_specific(addr->sa.sa_family); |
| if (!af) |
| return -EINVAL; |
| if (sctp_verify_addr(sk, addr, af->sockaddr_len)) |
| return -EINVAL; |
| |
| if (addrw->state == SCTP_ADDR_NEW) |
| return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); |
| else |
| return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); |
| } |
| |
| /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() |
| * |
| * API 8.1 |
| * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, |
| * int flags); |
| * |
| * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. |
| * If the sd is an IPv6 socket, the addresses passed can either be IPv4 |
| * or IPv6 addresses. |
| * |
| * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see |
| * Section 3.1.2 for this usage. |
| * |
| * addrs is a pointer to an array of one or more socket addresses. Each |
| * address is contained in its appropriate structure (i.e. struct |
| * sockaddr_in or struct sockaddr_in6) the family of the address type |
| * must be used to distinguish the address length (note that this |
| * representation is termed a "packed array" of addresses). The caller |
| * specifies the number of addresses in the array with addrcnt. |
| * |
| * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns |
| * -1, and sets errno to the appropriate error code. |
| * |
| * For SCTP, the port given in each socket address must be the same, or |
| * sctp_bindx() will fail, setting errno to EINVAL. |
| * |
| * The flags parameter is formed from the bitwise OR of zero or more of |
| * the following currently defined flags: |
| * |
| * SCTP_BINDX_ADD_ADDR |
| * |
| * SCTP_BINDX_REM_ADDR |
| * |
| * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the |
| * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given |
| * addresses from the association. The two flags are mutually exclusive; |
| * if both are given, sctp_bindx() will fail with EINVAL. A caller may |
| * not remove all addresses from an association; sctp_bindx() will |
| * reject such an attempt with EINVAL. |
| * |
| * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate |
| * additional addresses with an endpoint after calling bind(). Or use |
| * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening |
| * socket is associated with so that no new association accepted will be |
| * associated with those addresses. If the endpoint supports dynamic |
| * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a |
| * endpoint to send the appropriate message to the peer to change the |
| * peers address lists. |
| * |
| * Adding and removing addresses from a connected association is |
| * optional functionality. Implementations that do not support this |
| * functionality should return EOPNOTSUPP. |
| * |
| * Basically do nothing but copying the addresses from user to kernel |
| * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. |
| * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() |
| * from userspace. |
| * |
| * We don't use copy_from_user() for optimization: we first do the |
| * sanity checks (buffer size -fast- and access check-healthy |
| * pointer); if all of those succeed, then we can alloc the memory |
| * (expensive operation) needed to copy the data to kernel. Then we do |
| * the copying without checking the user space area |
| * (__copy_from_user()). |
| * |
| * On exit there is no need to do sockfd_put(), sys_setsockopt() does |
| * it. |
| * |
| * sk The sk of the socket |
| * addrs The pointer to the addresses in user land |
| * addrssize Size of the addrs buffer |
| * op Operation to perform (add or remove, see the flags of |
| * sctp_bindx) |
| * |
| * Returns 0 if ok, <0 errno code on error. |
| */ |
| static int sctp_setsockopt_bindx(struct sock *sk, |
| struct sockaddr __user *addrs, |
| int addrs_size, int op) |
| { |
| struct sockaddr *kaddrs; |
| int err; |
| int addrcnt = 0; |
| int walk_size = 0; |
| struct sockaddr *sa_addr; |
| void *addr_buf; |
| struct sctp_af *af; |
| |
| pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", |
| __func__, sk, addrs, addrs_size, op); |
| |
| if (unlikely(addrs_size <= 0)) |
| return -EINVAL; |
| |
| /* Check the user passed a healthy pointer. */ |
| if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) |
| return -EFAULT; |
| |
| /* Alloc space for the address array in kernel memory. */ |
| kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); |
| if (unlikely(!kaddrs)) |
| return -ENOMEM; |
| |
| if (__copy_from_user(kaddrs, addrs, addrs_size)) { |
| kfree(kaddrs); |
| return -EFAULT; |
| } |
| |
| /* Walk through the addrs buffer and count the number of addresses. */ |
| addr_buf = kaddrs; |
| while (walk_size < addrs_size) { |
| if (walk_size + sizeof(sa_family_t) > addrs_size) { |
| kfree(kaddrs); |
| return -EINVAL; |
| } |
| |
| sa_addr = addr_buf; |
| af = sctp_get_af_specific(sa_addr->sa_family); |
| |
| /* If the address family is not supported or if this address |
| * causes the address buffer to overflow return EINVAL. |
| */ |
| if (!af || (walk_size + af->sockaddr_len) > addrs_size) { |
| kfree(kaddrs); |
| return -EINVAL; |
| } |
| addrcnt++; |
| addr_buf += af->sockaddr_len; |
| walk_size += af->sockaddr_len; |
| } |
| |
| /* Do the work. */ |
| switch (op) { |
| case SCTP_BINDX_ADD_ADDR: |
| err = sctp_bindx_add(sk, kaddrs, addrcnt); |
| if (err) |
| goto out; |
| err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); |
| break; |
| |
| case SCTP_BINDX_REM_ADDR: |
| err = sctp_bindx_rem(sk, kaddrs, addrcnt); |
| if (err) |
| goto out; |
| err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); |
| break; |
| |
| default: |
| err = -EINVAL; |
| break; |
| } |
| |
| out: |
| kfree(kaddrs); |
| |
| return err; |
| } |
| |
| /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) |
| * |
| * Common routine for handling connect() and sctp_connectx(). |
| * Connect will come in with just a single address. |
| */ |
| static int __sctp_connect(struct sock *sk, |
| struct sockaddr *kaddrs, |
| int addrs_size, |
| sctp_assoc_t *assoc_id) |
| { |
| struct net *net = sock_net(sk); |
| struct sctp_sock *sp; |
| struct sctp_endpoint *ep; |
| struct sctp_association *asoc = NULL; |
| struct sctp_association *asoc2; |
| struct sctp_transport *transport; |
| union sctp_addr to; |
| sctp_scope_t scope; |
| long timeo; |
| int err = 0; |
| int addrcnt = 0; |
| int walk_size = 0; |
| union sctp_addr *sa_addr = NULL; |
| void *addr_buf; |
| unsigned short port; |
| unsigned int f_flags = 0; |
| |
| sp = sctp_sk(sk); |
| ep = sp->ep; |
| |
| /* connect() cannot be done on a socket that is already in ESTABLISHED |
| * state - UDP-style peeled off socket or a TCP-style socket that |
| * is already connected. |
| * It cannot be done even on a TCP-style listening socket. |
| */ |
| if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || |
| (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { |
| err = -EISCONN; |
| goto out_free; |
| } |
| |
| /* Walk through the addrs buffer and count the number of addresses. */ |
| addr_buf = kaddrs; |
| while (walk_size < addrs_size) { |
| struct sctp_af *af; |
| |
| if (walk_size + sizeof(sa_family_t) > addrs_size) { |
| err = -EINVAL; |
| goto out_free; |
| } |
| |
| sa_addr = addr_buf; |
| af = sctp_get_af_specific(sa_addr->sa.sa_family); |
| |
| /* If the address family is not supported or if this address |
| * causes the address buffer to overflow return EINVAL. |
| */ |
| if (!af || (walk_size + af->sockaddr_len) > addrs_size) { |
| err = -EINVAL; |
| goto out_free; |
| } |
| |
| port = ntohs(sa_addr->v4.sin_port); |
| |
| /* Save current address so we can work with it */ |
| memcpy(&to, sa_addr, af->sockaddr_len); |
| |
| err = sctp_verify_addr(sk, &to, af->sockaddr_len); |
| if (err) |
| goto out_free; |
| |
| /* Make sure the destination port is correctly set |
| * in all addresses. |
| */ |
| if (asoc && asoc->peer.port && asoc->peer.port != port) { |
| err = -EINVAL; |
| goto out_free; |
| } |
| |
| /* Check if there already is a matching association on the |
| * endpoint (other than the one created here). |
| */ |
| asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); |
| if (asoc2 && asoc2 != asoc) { |
| if (asoc2->state >= SCTP_STATE_ESTABLISHED) |
| err = -EISCONN; |
| else |
| err = -EALREADY; |
| goto out_free; |
| } |
| |
| /* If we could not find a matching association on the endpoint, |
| * make sure that there is no peeled-off association matching |
| * the peer address even on another socket. |
| */ |
| if (sctp_endpoint_is_peeled_off(ep, &to)) { |
| err = -EADDRNOTAVAIL; |
| goto out_free; |
| } |
| |
| if (!asoc) { |
| /* If a bind() or sctp_bindx() is not called prior to |
| * an sctp_connectx() call, the system picks an |
| * ephemeral port and will choose an address set |
| * equivalent to binding with a wildcard address. |
| */ |
| if (!ep->base.bind_addr.port) { |
| if (sctp_autobind(sk)) { |
| err = -EAGAIN; |
| goto out_free; |
| } |
| } else { |
| /* |
| * If an unprivileged user inherits a 1-many |
| * style socket with open associations on a |
| * privileged port, it MAY be permitted to |
| * accept new associations, but it SHOULD NOT |
| * be permitted to open new associations. |
| */ |
| if (ep->base.bind_addr.port < PROT_SOCK && |
| !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { |
| err = -EACCES; |
| goto out_free; |
| } |
| } |
| |
| scope = sctp_scope(&to); |
| asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); |
| if (!asoc) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| |
| err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, |
| GFP_KERNEL); |
| if (err < 0) { |
| goto out_free; |
| } |
| |
| } |
| |
| /* Prime the peer's transport structures. */ |
| transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, |
| SCTP_UNKNOWN); |
| if (!transport) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| |
| addrcnt++; |
| addr_buf += af->sockaddr_len; |
| walk_size += af->sockaddr_len; |
| } |
| |
| /* In case the user of sctp_connectx() wants an association |
| * id back, assign one now. |
| */ |
| if (assoc_id) { |
| err = sctp_assoc_set_id(asoc, GFP_KERNEL); |
| if (err < 0) |
| goto out_free; |
| } |
| |
| err = sctp_primitive_ASSOCIATE(net, asoc, NULL); |
| if (err < 0) { |
| goto out_free; |
| } |
| |
| /* Initialize sk's dport and daddr for getpeername() */ |
| inet_sk(sk)->inet_dport = htons(asoc->peer.port); |
| sp->pf->to_sk_daddr(sa_addr, sk); |
| sk->sk_err = 0; |
| |
| /* in-kernel sockets don't generally have a file allocated to them |
| * if all they do is call sock_create_kern(). |
| */ |
| if (sk->sk_socket->file) |
| f_flags = sk->sk_socket->file->f_flags; |
| |
| timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); |
| |
| if (assoc_id) |
| *assoc_id = asoc->assoc_id; |
| err = sctp_wait_for_connect(asoc, &timeo); |
| /* Note: the asoc may be freed after the return of |
| * sctp_wait_for_connect. |
| */ |
| |
| /* Don't free association on exit. */ |
| asoc = NULL; |
| |
| out_free: |
| pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", |
| __func__, asoc, kaddrs, err); |
| |
| if (asoc) { |
| /* sctp_primitive_ASSOCIATE may have added this association |
| * To the hash table, try to unhash it, just in case, its a noop |
| * if it wasn't hashed so we're safe |
| */ |
| sctp_association_free(asoc); |
| } |
| return err; |
| } |
| |
| /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() |
| * |
| * API 8.9 |
| * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, |
| * sctp_assoc_t *asoc); |
| * |
| * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. |
| * If the sd is an IPv6 socket, the addresses passed can either be IPv4 |
| * or IPv6 addresses. |
| * |
| * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see |
| * Section 3.1.2 for this usage. |
| * |
| * addrs is a pointer to an array of one or more socket addresses. Each |
| * address is contained in its appropriate structure (i.e. struct |
| * sockaddr_in or struct sockaddr_in6) the family of the address type |
| * must be used to distengish the address length (note that this |
| * representation is termed a "packed array" of addresses). The caller |
| * specifies the number of addresses in the array with addrcnt. |
| * |
| * On success, sctp_connectx() returns 0. It also sets the assoc_id to |
| * the association id of the new association. On failure, sctp_connectx() |
| * returns -1, and sets errno to the appropriate error code. The assoc_id |
| * is not touched by the kernel. |
| * |
| * For SCTP, the port given in each socket address must be the same, or |
| * sctp_connectx() will fail, setting errno to EINVAL. |
| * |
| * An application can use sctp_connectx to initiate an association with |
| * an endpoint that is multi-homed. Much like sctp_bindx() this call |
| * allows a caller to specify multiple addresses at which a peer can be |
| * reached. The way the SCTP stack uses the list of addresses to set up |
| * the association is implementation dependent. This function only |
| * specifies that the stack will try to make use of all the addresses in |
| * the list when needed. |
| * |
| * Note that the list of addresses passed in is only used for setting up |
| * the association. It does not necessarily equal the set of addresses |
| * the peer uses for the resulting association. If the caller wants to |
| * find out the set of peer addresses, it must use sctp_getpaddrs() to |
| * retrieve them after the association has been set up. |
| * |
| * Basically do nothing but copying the addresses from user to kernel |
| * land and invoking either sctp_connectx(). This is used for tunneling |
| * the sctp_connectx() request through sctp_setsockopt() from userspace. |
| * |
| * We don't use copy_from_user() for optimization: we first do the |
| * sanity checks (buffer size -fast- and access check-healthy |
| * pointer); if all of those succeed, then we can alloc the memory |
| * (expensive operation) needed to copy the data to kernel. Then we do |
| * the copying without checking the user space area |
| * (__copy_from_user()). |
| * |
| * On exit there is no need to do sockfd_put(), sys_setsockopt() does |
| * it. |
| * |
| * sk The sk of the socket |
| * addrs The pointer to the addresses in user land |
| * addrssize Size of the addrs buffer |
| * |
| * Returns >=0 if ok, <0 errno code on error. |
| */ |
| static int __sctp_setsockopt_connectx(struct sock *sk, |
| struct sockaddr __user *addrs, |
| int addrs_size, |
| sctp_assoc_t *assoc_id) |
| { |
| struct sockaddr *kaddrs; |
| gfp_t gfp = GFP_KERNEL; |
| int err = 0; |
| |
| pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", |
| __func__, sk, addrs, addrs_size); |
| |
| if (unlikely(addrs_size <= 0)) |
| return -EINVAL; |
| |
| /* Check the user passed a healthy pointer. */ |
| if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) |
| return -EFAULT; |
| |
| /* Alloc space for the address array in kernel memory. */ |
| if (sk->sk_socket->file) |
| gfp = GFP_USER | __GFP_NOWARN; |
| kaddrs = kmalloc(addrs_size, gfp); |
| if (unlikely(!kaddrs)) |
| return -ENOMEM; |
| |
| if (__copy_from_user(kaddrs, addrs, addrs_size)) { |
| err = -EFAULT; |
| } else { |
| err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); |
| } |
| |
| kfree(kaddrs); |
| |
| return err; |
| } |
| |
| /* |
| * This is an older interface. It's kept for backward compatibility |
| * to the option that doesn't provide association id. |
| */ |
| static int sctp_setsockopt_connectx_old(struct sock *sk, |
| struct sockaddr __user *addrs, |
| int addrs_size) |
| { |
| return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); |
| } |
| |
| /* |
| * New interface for the API. The since the API is done with a socket |
| * option, to make it simple we feed back the association id is as a return |
| * indication to the call. Error is always negative and association id is |
| * always positive. |
| */ |
| static int sctp_setsockopt_connectx(struct sock *sk, |
| struct sockaddr __user *addrs, |
| int addrs_size) |
| { |
| sctp_assoc_t assoc_id = 0; |
| int err = 0; |
| |
| err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); |
| |
| if (err) |
| return err; |
| else |
| return assoc_id; |
| } |
| |
| /* |
| * New (hopefully final) interface for the API. |
| * We use the sctp_getaddrs_old structure so that use-space library |
| * can avoid any unnecessary allocations. The only different part |
| * is that we store the actual length of the address buffer into the |
| * addrs_num structure member. That way we can re-use the existing |
| * code. |
| */ |
| #ifdef CONFIG_COMPAT |
| struct compat_sctp_getaddrs_old { |
| sctp_assoc_t assoc_id; |
| s32 addr_num; |
| compat_uptr_t addrs; /* struct sockaddr * */ |
| }; |
| #endif |
| |
| static int sctp_getsockopt_connectx3(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| struct sctp_getaddrs_old param; |
| sctp_assoc_t assoc_id = 0; |
| int err = 0; |
| |
| #ifdef CONFIG_COMPAT |
| if (in_compat_syscall()) { |
| struct compat_sctp_getaddrs_old param32; |
| |
| if (len < sizeof(param32)) |
| return -EINVAL; |
| if (copy_from_user(¶m32, optval, sizeof(param32))) |
| return -EFAULT; |
| |
| param.assoc_id = param32.assoc_id; |
| param.addr_num = param32.addr_num; |
| param.addrs = compat_ptr(param32.addrs); |
| } else |
| #endif |
| { |
| if (len < sizeof(param)) |
| return -EINVAL; |
| if (copy_from_user(¶m, optval, sizeof(param))) |
| return -EFAULT; |
| } |
| |
| err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) |
| param.addrs, param.addr_num, |
| &assoc_id); |
| if (err == 0 || err == -EINPROGRESS) { |
| if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) |
| return -EFAULT; |
| if (put_user(sizeof(assoc_id), optlen)) |
| return -EFAULT; |
| } |
| |
| return err; |
| } |
| |
| /* API 3.1.4 close() - UDP Style Syntax |
| * Applications use close() to perform graceful shutdown (as described in |
| * Section 10.1 of [SCTP]) on ALL the associations currently represented |
| * by a UDP-style socket. |
| * |
| * The syntax is |
| * |
| * ret = close(int sd); |
| * |
| * sd - the socket descriptor of the associations to be closed. |
| * |
| * To gracefully shutdown a specific association represented by the |
| * UDP-style socket, an application should use the sendmsg() call, |
| * passing no user data, but including the appropriate flag in the |
| * ancillary data (see Section xxxx). |
| * |
| * If sd in the close() call is a branched-off socket representing only |
| * one association, the shutdown is performed on that association only. |
| * |
| * 4.1.6 close() - TCP Style Syntax |
| * |
| * Applications use close() to gracefully close down an association. |
| * |
| * The syntax is: |
| * |
| * int close(int sd); |
| * |
| * sd - the socket descriptor of the association to be closed. |
| * |
| * After an application calls close() on a socket descriptor, no further |
| * socket operations will succeed on that descriptor. |
| * |
| * API 7.1.4 SO_LINGER |
| * |
| * An application using the TCP-style socket can use this option to |
| * perform the SCTP ABORT primitive. The linger option structure is: |
| * |
| * struct linger { |
| * int l_onoff; // option on/off |
| * int l_linger; // linger time |
| * }; |
| * |
| * To enable the option, set l_onoff to 1. If the l_linger value is set |
| * to 0, calling close() is the same as the ABORT primitive. If the |
| * value is set to a negative value, the setsockopt() call will return |
| * an error. If the value is set to a positive value linger_time, the |
| * close() can be blocked for at most linger_time ms. If the graceful |
| * shutdown phase does not finish during this period, close() will |
| * return but the graceful shutdown phase continues in the system. |
| */ |
| static void sctp_close(struct sock *sk, long timeout) |
| { |
| struct net *net = sock_net(sk); |
| struct sctp_endpoint *ep; |
| struct sctp_association *asoc; |
| struct list_head *pos, *temp; |
| unsigned int data_was_unread; |
| |
| pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); |
| |
| lock_sock(sk); |
| sk->sk_shutdown = SHUTDOWN_MASK; |
| sk->sk_state = SCTP_SS_CLOSING; |
| |
| ep = sctp_sk(sk)->ep; |
| |
| /* Clean up any skbs sitting on the receive queue. */ |
| data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); |
| data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); |
| |
| /* Walk all associations on an endpoint. */ |
| list_for_each_safe(pos, temp, &ep->asocs) { |
| asoc = list_entry(pos, struct sctp_association, asocs); |
| |
| if (sctp_style(sk, TCP)) { |
| /* A closed association can still be in the list if |
| * it belongs to a TCP-style listening socket that is |
| * not yet accepted. If so, free it. If not, send an |
| * ABORT or SHUTDOWN based on the linger options. |
| */ |
| if (sctp_state(asoc, CLOSED)) { |
| sctp_association_free(asoc); |
| continue; |
| } |
| } |
| |
| if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || |
| !skb_queue_empty(&asoc->ulpq.reasm) || |
| (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { |
| struct sctp_chunk *chunk; |
| |
| chunk = sctp_make_abort_user(asoc, NULL, 0); |
| sctp_primitive_ABORT(net, asoc, chunk); |
| } else |
| sctp_primitive_SHUTDOWN(net, asoc, NULL); |
| } |
| |
| /* On a TCP-style socket, block for at most linger_time if set. */ |
| if (sctp_style(sk, TCP) && timeout) |
| sctp_wait_for_close(sk, timeout); |
| |
| /* This will run the backlog queue. */ |
| release_sock(sk); |
| |
| /* Supposedly, no process has access to the socket, but |
| * the net layers still may. |
| * Also, sctp_destroy_sock() needs to be called with addr_wq_lock |
| * held and that should be grabbed before socket lock. |
| */ |
| spin_lock_bh(&net->sctp.addr_wq_lock); |
| bh_lock_sock(sk); |
| |
| /* Hold the sock, since sk_common_release() will put sock_put() |
| * and we have just a little more cleanup. |
| */ |
| sock_hold(sk); |
| sk_common_release(sk); |
| |
| bh_unlock_sock(sk); |
| spin_unlock_bh(&net->sctp.addr_wq_lock); |
| |
| sock_put(sk); |
| |
| SCTP_DBG_OBJCNT_DEC(sock); |
| } |
| |
| /* Handle EPIPE error. */ |
| static int sctp_error(struct sock *sk, int flags, int err) |
| { |
| if (err == -EPIPE) |
| err = sock_error(sk) ? : -EPIPE; |
| if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) |
| send_sig(SIGPIPE, current, 0); |
| return err; |
| } |
| |
| /* API 3.1.3 sendmsg() - UDP Style Syntax |
| * |
| * An application uses sendmsg() and recvmsg() calls to transmit data to |
| * and receive data from its peer. |
| * |
| * ssize_t sendmsg(int socket, const struct msghdr *message, |
| * int flags); |
| * |
| * socket - the socket descriptor of the endpoint. |
| * message - pointer to the msghdr structure which contains a single |
| * user message and possibly some ancillary data. |
| * |
| * See Section 5 for complete description of the data |
| * structures. |
| * |
| * flags - flags sent or received with the user message, see Section |
| * 5 for complete description of the flags. |
| * |
| * Note: This function could use a rewrite especially when explicit |
| * connect support comes in. |
| */ |
| /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ |
| |
| static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); |
| |
| static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) |
| { |
| struct net *net = sock_net(sk); |
| struct sctp_sock *sp; |
| struct sctp_endpoint *ep; |
| struct sctp_association *new_asoc = NULL, *asoc = NULL; |
| struct sctp_transport *transport, *chunk_tp; |
| struct sctp_chunk *chunk; |
| union sctp_addr to; |
| struct sockaddr *msg_name = NULL; |
| struct sctp_sndrcvinfo default_sinfo; |
| struct sctp_sndrcvinfo *sinfo; |
| struct sctp_initmsg *sinit; |
| sctp_assoc_t associd = 0; |
| sctp_cmsgs_t cmsgs = { NULL }; |
| sctp_scope_t scope; |
| bool fill_sinfo_ttl = false, wait_connect = false; |
| struct sctp_datamsg *datamsg; |
| int msg_flags = msg->msg_flags; |
| __u16 sinfo_flags = 0; |
| long timeo; |
| int err; |
| |
| err = 0; |
| sp = sctp_sk(sk); |
| ep = sp->ep; |
| |
| pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, |
| msg, msg_len, ep); |
| |
| /* We cannot send a message over a TCP-style listening socket. */ |
| if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { |
| err = -EPIPE; |
| goto out_nounlock; |
| } |
| |
| /* Parse out the SCTP CMSGs. */ |
| err = sctp_msghdr_parse(msg, &cmsgs); |
| if (err) { |
| pr_debug("%s: msghdr parse err:%x\n", __func__, err); |
| goto out_nounlock; |
| } |
| |
| /* Fetch the destination address for this packet. This |
| * address only selects the association--it is not necessarily |
| * the address we will send to. |
| * For a peeled-off socket, msg_name is ignored. |
| */ |
| if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { |
| int msg_namelen = msg->msg_namelen; |
| |
| err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, |
| msg_namelen); |
| if (err) |
| return err; |
| |
| if (msg_namelen > sizeof(to)) |
| msg_namelen = sizeof(to); |
| memcpy(&to, msg->msg_name, msg_namelen); |
| msg_name = msg->msg_name; |
| } |
| |
| sinit = cmsgs.init; |
| if (cmsgs.sinfo != NULL) { |
| memset(&default_sinfo, 0, sizeof(default_sinfo)); |
| default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; |
| default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; |
| default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; |
| default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; |
| default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; |
| |
| sinfo = &default_sinfo; |
| fill_sinfo_ttl = true; |
| } else { |
| sinfo = cmsgs.srinfo; |
| } |
| /* Did the user specify SNDINFO/SNDRCVINFO? */ |
| if (sinfo) { |
| sinfo_flags = sinfo->sinfo_flags; |
| associd = sinfo->sinfo_assoc_id; |
| } |
| |
| pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, |
| msg_len, sinfo_flags); |
| |
| /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ |
| if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { |
| err = -EINVAL; |
| goto out_nounlock; |
| } |
| |
| /* If SCTP_EOF is set, no data can be sent. Disallow sending zero |
| * length messages when SCTP_EOF|SCTP_ABORT is not set. |
| * If SCTP_ABORT is set, the message length could be non zero with |
| * the msg_iov set to the user abort reason. |
| */ |
| if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || |
| (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { |
| err = -EINVAL; |
| goto out_nounlock; |
| } |
| |
| /* If SCTP_ADDR_OVER is set, there must be an address |
| * specified in msg_name. |
| */ |
| if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { |
| err = -EINVAL; |
| goto out_nounlock; |
| } |
| |
| transport = NULL; |
| |
| pr_debug("%s: about to look up association\n", __func__); |
| |
| lock_sock(sk); |
| |
| /* If a msg_name has been specified, assume this is to be used. */ |
| if (msg_name) { |
| /* Look for a matching association on the endpoint. */ |
| asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); |
| |
| /* If we could not find a matching association on the |
| * endpoint, make sure that it is not a TCP-style |
| * socket that already has an association or there is |
| * no peeled-off association on another socket. |
| */ |
| if (!asoc && |
| ((sctp_style(sk, TCP) && |
| (sctp_sstate(sk, ESTABLISHED) || |
| sctp_sstate(sk, CLOSING))) || |
| sctp_endpoint_is_peeled_off(ep, &to))) { |
| err = -EADDRNOTAVAIL; |
| goto out_unlock; |
| } |
| } else { |
| asoc = sctp_id2assoc(sk, associd); |
| if (!asoc) { |
| err = -EPIPE; |
| goto out_unlock; |
| } |
| } |
| |
| if (asoc) { |
| pr_debug("%s: just looked up association:%p\n", __func__, asoc); |
| |
| /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED |
| * socket that has an association in CLOSED state. This can |
| * happen when an accepted socket has an association that is |
| * already CLOSED. |
| */ |
| if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { |
| err = -EPIPE; |
| goto out_unlock; |
| } |
| |
| if (sinfo_flags & SCTP_EOF) { |
| pr_debug("%s: shutting down association:%p\n", |
| __func__, asoc); |
| |
| sctp_primitive_SHUTDOWN(net, asoc, NULL); |
| err = 0; |
| goto out_unlock; |
| } |
| if (sinfo_flags & SCTP_ABORT) { |
| |
| chunk = sctp_make_abort_user(asoc, msg, msg_len); |
| if (!chunk) { |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| pr_debug("%s: aborting association:%p\n", |
| __func__, asoc); |
| |
| sctp_primitive_ABORT(net, asoc, chunk); |
| err = 0; |
| goto out_unlock; |
| } |
| } |
| |
| /* Do we need to create the association? */ |
| if (!asoc) { |
| pr_debug("%s: there is no association yet\n", __func__); |
| |
| if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { |
| err = -EINVAL; |
| goto out_unlock; |
| } |
| |
| /* Check for invalid stream against the stream counts, |
| * either the default or the user specified stream counts. |
| */ |
| if (sinfo) { |
| if (!sinit || !sinit->sinit_num_ostreams) { |
| /* Check against the defaults. */ |
| if (sinfo->sinfo_stream >= |
| sp->initmsg.sinit_num_ostreams) { |
| err = -EINVAL; |
| goto out_unlock; |
| } |
| } else { |
| /* Check against the requested. */ |
| if (sinfo->sinfo_stream >= |
| sinit->sinit_num_ostreams) { |
| err = -EINVAL; |
| goto out_unlock; |
| } |
| } |
| } |
| |
| /* |
| * API 3.1.2 bind() - UDP Style Syntax |
| * If a bind() or sctp_bindx() is not called prior to a |
| * sendmsg() call that initiates a new association, the |
| * system picks an ephemeral port and will choose an address |
| * set equivalent to binding with a wildcard address. |
| */ |
| if (!ep->base.bind_addr.port) { |
| if (sctp_autobind(sk)) { |
| err = -EAGAIN; |
| goto out_unlock; |
| } |
| } else { |
| /* |
| * If an unprivileged user inherits a one-to-many |
| * style socket with open associations on a privileged |
| * port, it MAY be permitted to accept new associations, |
| * but it SHOULD NOT be permitted to open new |
| * associations. |
| */ |
| if (ep->base.bind_addr.port < PROT_SOCK && |
| !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { |
| err = -EACCES; |
| goto out_unlock; |
| } |
| } |
| |
| scope = sctp_scope(&to); |
| new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); |
| if (!new_asoc) { |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| asoc = new_asoc; |
| err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); |
| if (err < 0) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| |
| /* If the SCTP_INIT ancillary data is specified, set all |
| * the association init values accordingly. |
| */ |
| if (sinit) { |
| if (sinit->sinit_num_ostreams) { |
| asoc->c.sinit_num_ostreams = |
| sinit->sinit_num_ostreams; |
| } |
| if (sinit->sinit_max_instreams) { |
| asoc->c.sinit_max_instreams = |
| sinit->sinit_max_instreams; |
| } |
| if (sinit->sinit_max_attempts) { |
| asoc->max_init_attempts |
| = sinit->sinit_max_attempts; |
| } |
| if (sinit->sinit_max_init_timeo) { |
| asoc->max_init_timeo = |
| msecs_to_jiffies(sinit->sinit_max_init_timeo); |
| } |
| } |
| |
| /* Prime the peer's transport structures. */ |
| transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); |
| if (!transport) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| } |
| |
| /* ASSERT: we have a valid association at this point. */ |
| pr_debug("%s: we have a valid association\n", __func__); |
| |
| if (!sinfo) { |
| /* If the user didn't specify SNDINFO/SNDRCVINFO, make up |
| * one with some defaults. |
| */ |
| memset(&default_sinfo, 0, sizeof(default_sinfo)); |
| default_sinfo.sinfo_stream = asoc->default_stream; |
| default_sinfo.sinfo_flags = asoc->default_flags; |
| default_sinfo.sinfo_ppid = asoc->default_ppid; |
| default_sinfo.sinfo_context = asoc->default_context; |
| default_sinfo.sinfo_timetolive = asoc->default_timetolive; |
| default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); |
| |
| sinfo = &default_sinfo; |
| } else if (fill_sinfo_ttl) { |
| /* In case SNDINFO was specified, we still need to fill |
| * it with a default ttl from the assoc here. |
| */ |
| sinfo->sinfo_timetolive = asoc->default_timetolive; |
| } |
| |
| /* API 7.1.7, the sndbuf size per association bounds the |
| * maximum size of data that can be sent in a single send call. |
| */ |
| if (msg_len > sk->sk_sndbuf) { |
| err = -EMSGSIZE; |
| goto out_free; |
| } |
| |
| if (asoc->pmtu_pending) |
| sctp_assoc_pending_pmtu(sk, asoc); |
| |
| /* If fragmentation is disabled and the message length exceeds the |
| * association fragmentation point, return EMSGSIZE. The I-D |
| * does not specify what this error is, but this looks like |
| * a great fit. |
| */ |
| if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { |
| err = -EMSGSIZE; |
| goto out_free; |
| } |
| |
| /* Check for invalid stream. */ |
| if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { |
| err = -EINVAL; |
| goto out_free; |
| } |
| |
| if (sctp_wspace(asoc) < msg_len) |
| sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); |
| |
| timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); |
| if (!sctp_wspace(asoc)) { |
| err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); |
| if (err) |
| goto out_free; |
| } |
| |
| /* If an address is passed with the sendto/sendmsg call, it is used |
| * to override the primary destination address in the TCP model, or |
| * when SCTP_ADDR_OVER flag is set in the UDP model. |
| */ |
| if ((sctp_style(sk, TCP) && msg_name) || |
| (sinfo_flags & SCTP_ADDR_OVER)) { |
| chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); |
| if (!chunk_tp) { |
| err = -EINVAL; |
| goto out_free; |
| } |
| } else |
| chunk_tp = NULL; |
| |
| /* Auto-connect, if we aren't connected already. */ |
| if (sctp_state(asoc, CLOSED)) { |
| err = sctp_primitive_ASSOCIATE(net, asoc, NULL); |
| if (err < 0) |
| goto out_free; |
| |
| wait_connect = true; |
| pr_debug("%s: we associated primitively\n", __func__); |
| } |
| |
| /* Break the message into multiple chunks of maximum size. */ |
| datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); |
| if (IS_ERR(datamsg)) { |
| err = PTR_ERR(datamsg); |
| goto out_free; |
| } |
| |
| /* Now send the (possibly) fragmented message. */ |
| list_for_each_entry(chunk, &datamsg->chunks, frag_list) { |
| sctp_chunk_hold(chunk); |
| |
| /* Do accounting for the write space. */ |
| sctp_set_owner_w(chunk); |
| |
| chunk->transport = chunk_tp; |
| } |
| |
| /* Send it to the lower layers. Note: all chunks |
| * must either fail or succeed. The lower layer |
| * works that way today. Keep it that way or this |
| * breaks. |
| */ |
| err = sctp_primitive_SEND(net, asoc, datamsg); |
| /* Did the lower layer accept the chunk? */ |
| if (err) { |
| sctp_datamsg_free(datamsg); |
| goto out_free; |
| } |
| |
| pr_debug("%s: we sent primitively\n", __func__); |
| |
| sctp_datamsg_put(datamsg); |
| err = msg_len; |
| |
| if (unlikely(wait_connect)) { |
| timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); |
| sctp_wait_for_connect(asoc, &timeo); |
| } |
| |
| /* If we are already past ASSOCIATE, the lower |
| * layers are responsible for association cleanup. |
| */ |
| goto out_unlock; |
| |
| out_free: |
| if (new_asoc) |
| sctp_association_free(asoc); |
| out_unlock: |
| release_sock(sk); |
| |
| out_nounlock: |
| return sctp_error(sk, msg_flags, err); |
| |
| #if 0 |
| do_sock_err: |
| if (msg_len) |
| err = msg_len; |
| else |
| err = sock_error(sk); |
| goto out; |
| |
| do_interrupted: |
| if (msg_len) |
| err = msg_len; |
| goto out; |
| #endif /* 0 */ |
| } |
| |
| /* This is an extended version of skb_pull() that removes the data from the |
| * start of a skb even when data is spread across the list of skb's in the |
| * frag_list. len specifies the total amount of data that needs to be removed. |
| * when 'len' bytes could be removed from the skb, it returns 0. |
| * If 'len' exceeds the total skb length, it returns the no. of bytes that |
| * could not be removed. |
| */ |
| static int sctp_skb_pull(struct sk_buff *skb, int len) |
| { |
| struct sk_buff *list; |
| int skb_len = skb_headlen(skb); |
| int rlen; |
| |
| if (len <= skb_len) { |
| __skb_pull(skb, len); |
| return 0; |
| } |
| len -= skb_len; |
| __skb_pull(skb, skb_len); |
| |
| skb_walk_frags(skb, list) { |
| rlen = sctp_skb_pull(list, len); |
| skb->len -= (len-rlen); |
| skb->data_len -= (len-rlen); |
| |
| if (!rlen) |
| return 0; |
| |
| len = rlen; |
| } |
| |
| return len; |
| } |
| |
| /* API 3.1.3 recvmsg() - UDP Style Syntax |
| * |
| * ssize_t recvmsg(int socket, struct msghdr *message, |
| * int flags); |
| * |
| * socket - the socket descriptor of the endpoint. |
| * message - pointer to the msghdr structure which contains a single |
| * user message and possibly some ancillary data. |
| * |
| * See Section 5 for complete description of the data |
| * structures. |
| * |
| * flags - flags sent or received with the user message, see Section |
| * 5 for complete description of the flags. |
| */ |
| static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, |
| int noblock, int flags, int *addr_len) |
| { |
| struct sctp_ulpevent *event = NULL; |
| struct sctp_sock *sp = sctp_sk(sk); |
| struct sk_buff *skb, *head_skb; |
| int copied; |
| int err = 0; |
| int skb_len; |
| |
| pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " |
| "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, |
| addr_len); |
| |
| lock_sock(sk); |
| |
| if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && |
| !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { |
| err = -ENOTCONN; |
| goto out; |
| } |
| |
| skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); |
| if (!skb) |
| goto out; |
| |
| /* Get the total length of the skb including any skb's in the |
| * frag_list. |
| */ |
| skb_len = skb->len; |
| |
| copied = skb_len; |
| if (copied > len) |
| copied = len; |
| |
| err = skb_copy_datagram_msg(skb, 0, msg, copied); |
| |
| event = sctp_skb2event(skb); |
| |
| if (err) |
| goto out_free; |
| |
| if (event->chunk && event->chunk->head_skb) |
| head_skb = event->chunk->head_skb; |
| else |
| head_skb = skb; |
| sock_recv_ts_and_drops(msg, sk, head_skb); |
| if (sctp_ulpevent_is_notification(event)) { |
| msg->msg_flags |= MSG_NOTIFICATION; |
| sp->pf->event_msgname(event, msg->msg_name, addr_len); |
| } else { |
| sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); |
| } |
| |
| /* Check if we allow SCTP_NXTINFO. */ |
| if (sp->recvnxtinfo) |
| sctp_ulpevent_read_nxtinfo(event, msg, sk); |
| /* Check if we allow SCTP_RCVINFO. */ |
| if (sp->recvrcvinfo) |
| sctp_ulpevent_read_rcvinfo(event, msg); |
| /* Check if we allow SCTP_SNDRCVINFO. */ |
| if (sp->subscribe.sctp_data_io_event) |
| sctp_ulpevent_read_sndrcvinfo(event, msg); |
| |
| err = copied; |
| |
| /* If skb's length exceeds the user's buffer, update the skb and |
| * push it back to the receive_queue so that the next call to |
| * recvmsg() will return the remaining data. Don't set MSG_EOR. |
| */ |
| if (skb_len > copied) { |
| msg->msg_flags &= ~MSG_EOR; |
| if (flags & MSG_PEEK) |
| goto out_free; |
| sctp_skb_pull(skb, copied); |
| skb_queue_head(&sk->sk_receive_queue, skb); |
| |
| /* When only partial message is copied to the user, increase |
| * rwnd by that amount. If all the data in the skb is read, |
| * rwnd is updated when the event is freed. |
| */ |
| if (!sctp_ulpevent_is_notification(event)) |
| sctp_assoc_rwnd_increase(event->asoc, copied); |
| goto out; |
| } else if ((event->msg_flags & MSG_NOTIFICATION) || |
| (event->msg_flags & MSG_EOR)) |
| msg->msg_flags |= MSG_EOR; |
| else |
| msg->msg_flags &= ~MSG_EOR; |
| |
| out_free: |
| if (flags & MSG_PEEK) { |
| /* Release the skb reference acquired after peeking the skb in |
| * sctp_skb_recv_datagram(). |
| */ |
| kfree_skb(skb); |
| } else { |
| /* Free the event which includes releasing the reference to |
| * the owner of the skb, freeing the skb and updating the |
| * rwnd. |
| */ |
| sctp_ulpevent_free(event); |
| } |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) |
| * |
| * This option is a on/off flag. If enabled no SCTP message |
| * fragmentation will be performed. Instead if a message being sent |
| * exceeds the current PMTU size, the message will NOT be sent and |
| * instead a error will be indicated to the user. |
| */ |
| static int sctp_setsockopt_disable_fragments(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| int val; |
| |
| if (optlen < sizeof(int)) |
| return -EINVAL; |
| |
| if (get_user(val, (int __user *)optval)) |
| return -EFAULT; |
| |
| sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; |
| |
| return 0; |
| } |
| |
| static int sctp_setsockopt_events(struct sock *sk, char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_association *asoc; |
| struct sctp_ulpevent *event; |
| |
| if (optlen > sizeof(struct sctp_event_subscribe)) |
| return -EINVAL; |
| if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) |
| return -EFAULT; |
| |
| /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, |
| * if there is no data to be sent or retransmit, the stack will |
| * immediately send up this notification. |
| */ |
| if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, |
| &sctp_sk(sk)->subscribe)) { |
| asoc = sctp_id2assoc(sk, 0); |
| |
| if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { |
| event = sctp_ulpevent_make_sender_dry_event(asoc, |
| GFP_ATOMIC); |
| if (!event) |
| return -ENOMEM; |
| |
| sctp_ulpq_tail_event(&asoc->ulpq, event); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) |
| * |
| * This socket option is applicable to the UDP-style socket only. When |
| * set it will cause associations that are idle for more than the |
| * specified number of seconds to automatically close. An association |
| * being idle is defined an association that has NOT sent or received |
| * user data. The special value of '0' indicates that no automatic |
| * close of any associations should be performed. The option expects an |
| * integer defining the number of seconds of idle time before an |
| * association is closed. |
| */ |
| static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_sock *sp = sctp_sk(sk); |
| struct net *net = sock_net(sk); |
| |
| /* Applicable to UDP-style socket only */ |
| if (sctp_style(sk, TCP)) |
| return -EOPNOTSUPP; |
| if (optlen != sizeof(int)) |
| return -EINVAL; |
| if (copy_from_user(&sp->autoclose, optval, optlen)) |
| return -EFAULT; |
| |
| if (sp->autoclose > net->sctp.max_autoclose) |
| sp->autoclose = net->sctp.max_autoclose; |
| |
| return 0; |
| } |
| |
| /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) |
| * |
| * Applications can enable or disable heartbeats for any peer address of |
| * an association, modify an address's heartbeat interval, force a |
| * heartbeat to be sent immediately, and adjust the address's maximum |
| * number of retransmissions sent before an address is considered |
| * unreachable. The following structure is used to access and modify an |
| * address's parameters: |
| * |
| * struct sctp_paddrparams { |
| * sctp_assoc_t spp_assoc_id; |
| * struct sockaddr_storage spp_address; |
| * uint32_t spp_hbinterval; |
| * uint16_t spp_pathmaxrxt; |
| * uint32_t spp_pathmtu; |
| * uint32_t spp_sackdelay; |
| * uint32_t spp_flags; |
| * }; |
| * |
| * spp_assoc_id - (one-to-many style socket) This is filled in the |
| * application, and identifies the association for |
| * this query. |
| * spp_address - This specifies which address is of interest. |
| * spp_hbinterval - This contains the value of the heartbeat interval, |
| * in milliseconds. If a value of zero |
| * is present in this field then no changes are to |
| * be made to this parameter. |
| * spp_pathmaxrxt - This contains the maximum number of |
| * retransmissions before this address shall be |
| * considered unreachable. If a value of zero |
| * is present in this field then no changes are to |
| * be made to this parameter. |
| * spp_pathmtu - When Path MTU discovery is disabled the value |
| * specified here will be the "fixed" path mtu. |
| * Note that if the spp_address field is empty |
| * then all associations on this address will |
| * have this fixed path mtu set upon them. |
| * |
| * spp_sackdelay - When delayed sack is enabled, this value specifies |
| * the number of milliseconds that sacks will be delayed |
| * for. This value will apply to all addresses of an |
| * association if the spp_address field is empty. Note |
| * also, that if delayed sack is enabled and this |
| * value is set to 0, no change is made to the last |
| * recorded delayed sack timer value. |
| * |
| * spp_flags - These flags are used to control various features |
| * on an association. The flag field may contain |
| * zero or more of the following options. |
| * |
| * SPP_HB_ENABLE - Enable heartbeats on the |
| * specified address. Note that if the address |
| * field is empty all addresses for the association |
| * have heartbeats enabled upon them. |
| * |
| * SPP_HB_DISABLE - Disable heartbeats on the |
| * speicifed address. Note that if the address |
| * field is empty all addresses for the association |
| * will have their heartbeats disabled. Note also |
| * that SPP_HB_ENABLE and SPP_HB_DISABLE are |
| * mutually exclusive, only one of these two should |
| * be specified. Enabling both fields will have |
| * undetermined results. |
| * |
| * SPP_HB_DEMAND - Request a user initiated heartbeat |
| * to be made immediately. |
| * |
| * SPP_HB_TIME_IS_ZERO - Specify's that the time for |
| * heartbeat delayis to be set to the value of 0 |
| * milliseconds. |
| * |
| * SPP_PMTUD_ENABLE - This field will enable PMTU |
| * discovery upon the specified address. Note that |
| * if the address feild is empty then all addresses |
| * on the association are effected. |
| * |
| * SPP_PMTUD_DISABLE - This field will disable PMTU |
| * discovery upon the specified address. Note that |
| * if the address feild is empty then all addresses |
| * on the association are effected. Not also that |
| * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually |
| * exclusive. Enabling both will have undetermined |
| * results. |
| * |
| * SPP_SACKDELAY_ENABLE - Setting this flag turns |
| * on delayed sack. The time specified in spp_sackdelay |
| * is used to specify the sack delay for this address. Note |
| * that if spp_address is empty then all addresses will |
| * enable delayed sack and take on the sack delay |
| * value specified in spp_sackdelay. |
| * SPP_SACKDELAY_DISABLE - Setting this flag turns |
| * off delayed sack. If the spp_address field is blank then |
| * delayed sack is disabled for the entire association. Note |
| * also that this field is mutually exclusive to |
| * SPP_SACKDELAY_ENABLE, setting both will have undefined |
| * results. |
| */ |
| static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, |
| struct sctp_transport *trans, |
| struct sctp_association *asoc, |
| struct sctp_sock *sp, |
| int hb_change, |
| int pmtud_change, |
| int sackdelay_change) |
| { |
| int error; |
| |
| if (params->spp_flags & SPP_HB_DEMAND && trans) { |
| struct net *net = sock_net(trans->asoc->base.sk); |
| |
| error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); |
| if (error) |
| return error; |
| } |
| |
| /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of |
| * this field is ignored. Note also that a value of zero indicates |
| * the current setting should be left unchanged. |
| */ |
| if (params->spp_flags & SPP_HB_ENABLE) { |
| |
| /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is |
| * set. This lets us use 0 value when this flag |
| * is set. |
| */ |
| if (params->spp_flags & SPP_HB_TIME_IS_ZERO) |
| params->spp_hbinterval = 0; |
| |
| if (params->spp_hbinterval || |
| (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { |
| if (trans) { |
| trans->hbinterval = |
| msecs_to_jiffies(params->spp_hbinterval); |
| } else if (asoc) { |
| asoc->hbinterval = |
| msecs_to_jiffies(params->spp_hbinterval); |
| } else { |
| sp->hbinterval = params->spp_hbinterval; |
| } |
| } |
| } |
| |
| if (hb_change) { |
| if (trans) { |
| trans->param_flags = |
| (trans->param_flags & ~SPP_HB) | hb_change; |
| } else if (asoc) { |
| asoc->param_flags = |
| (asoc->param_flags & ~SPP_HB) | hb_change; |
| } else { |
| sp->param_flags = |
| (sp->param_flags & ~SPP_HB) | hb_change; |
| } |
| } |
| |
| /* When Path MTU discovery is disabled the value specified here will |
| * be the "fixed" path mtu (i.e. the value of the spp_flags field must |
| * include the flag SPP_PMTUD_DISABLE for this field to have any |
| * effect). |
| */ |
| if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { |
| if (trans) { |
| trans->pathmtu = params->spp_pathmtu; |
| sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); |
| } else if (asoc) { |
| asoc->pathmtu = params->spp_pathmtu; |
| sctp_frag_point(asoc, params->spp_pathmtu); |
| } else { |
| sp->pathmtu = params->spp_pathmtu; |
| } |
| } |
| |
| if (pmtud_change) { |
| if (trans) { |
| int update = (trans->param_flags & SPP_PMTUD_DISABLE) && |
| (params->spp_flags & SPP_PMTUD_ENABLE); |
| trans->param_flags = |
| (trans->param_flags & ~SPP_PMTUD) | pmtud_change; |
| if (update) { |
| sctp_transport_pmtu(trans, sctp_opt2sk(sp)); |
| sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); |
| } |
| } else if (asoc) { |
| asoc->param_flags = |
| (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; |
| } else { |
| sp->param_flags = |
| (sp->param_flags & ~SPP_PMTUD) | pmtud_change; |
| } |
| } |
| |
| /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the |
| * value of this field is ignored. Note also that a value of zero |
| * indicates the current setting should be left unchanged. |
| */ |
| if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { |
| if (trans) { |
| trans->sackdelay = |
| msecs_to_jiffies(params->spp_sackdelay); |
| } else if (asoc) { |
| asoc->sackdelay = |
| msecs_to_jiffies(params->spp_sackdelay); |
| } else { |
| sp->sackdelay = params->spp_sackdelay; |
| } |
| } |
| |
| if (sackdelay_change) { |
| if (trans) { |
| trans->param_flags = |
| (trans->param_flags & ~SPP_SACKDELAY) | |
| sackdelay_change; |
| } else if (asoc) { |
| asoc->param_flags = |
| (asoc->param_flags & ~SPP_SACKDELAY) | |
| sackdelay_change; |
| } else { |
| sp->param_flags = |
| (sp->param_flags & ~SPP_SACKDELAY) | |
| sackdelay_change; |
| } |
| } |
| |
| /* Note that a value of zero indicates the current setting should be |
| left unchanged. |
| */ |
| if (params->spp_pathmaxrxt) { |
| if (trans) { |
| trans->pathmaxrxt = params->spp_pathmaxrxt; |
| } else if (asoc) { |
| asoc->pathmaxrxt = params->spp_pathmaxrxt; |
| } else { |
| sp->pathmaxrxt = params->spp_pathmaxrxt; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int sctp_setsockopt_peer_addr_params(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_paddrparams params; |
| struct sctp_transport *trans = NULL; |
| struct sctp_association *asoc = NULL; |
| struct sctp_sock *sp = sctp_sk(sk); |
| int error; |
| int hb_change, pmtud_change, sackdelay_change; |
| |
| if (optlen != sizeof(struct sctp_paddrparams)) |
| return -EINVAL; |
| |
| if (copy_from_user(¶ms, optval, optlen)) |
| return -EFAULT; |
| |
| /* Validate flags and value parameters. */ |
| hb_change = params.spp_flags & SPP_HB; |
| pmtud_change = params.spp_flags & SPP_PMTUD; |
| sackdelay_change = params.spp_flags & SPP_SACKDELAY; |
| |
| if (hb_change == SPP_HB || |
| pmtud_change == SPP_PMTUD || |
| sackdelay_change == SPP_SACKDELAY || |
| params.spp_sackdelay > 500 || |
| (params.spp_pathmtu && |
| params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) |
| return -EINVAL; |
| |
| /* If an address other than INADDR_ANY is specified, and |
| * no transport is found, then the request is invalid. |
| */ |
| if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { |
| trans = sctp_addr_id2transport(sk, ¶ms.spp_address, |
| params.spp_assoc_id); |
| if (!trans) |
| return -EINVAL; |
| } |
| |
| /* Get association, if assoc_id != 0 and the socket is a one |
| * to many style socket, and an association was not found, then |
| * the id was invalid. |
| */ |
| asoc = sctp_id2assoc(sk, params.spp_assoc_id); |
| if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| /* Heartbeat demand can only be sent on a transport or |
| * association, but not a socket. |
| */ |
| if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) |
| return -EINVAL; |
| |
| /* Process parameters. */ |
| error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, |
| hb_change, pmtud_change, |
| sackdelay_change); |
| |
| if (error) |
| return error; |
| |
| /* If changes are for association, also apply parameters to each |
| * transport. |
| */ |
| if (!trans && asoc) { |
| list_for_each_entry(trans, &asoc->peer.transport_addr_list, |
| transports) { |
| sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, |
| hb_change, pmtud_change, |
| sackdelay_change); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) |
| { |
| return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; |
| } |
| |
| static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) |
| { |
| return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; |
| } |
| |
| /* |
| * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) |
| * |
| * This option will effect the way delayed acks are performed. This |
| * option allows you to get or set the delayed ack time, in |
| * milliseconds. It also allows changing the delayed ack frequency. |
| * Changing the frequency to 1 disables the delayed sack algorithm. If |
| * the assoc_id is 0, then this sets or gets the endpoints default |
| * values. If the assoc_id field is non-zero, then the set or get |
| * effects the specified association for the one to many model (the |
| * assoc_id field is ignored by the one to one model). Note that if |
| * sack_delay or sack_freq are 0 when setting this option, then the |
| * current values will remain unchanged. |
| * |
| * struct sctp_sack_info { |
| * sctp_assoc_t sack_assoc_id; |
| * uint32_t sack_delay; |
| * uint32_t sack_freq; |
| * }; |
| * |
| * sack_assoc_id - This parameter, indicates which association the user |
| * is performing an action upon. Note that if this field's value is |
| * zero then the endpoints default value is changed (effecting future |
| * associations only). |
| * |
| * sack_delay - This parameter contains the number of milliseconds that |
| * the user is requesting the delayed ACK timer be set to. Note that |
| * this value is defined in the standard to be between 200 and 500 |
| * milliseconds. |
| * |
| * sack_freq - This parameter contains the number of packets that must |
| * be received before a sack is sent without waiting for the delay |
| * timer to expire. The default value for this is 2, setting this |
| * value to 1 will disable the delayed sack algorithm. |
| */ |
| |
| static int sctp_setsockopt_delayed_ack(struct sock *sk, |
| char __user *optval, unsigned int optlen) |
| { |
| struct sctp_sack_info params; |
| struct sctp_transport *trans = NULL; |
| struct sctp_association *asoc = NULL; |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| if (optlen == sizeof(struct sctp_sack_info)) { |
| if (copy_from_user(¶ms, optval, optlen)) |
| return -EFAULT; |
| |
| if (params.sack_delay == 0 && params.sack_freq == 0) |
| return 0; |
| } else if (optlen == sizeof(struct sctp_assoc_value)) { |
| pr_warn_ratelimited(DEPRECATED |
| "%s (pid %d) " |
| "Use of struct sctp_assoc_value in delayed_ack socket option.\n" |
| "Use struct sctp_sack_info instead\n", |
| current->comm, task_pid_nr(current)); |
| if (copy_from_user(¶ms, optval, optlen)) |
| return -EFAULT; |
| |
| if (params.sack_delay == 0) |
| params.sack_freq = 1; |
| else |
| params.sack_freq = 0; |
| } else |
| return -EINVAL; |
| |
| /* Validate value parameter. */ |
| if (params.sack_delay > 500) |
| return -EINVAL; |
| |
| /* Get association, if sack_assoc_id != 0 and the socket is a one |
| * to many style socket, and an association was not found, then |
| * the id was invalid. |
| */ |
| asoc = sctp_id2assoc(sk, params.sack_assoc_id); |
| if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| if (params.sack_delay) { |
| if (asoc) { |
| asoc->sackdelay = |
| msecs_to_jiffies(params.sack_delay); |
| asoc->param_flags = |
| sctp_spp_sackdelay_enable(asoc->param_flags); |
| } else { |
| sp->sackdelay = params.sack_delay; |
| sp->param_flags = |
| sctp_spp_sackdelay_enable(sp->param_flags); |
| } |
| } |
| |
| if (params.sack_freq == 1) { |
| if (asoc) { |
| asoc->param_flags = |
| sctp_spp_sackdelay_disable(asoc->param_flags); |
| } else { |
| sp->param_flags = |
| sctp_spp_sackdelay_disable(sp->param_flags); |
| } |
| } else if (params.sack_freq > 1) { |
| if (asoc) { |
| asoc->sackfreq = params.sack_freq; |
| asoc->param_flags = |
| sctp_spp_sackdelay_enable(asoc->param_flags); |
| } else { |
| sp->sackfreq = params.sack_freq; |
| sp->param_flags = |
| sctp_spp_sackdelay_enable(sp->param_flags); |
| } |
| } |
| |
| /* If change is for association, also apply to each transport. */ |
| if (asoc) { |
| list_for_each_entry(trans, &asoc->peer.transport_addr_list, |
| transports) { |
| if (params.sack_delay) { |
| trans->sackdelay = |
| msecs_to_jiffies(params.sack_delay); |
| trans->param_flags = |
| sctp_spp_sackdelay_enable(trans->param_flags); |
| } |
| if (params.sack_freq == 1) { |
| trans->param_flags = |
| sctp_spp_sackdelay_disable(trans->param_flags); |
| } else if (params.sack_freq > 1) { |
| trans->sackfreq = params.sack_freq; |
| trans->param_flags = |
| sctp_spp_sackdelay_enable(trans->param_flags); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* 7.1.3 Initialization Parameters (SCTP_INITMSG) |
| * |
| * Applications can specify protocol parameters for the default association |
| * initialization. The option name argument to setsockopt() and getsockopt() |
| * is SCTP_INITMSG. |
| * |
| * Setting initialization parameters is effective only on an unconnected |
| * socket (for UDP-style sockets only future associations are effected |
| * by the change). With TCP-style sockets, this option is inherited by |
| * sockets derived from a listener socket. |
| */ |
| static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) |
| { |
| struct sctp_initmsg sinit; |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| if (optlen != sizeof(struct sctp_initmsg)) |
| return -EINVAL; |
| if (copy_from_user(&sinit, optval, optlen)) |
| return -EFAULT; |
| |
| if (sinit.sinit_num_ostreams) |
| sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; |
| if (sinit.sinit_max_instreams) |
| sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; |
| if (sinit.sinit_max_attempts) |
| sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; |
| if (sinit.sinit_max_init_timeo) |
| sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; |
| |
| return 0; |
| } |
| |
| /* |
| * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) |
| * |
| * Applications that wish to use the sendto() system call may wish to |
| * specify a default set of parameters that would normally be supplied |
| * through the inclusion of ancillary data. This socket option allows |
| * such an application to set the default sctp_sndrcvinfo structure. |
| * The application that wishes to use this socket option simply passes |
| * in to this call the sctp_sndrcvinfo structure defined in Section |
| * 5.2.2) The input parameters accepted by this call include |
| * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, |
| * sinfo_timetolive. The user must provide the sinfo_assoc_id field in |
| * to this call if the caller is using the UDP model. |
| */ |
| static int sctp_setsockopt_default_send_param(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_sock *sp = sctp_sk(sk); |
| struct sctp_association *asoc; |
| struct sctp_sndrcvinfo info; |
| |
| if (optlen != sizeof(info)) |
| return -EINVAL; |
| if (copy_from_user(&info, optval, optlen)) |
| return -EFAULT; |
| if (info.sinfo_flags & |
| ~(SCTP_UNORDERED | SCTP_ADDR_OVER | |
| SCTP_ABORT | SCTP_EOF)) |
| return -EINVAL; |
| |
| asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); |
| if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| if (asoc) { |
| asoc->default_stream = info.sinfo_stream; |
| asoc->default_flags = info.sinfo_flags; |
| asoc->default_ppid = info.sinfo_ppid; |
| asoc->default_context = info.sinfo_context; |
| asoc->default_timetolive = info.sinfo_timetolive; |
| } else { |
| sp->default_stream = info.sinfo_stream; |
| sp->default_flags = info.sinfo_flags; |
| sp->default_ppid = info.sinfo_ppid; |
| sp->default_context = info.sinfo_context; |
| sp->default_timetolive = info.sinfo_timetolive; |
| } |
| |
| return 0; |
| } |
| |
| /* RFC6458, Section 8.1.31. Set/get Default Send Parameters |
| * (SCTP_DEFAULT_SNDINFO) |
| */ |
| static int sctp_setsockopt_default_sndinfo(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_sock *sp = sctp_sk(sk); |
| struct sctp_association *asoc; |
| struct sctp_sndinfo info; |
| |
| if (optlen != sizeof(info)) |
| return -EINVAL; |
| if (copy_from_user(&info, optval, optlen)) |
| return -EFAULT; |
| if (info.snd_flags & |
| ~(SCTP_UNORDERED | SCTP_ADDR_OVER | |
| SCTP_ABORT | SCTP_EOF)) |
| return -EINVAL; |
| |
| asoc = sctp_id2assoc(sk, info.snd_assoc_id); |
| if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| if (asoc) { |
| asoc->default_stream = info.snd_sid; |
| asoc->default_flags = info.snd_flags; |
| asoc->default_ppid = info.snd_ppid; |
| asoc->default_context = info.snd_context; |
| } else { |
| sp->default_stream = info.snd_sid; |
| sp->default_flags = info.snd_flags; |
| sp->default_ppid = info.snd_ppid; |
| sp->default_context = info.snd_context; |
| } |
| |
| return 0; |
| } |
| |
| /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) |
| * |
| * Requests that the local SCTP stack use the enclosed peer address as |
| * the association primary. The enclosed address must be one of the |
| * association peer's addresses. |
| */ |
| static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_prim prim; |
| struct sctp_transport *trans; |
| |
| if (optlen != sizeof(struct sctp_prim)) |
| return -EINVAL; |
| |
| if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) |
| return -EFAULT; |
| |
| trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); |
| if (!trans) |
| return -EINVAL; |
| |
| sctp_assoc_set_primary(trans->asoc, trans); |
| |
| return 0; |
| } |
| |
| /* |
| * 7.1.5 SCTP_NODELAY |
| * |
| * Turn on/off any Nagle-like algorithm. This means that packets are |
| * generally sent as soon as possible and no unnecessary delays are |
| * introduced, at the cost of more packets in the network. Expects an |
| * integer boolean flag. |
| */ |
| static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, |
| unsigned int optlen) |
| { |
| int val; |
| |
| if (optlen < sizeof(int)) |
| return -EINVAL; |
| if (get_user(val, (int __user *)optval)) |
| return -EFAULT; |
| |
| sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; |
| return 0; |
| } |
| |
| /* |
| * |
| * 7.1.1 SCTP_RTOINFO |
| * |
| * The protocol parameters used to initialize and bound retransmission |
| * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access |
| * and modify these parameters. |
| * All parameters are time values, in milliseconds. A value of 0, when |
| * modifying the parameters, indicates that the current value should not |
| * be changed. |
| * |
| */ |
| static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) |
| { |
| struct sctp_rtoinfo rtoinfo; |
| struct sctp_association *asoc; |
| unsigned long rto_min, rto_max; |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| if (optlen != sizeof (struct sctp_rtoinfo)) |
| return -EINVAL; |
| |
| if (copy_from_user(&rtoinfo, optval, optlen)) |
| return -EFAULT; |
| |
| asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); |
| |
| /* Set the values to the specific association */ |
| if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| rto_max = rtoinfo.srto_max; |
| rto_min = rtoinfo.srto_min; |
| |
| if (rto_max) |
| rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; |
| else |
| rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; |
| |
| if (rto_min) |
| rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; |
| else |
| rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; |
| |
| if (rto_min > rto_max) |
| return -EINVAL; |
| |
| if (asoc) { |
| if (rtoinfo.srto_initial != 0) |
| asoc->rto_initial = |
| msecs_to_jiffies(rtoinfo.srto_initial); |
| asoc->rto_max = rto_max; |
| asoc->rto_min = rto_min; |
| } else { |
| /* If there is no association or the association-id = 0 |
| * set the values to the endpoint. |
| */ |
| if (rtoinfo.srto_initial != 0) |
| sp->rtoinfo.srto_initial = rtoinfo.srto_initial; |
| sp->rtoinfo.srto_max = rto_max; |
| sp->rtoinfo.srto_min = rto_min; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * 7.1.2 SCTP_ASSOCINFO |
| * |
| * This option is used to tune the maximum retransmission attempts |
| * of the association. |
| * Returns an error if the new association retransmission value is |
| * greater than the sum of the retransmission value of the peer. |
| * See [SCTP] for more information. |
| * |
| */ |
| static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) |
| { |
| |
| struct sctp_assocparams assocparams; |
| struct sctp_association *asoc; |
| |
| if (optlen != sizeof(struct sctp_assocparams)) |
| return -EINVAL; |
| if (copy_from_user(&assocparams, optval, optlen)) |
| return -EFAULT; |
| |
| asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); |
| |
| if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| /* Set the values to the specific association */ |
| if (asoc) { |
| if (assocparams.sasoc_asocmaxrxt != 0) { |
| __u32 path_sum = 0; |
| int paths = 0; |
| struct sctp_transport *peer_addr; |
| |
| list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, |
| transports) { |
| path_sum += peer_addr->pathmaxrxt; |
| paths++; |
| } |
| |
| /* Only validate asocmaxrxt if we have more than |
| * one path/transport. We do this because path |
| * retransmissions are only counted when we have more |
| * then one path. |
| */ |
| if (paths > 1 && |
| assocparams.sasoc_asocmaxrxt > path_sum) |
| return -EINVAL; |
| |
| asoc->max_retrans = assocparams.sasoc_asocmaxrxt; |
| } |
| |
| if (assocparams.sasoc_cookie_life != 0) |
| asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); |
| } else { |
| /* Set the values to the endpoint */ |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| if (assocparams.sasoc_asocmaxrxt != 0) |
| sp->assocparams.sasoc_asocmaxrxt = |
| assocparams.sasoc_asocmaxrxt; |
| if (assocparams.sasoc_cookie_life != 0) |
| sp->assocparams.sasoc_cookie_life = |
| assocparams.sasoc_cookie_life; |
| } |
| return 0; |
| } |
| |
| /* |
| * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) |
| * |
| * This socket option is a boolean flag which turns on or off mapped V4 |
| * addresses. If this option is turned on and the socket is type |
| * PF_INET6, then IPv4 addresses will be mapped to V6 representation. |
| * If this option is turned off, then no mapping will be done of V4 |
| * addresses and a user will receive both PF_INET6 and PF_INET type |
| * addresses on the socket. |
| */ |
| static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) |
| { |
| int val; |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| if (optlen < sizeof(int)) |
| return -EINVAL; |
| if (get_user(val, (int __user *)optval)) |
| return -EFAULT; |
| if (val) |
| sp->v4mapped = 1; |
| else |
| sp->v4mapped = 0; |
| |
| return 0; |
| } |
| |
| /* |
| * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) |
| * This option will get or set the maximum size to put in any outgoing |
| * SCTP DATA chunk. If a message is larger than this size it will be |
| * fragmented by SCTP into the specified size. Note that the underlying |
| * SCTP implementation may fragment into smaller sized chunks when the |
| * PMTU of the underlying association is smaller than the value set by |
| * the user. The default value for this option is '0' which indicates |
| * the user is NOT limiting fragmentation and only the PMTU will effect |
| * SCTP's choice of DATA chunk size. Note also that values set larger |
| * than the maximum size of an IP datagram will effectively let SCTP |
| * control fragmentation (i.e. the same as setting this option to 0). |
| * |
| * The following structure is used to access and modify this parameter: |
| * |
| * struct sctp_assoc_value { |
| * sctp_assoc_t assoc_id; |
| * uint32_t assoc_value; |
| * }; |
| * |
| * assoc_id: This parameter is ignored for one-to-one style sockets. |
| * For one-to-many style sockets this parameter indicates which |
| * association the user is performing an action upon. Note that if |
| * this field's value is zero then the endpoints default value is |
| * changed (effecting future associations only). |
| * assoc_value: This parameter specifies the maximum size in bytes. |
| */ |
| static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) |
| { |
| struct sctp_assoc_value params; |
| struct sctp_association *asoc; |
| struct sctp_sock *sp = sctp_sk(sk); |
| int val; |
| |
| if (optlen == sizeof(int)) { |
| pr_warn_ratelimited(DEPRECATED |
| "%s (pid %d) " |
| "Use of int in maxseg socket option.\n" |
| "Use struct sctp_assoc_value instead\n", |
| current->comm, task_pid_nr(current)); |
| if (copy_from_user(&val, optval, optlen)) |
| return -EFAULT; |
| params.assoc_id = 0; |
| } else if (optlen == sizeof(struct sctp_assoc_value)) { |
| if (copy_from_user(¶ms, optval, optlen)) |
| return -EFAULT; |
| val = params.assoc_value; |
| } else |
| return -EINVAL; |
| |
| if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) |
| return -EINVAL; |
| |
| asoc = sctp_id2assoc(sk, params.assoc_id); |
| if (!asoc && params.assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| if (asoc) { |
| if (val == 0) { |
| val = asoc->pathmtu; |
| val -= sp->pf->af->net_header_len; |
| val -= sizeof(struct sctphdr) + |
| sizeof(struct sctp_data_chunk); |
| } |
| asoc->user_frag = val; |
| asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); |
| } else { |
| sp->user_frag = val; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) |
| * |
| * Requests that the peer mark the enclosed address as the association |
| * primary. The enclosed address must be one of the association's |
| * locally bound addresses. The following structure is used to make a |
| * set primary request: |
| */ |
| static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, |
| unsigned int optlen) |
| { |
| struct net *net = sock_net(sk); |
| struct sctp_sock *sp; |
| struct sctp_association *asoc = NULL; |
| struct sctp_setpeerprim prim; |
| struct sctp_chunk *chunk; |
| struct sctp_af *af; |
| int err; |
| |
| sp = sctp_sk(sk); |
| |
| if (!net->sctp.addip_enable) |
| return -EPERM; |
| |
| if (optlen != sizeof(struct sctp_setpeerprim)) |
| return -EINVAL; |
| |
| if (copy_from_user(&prim, optval, optlen)) |
| return -EFAULT; |
| |
| asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); |
| if (!asoc) |
| return -EINVAL; |
| |
| if (!asoc->peer.asconf_capable) |
| return -EPERM; |
| |
| if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) |
| return -EPERM; |
| |
| if (!sctp_state(asoc, ESTABLISHED)) |
| return -ENOTCONN; |
| |
| af = sctp_get_af_specific(prim.sspp_addr.ss_family); |
| if (!af) |
| return -EINVAL; |
| |
| if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) |
| return -EADDRNOTAVAIL; |
| |
| if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) |
| return -EADDRNOTAVAIL; |
| |
| /* Create an ASCONF chunk with SET_PRIMARY parameter */ |
| chunk = sctp_make_asconf_set_prim(asoc, |
| (union sctp_addr *)&prim.sspp_addr); |
| if (!chunk) |
| return -ENOMEM; |
| |
| err = sctp_send_asconf(asoc, chunk); |
| |
| pr_debug("%s: we set peer primary addr primitively\n", __func__); |
| |
| return err; |
| } |
| |
| static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_setadaptation adaptation; |
| |
| if (optlen != sizeof(struct sctp_setadaptation)) |
| return -EINVAL; |
| if (copy_from_user(&adaptation, optval, optlen)) |
| return -EFAULT; |
| |
| sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; |
| |
| return 0; |
| } |
| |
| /* |
| * 7.1.29. Set or Get the default context (SCTP_CONTEXT) |
| * |
| * The context field in the sctp_sndrcvinfo structure is normally only |
| * used when a failed message is retrieved holding the value that was |
| * sent down on the actual send call. This option allows the setting of |
| * a default context on an association basis that will be received on |
| * reading messages from the peer. This is especially helpful in the |
| * one-2-many model for an application to keep some reference to an |
| * internal state machine that is processing messages on the |
| * association. Note that the setting of this value only effects |
| * received messages from the peer and does not effect the value that is |
| * saved with outbound messages. |
| */ |
| static int sctp_setsockopt_context(struct sock *sk, char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_assoc_value params; |
| struct sctp_sock *sp; |
| struct sctp_association *asoc; |
| |
| if (optlen != sizeof(struct sctp_assoc_value)) |
| return -EINVAL; |
| if (copy_from_user(¶ms, optval, optlen)) |
| return -EFAULT; |
| |
| sp = sctp_sk(sk); |
| |
| if (params.assoc_id != 0) { |
| asoc = sctp_id2assoc(sk, params.assoc_id); |
| if (!asoc) |
| return -EINVAL; |
| asoc->default_rcv_context = params.assoc_value; |
| } else { |
| sp->default_rcv_context = params.assoc_value; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) |
| * |
| * This options will at a minimum specify if the implementation is doing |
| * fragmented interleave. Fragmented interleave, for a one to many |
| * socket, is when subsequent calls to receive a message may return |
| * parts of messages from different associations. Some implementations |
| * may allow you to turn this value on or off. If so, when turned off, |
| * no fragment interleave will occur (which will cause a head of line |
| * blocking amongst multiple associations sharing the same one to many |
| * socket). When this option is turned on, then each receive call may |
| * come from a different association (thus the user must receive data |
| * with the extended calls (e.g. sctp_recvmsg) to keep track of which |
| * association each receive belongs to. |
| * |
| * This option takes a boolean value. A non-zero value indicates that |
| * fragmented interleave is on. A value of zero indicates that |
| * fragmented interleave is off. |
| * |
| * Note that it is important that an implementation that allows this |
| * option to be turned on, have it off by default. Otherwise an unaware |
| * application using the one to many model may become confused and act |
| * incorrectly. |
| */ |
| static int sctp_setsockopt_fragment_interleave(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| int val; |
| |
| if (optlen != sizeof(int)) |
| return -EINVAL; |
| if (get_user(val, (int __user *)optval)) |
| return -EFAULT; |
| |
| sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; |
| |
| return 0; |
| } |
| |
| /* |
| * 8.1.21. Set or Get the SCTP Partial Delivery Point |
| * (SCTP_PARTIAL_DELIVERY_POINT) |
| * |
| * This option will set or get the SCTP partial delivery point. This |
| * point is the size of a message where the partial delivery API will be |
| * invoked to help free up rwnd space for the peer. Setting this to a |
| * lower value will cause partial deliveries to happen more often. The |
| * calls argument is an integer that sets or gets the partial delivery |
| * point. Note also that the call will fail if the user attempts to set |
| * this value larger than the socket receive buffer size. |
| * |
| * Note that any single message having a length smaller than or equal to |
| * the SCTP partial delivery point will be delivered in one single read |
| * call as long as the user provided buffer is large enough to hold the |
| * message. |
| */ |
| static int sctp_setsockopt_partial_delivery_point(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| u32 val; |
| |
| if (optlen != sizeof(u32)) |
| return -EINVAL; |
| if (get_user(val, (int __user *)optval)) |
| return -EFAULT; |
| |
| /* Note: We double the receive buffer from what the user sets |
| * it to be, also initial rwnd is based on rcvbuf/2. |
| */ |
| if (val > (sk->sk_rcvbuf >> 1)) |
| return -EINVAL; |
| |
| sctp_sk(sk)->pd_point = val; |
| |
| return 0; /* is this the right error code? */ |
| } |
| |
| /* |
| * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) |
| * |
| * This option will allow a user to change the maximum burst of packets |
| * that can be emitted by this association. Note that the default value |
| * is 4, and some implementations may restrict this setting so that it |
| * can only be lowered. |
| * |
| * NOTE: This text doesn't seem right. Do this on a socket basis with |
| * future associations inheriting the socket value. |
| */ |
| static int sctp_setsockopt_maxburst(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_assoc_value params; |
| struct sctp_sock *sp; |
| struct sctp_association *asoc; |
| int val; |
| int assoc_id = 0; |
| |
| if (optlen == sizeof(int)) { |
| pr_warn_ratelimited(DEPRECATED |
| "%s (pid %d) " |
| "Use of int in max_burst socket option deprecated.\n" |
| "Use struct sctp_assoc_value instead\n", |
| current->comm, task_pid_nr(current)); |
| if (copy_from_user(&val, optval, optlen)) |
| return -EFAULT; |
| } else if (optlen == sizeof(struct sctp_assoc_value)) { |
| if (copy_from_user(¶ms, optval, optlen)) |
| return -EFAULT; |
| val = params.assoc_value; |
| assoc_id = params.assoc_id; |
| } else |
| return -EINVAL; |
| |
| sp = sctp_sk(sk); |
| |
| if (assoc_id != 0) { |
| asoc = sctp_id2assoc(sk, assoc_id); |
| if (!asoc) |
| return -EINVAL; |
| asoc->max_burst = val; |
| } else |
| sp->max_burst = val; |
| |
| return 0; |
| } |
| |
| /* |
| * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) |
| * |
| * This set option adds a chunk type that the user is requesting to be |
| * received only in an authenticated way. Changes to the list of chunks |
| * will only effect future associations on the socket. |
| */ |
| static int sctp_setsockopt_auth_chunk(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_endpoint *ep = sctp_sk(sk)->ep; |
| struct sctp_authchunk val; |
| |
| if (!ep->auth_enable) |
| return -EACCES; |
| |
| if (optlen != sizeof(struct sctp_authchunk)) |
| return -EINVAL; |
| if (copy_from_user(&val, optval, optlen)) |
| return -EFAULT; |
| |
| switch (val.sauth_chunk) { |
| case SCTP_CID_INIT: |
| case SCTP_CID_INIT_ACK: |
| case SCTP_CID_SHUTDOWN_COMPLETE: |
| case SCTP_CID_AUTH: |
| return -EINVAL; |
| } |
| |
| /* add this chunk id to the endpoint */ |
| return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); |
| } |
| |
| /* |
| * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) |
| * |
| * This option gets or sets the list of HMAC algorithms that the local |
| * endpoint requires the peer to use. |
| */ |
| static int sctp_setsockopt_hmac_ident(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_endpoint *ep = sctp_sk(sk)->ep; |
| struct sctp_hmacalgo *hmacs; |
| u32 idents; |
| int err; |
| |
| if (!ep->auth_enable) |
| return -EACCES; |
| |
| if (optlen < sizeof(struct sctp_hmacalgo)) |
| return -EINVAL; |
| |
| hmacs = memdup_user(optval, optlen); |
| if (IS_ERR(hmacs)) |
| return PTR_ERR(hmacs); |
| |
| idents = hmacs->shmac_num_idents; |
| if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || |
| (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| err = sctp_auth_ep_set_hmacs(ep, hmacs); |
| out: |
| kfree(hmacs); |
| return err; |
| } |
| |
| /* |
| * 7.1.20. Set a shared key (SCTP_AUTH_KEY) |
| * |
| * This option will set a shared secret key which is used to build an |
| * association shared key. |
| */ |
| static int sctp_setsockopt_auth_key(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_endpoint *ep = sctp_sk(sk)->ep; |
| struct sctp_authkey *authkey; |
| struct sctp_association *asoc; |
| int ret; |
| |
| if (!ep->auth_enable) |
| return -EACCES; |
| |
| if (optlen <= sizeof(struct sctp_authkey)) |
| return -EINVAL; |
| |
| authkey = memdup_user(optval, optlen); |
| if (IS_ERR(authkey)) |
| return PTR_ERR(authkey); |
| |
| if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); |
| if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = sctp_auth_set_key(ep, asoc, authkey); |
| out: |
| kzfree(authkey); |
| return ret; |
| } |
| |
| /* |
| * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) |
| * |
| * This option will get or set the active shared key to be used to build |
| * the association shared key. |
| */ |
| static int sctp_setsockopt_active_key(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_endpoint *ep = sctp_sk(sk)->ep; |
| struct sctp_authkeyid val; |
| struct sctp_association *asoc; |
| |
| if (!ep->auth_enable) |
| return -EACCES; |
| |
| if (optlen != sizeof(struct sctp_authkeyid)) |
| return -EINVAL; |
| if (copy_from_user(&val, optval, optlen)) |
| return -EFAULT; |
| |
| asoc = sctp_id2assoc(sk, val.scact_assoc_id); |
| if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); |
| } |
| |
| /* |
| * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) |
| * |
| * This set option will delete a shared secret key from use. |
| */ |
| static int sctp_setsockopt_del_key(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_endpoint *ep = sctp_sk(sk)->ep; |
| struct sctp_authkeyid val; |
| struct sctp_association *asoc; |
| |
| if (!ep->auth_enable) |
| return -EACCES; |
| |
| if (optlen != sizeof(struct sctp_authkeyid)) |
| return -EINVAL; |
| if (copy_from_user(&val, optval, optlen)) |
| return -EFAULT; |
| |
| asoc = sctp_id2assoc(sk, val.scact_assoc_id); |
| if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); |
| |
| } |
| |
| /* |
| * 8.1.23 SCTP_AUTO_ASCONF |
| * |
| * This option will enable or disable the use of the automatic generation of |
| * ASCONF chunks to add and delete addresses to an existing association. Note |
| * that this option has two caveats namely: a) it only affects sockets that |
| * are bound to all addresses available to the SCTP stack, and b) the system |
| * administrator may have an overriding control that turns the ASCONF feature |
| * off no matter what setting the socket option may have. |
| * This option expects an integer boolean flag, where a non-zero value turns on |
| * the option, and a zero value turns off the option. |
| * Note. In this implementation, socket operation overrides default parameter |
| * being set by sysctl as well as FreeBSD implementation |
| */ |
| static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, |
| unsigned int optlen) |
| { |
| int val; |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| if (optlen < sizeof(int)) |
| return -EINVAL; |
| if (get_user(val, (int __user *)optval)) |
| return -EFAULT; |
| if (!sctp_is_ep_boundall(sk) && val) |
| return -EINVAL; |
| if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) |
| return 0; |
| |
| spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); |
| if (val == 0 && sp->do_auto_asconf) { |
| list_del(&sp->auto_asconf_list); |
| sp->do_auto_asconf = 0; |
| } else if (val && !sp->do_auto_asconf) { |
| list_add_tail(&sp->auto_asconf_list, |
| &sock_net(sk)->sctp.auto_asconf_splist); |
| sp->do_auto_asconf = 1; |
| } |
| spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); |
| return 0; |
| } |
| |
| /* |
| * SCTP_PEER_ADDR_THLDS |
| * |
| * This option allows us to alter the partially failed threshold for one or all |
| * transports in an association. See Section 6.1 of: |
| * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt |
| */ |
| static int sctp_setsockopt_paddr_thresholds(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_paddrthlds val; |
| struct sctp_transport *trans; |
| struct sctp_association *asoc; |
| |
| if (optlen < sizeof(struct sctp_paddrthlds)) |
| return -EINVAL; |
| if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, |
| sizeof(struct sctp_paddrthlds))) |
| return -EFAULT; |
| |
| |
| if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { |
| asoc = sctp_id2assoc(sk, val.spt_assoc_id); |
| if (!asoc) |
| return -ENOENT; |
| list_for_each_entry(trans, &asoc->peer.transport_addr_list, |
| transports) { |
| if (val.spt_pathmaxrxt) |
| trans->pathmaxrxt = val.spt_pathmaxrxt; |
| trans->pf_retrans = val.spt_pathpfthld; |
| } |
| |
| if (val.spt_pathmaxrxt) |
| asoc->pathmaxrxt = val.spt_pathmaxrxt; |
| asoc->pf_retrans = val.spt_pathpfthld; |
| } else { |
| trans = sctp_addr_id2transport(sk, &val.spt_address, |
| val.spt_assoc_id); |
| if (!trans) |
| return -ENOENT; |
| |
| if (val.spt_pathmaxrxt) |
| trans->pathmaxrxt = val.spt_pathmaxrxt; |
| trans->pf_retrans = val.spt_pathpfthld; |
| } |
| |
| return 0; |
| } |
| |
| static int sctp_setsockopt_recvrcvinfo(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| int val; |
| |
| if (optlen < sizeof(int)) |
| return -EINVAL; |
| if (get_user(val, (int __user *) optval)) |
| return -EFAULT; |
| |
| sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; |
| |
| return 0; |
| } |
| |
| static int sctp_setsockopt_recvnxtinfo(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| int val; |
| |
| if (optlen < sizeof(int)) |
| return -EINVAL; |
| if (get_user(val, (int __user *) optval)) |
| return -EFAULT; |
| |
| sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; |
| |
| return 0; |
| } |
| |
| static int sctp_setsockopt_pr_supported(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_assoc_value params; |
| struct sctp_association *asoc; |
| int retval = -EINVAL; |
| |
| if (optlen != sizeof(params)) |
| goto out; |
| |
| if (copy_from_user(¶ms, optval, optlen)) { |
| retval = -EFAULT; |
| goto out; |
| } |
| |
| asoc = sctp_id2assoc(sk, params.assoc_id); |
| if (asoc) { |
| asoc->prsctp_enable = !!params.assoc_value; |
| } else if (!params.assoc_id) { |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| sp->ep->prsctp_enable = !!params.assoc_value; |
| } else { |
| goto out; |
| } |
| |
| retval = 0; |
| |
| out: |
| return retval; |
| } |
| |
| static int sctp_setsockopt_default_prinfo(struct sock *sk, |
| char __user *optval, |
| unsigned int optlen) |
| { |
| struct sctp_default_prinfo info; |
| struct sctp_association *asoc; |
| int retval = -EINVAL; |
| |
| if (optlen != sizeof(info)) |
| goto out; |
| |
| if (copy_from_user(&info, optval, sizeof(info))) { |
| retval = -EFAULT; |
| goto out; |
| } |
| |
| if (info.pr_policy & ~SCTP_PR_SCTP_MASK) |
| goto out; |
| |
| if (info.pr_policy == SCTP_PR_SCTP_NONE) |
| info.pr_value = 0; |
| |
| asoc = sctp_id2assoc(sk, info.pr_assoc_id); |
| if (asoc) { |
| SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); |
| asoc->default_timetolive = info.pr_value; |
| } else if (!info.pr_assoc_id) { |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); |
| sp->default_timetolive = info.pr_value; |
| } else { |
| goto out; |
| } |
| |
| retval = 0; |
| |
| out: |
| return retval; |
| } |
| |
| /* API 6.2 setsockopt(), getsockopt() |
| * |
| * Applications use setsockopt() and getsockopt() to set or retrieve |
| * socket options. Socket options are used to change the default |
| * behavior of sockets calls. They are described in Section 7. |
| * |
| * The syntax is: |
| * |
| * ret = getsockopt(int sd, int level, int optname, void __user *optval, |
| * int __user *optlen); |
| * ret = setsockopt(int sd, int level, int optname, const void __user *optval, |
| * int optlen); |
| * |
| * sd - the socket descript. |
| * level - set to IPPROTO_SCTP for all SCTP options. |
| * optname - the option name. |
| * optval - the buffer to store the value of the option. |
| * optlen - the size of the buffer. |
| */ |
| static int sctp_setsockopt(struct sock *sk, int level, int optname, |
| char __user *optval, unsigned int optlen) |
| { |
| int retval = 0; |
| |
| pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); |
| |
| /* I can hardly begin to describe how wrong this is. This is |
| * so broken as to be worse than useless. The API draft |
| * REALLY is NOT helpful here... I am not convinced that the |
| * semantics of setsockopt() with a level OTHER THAN SOL_SCTP |
| * are at all well-founded. |
| */ |
| if (level != SOL_SCTP) { |
| struct sctp_af *af = sctp_sk(sk)->pf->af; |
| retval = af->setsockopt(sk, level, optname, optval, optlen); |
| goto out_nounlock; |
| } |
| |
| lock_sock(sk); |
| |
| switch (optname) { |
| case SCTP_SOCKOPT_BINDX_ADD: |
| /* 'optlen' is the size of the addresses buffer. */ |
| retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, |
| optlen, SCTP_BINDX_ADD_ADDR); |
| break; |
| |
| case SCTP_SOCKOPT_BINDX_REM: |
| /* 'optlen' is the size of the addresses buffer. */ |
| retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, |
| optlen, SCTP_BINDX_REM_ADDR); |
| break; |
| |
| case SCTP_SOCKOPT_CONNECTX_OLD: |
| /* 'optlen' is the size of the addresses buffer. */ |
| retval = sctp_setsockopt_connectx_old(sk, |
| (struct sockaddr __user *)optval, |
| optlen); |
| break; |
| |
| case SCTP_SOCKOPT_CONNECTX: |
| /* 'optlen' is the size of the addresses buffer. */ |
| retval = sctp_setsockopt_connectx(sk, |
| (struct sockaddr __user *)optval, |
| optlen); |
| break; |
| |
| case SCTP_DISABLE_FRAGMENTS: |
| retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); |
| break; |
| |
| case SCTP_EVENTS: |
| retval = sctp_setsockopt_events(sk, optval, optlen); |
| break; |
| |
| case SCTP_AUTOCLOSE: |
| retval = sctp_setsockopt_autoclose(sk, optval, optlen); |
| break; |
| |
| case SCTP_PEER_ADDR_PARAMS: |
| retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); |
| break; |
| |
| case SCTP_DELAYED_SACK: |
| retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); |
| break; |
| case SCTP_PARTIAL_DELIVERY_POINT: |
| retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); |
| break; |
| |
| case SCTP_INITMSG: |
| retval = sctp_setsockopt_initmsg(sk, optval, optlen); |
| break; |
| case SCTP_DEFAULT_SEND_PARAM: |
| retval = sctp_setsockopt_default_send_param(sk, optval, |
| optlen); |
| break; |
| case SCTP_DEFAULT_SNDINFO: |
| retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); |
| break; |
| case SCTP_PRIMARY_ADDR: |
| retval = sctp_setsockopt_primary_addr(sk, optval, optlen); |
| break; |
| case SCTP_SET_PEER_PRIMARY_ADDR: |
| retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); |
| break; |
| case SCTP_NODELAY: |
| retval = sctp_setsockopt_nodelay(sk, optval, optlen); |
| break; |
| case SCTP_RTOINFO: |
| retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); |
| break; |
| case SCTP_ASSOCINFO: |
| retval = sctp_setsockopt_associnfo(sk, optval, optlen); |
| break; |
| case SCTP_I_WANT_MAPPED_V4_ADDR: |
| retval = sctp_setsockopt_mappedv4(sk, optval, optlen); |
| break; |
| case SCTP_MAXSEG: |
| retval = sctp_setsockopt_maxseg(sk, optval, optlen); |
| break; |
| case SCTP_ADAPTATION_LAYER: |
| retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); |
| break; |
| case SCTP_CONTEXT: |
| retval = sctp_setsockopt_context(sk, optval, optlen); |
| break; |
| case SCTP_FRAGMENT_INTERLEAVE: |
| retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); |
| break; |
| case SCTP_MAX_BURST: |
| retval = sctp_setsockopt_maxburst(sk, optval, optlen); |
| break; |
| case SCTP_AUTH_CHUNK: |
| retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); |
| break; |
| case SCTP_HMAC_IDENT: |
| retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); |
| break; |
| case SCTP_AUTH_KEY: |
| retval = sctp_setsockopt_auth_key(sk, optval, optlen); |
| break; |
| case SCTP_AUTH_ACTIVE_KEY: |
| retval = sctp_setsockopt_active_key(sk, optval, optlen); |
| break; |
| case SCTP_AUTH_DELETE_KEY: |
| retval = sctp_setsockopt_del_key(sk, optval, optlen); |
| break; |
| case SCTP_AUTO_ASCONF: |
| retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); |
| break; |
| case SCTP_PEER_ADDR_THLDS: |
| retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); |
| break; |
| case SCTP_RECVRCVINFO: |
| retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); |
| break; |
| case SCTP_RECVNXTINFO: |
| retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); |
| break; |
| case SCTP_PR_SUPPORTED: |
| retval = sctp_setsockopt_pr_supported(sk, optval, optlen); |
| break; |
| case SCTP_DEFAULT_PRINFO: |
| retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); |
| break; |
| default: |
| retval = -ENOPROTOOPT; |
| break; |
| } |
| |
| release_sock(sk); |
| |
| out_nounlock: |
| return retval; |
| } |
| |
| /* API 3.1.6 connect() - UDP Style Syntax |
| * |
| * An application may use the connect() call in the UDP model to initiate an |
| * association without sending data. |
| * |
| * The syntax is: |
| * |
| * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); |
| * |
| * sd: the socket descriptor to have a new association added to. |
| * |
| * nam: the address structure (either struct sockaddr_in or struct |
| * sockaddr_in6 defined in RFC2553 [7]). |
| * |
| * len: the size of the address. |
| */ |
| static int sctp_connect(struct sock *sk, struct sockaddr *addr, |
| int addr_len) |
| { |
| int err = 0; |
| struct sctp_af *af; |
| |
| lock_sock(sk); |
| |
| pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, |
| addr, addr_len); |
| |
| /* Validate addr_len before calling common connect/connectx routine. */ |
| af = sctp_get_af_specific(addr->sa_family); |
| if (!af || addr_len < af->sockaddr_len) { |
| err = -EINVAL; |
| } else { |
| /* Pass correct addr len to common routine (so it knows there |
| * is only one address being passed. |
| */ |
| err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); |
| } |
| |
| release_sock(sk); |
| return err; |
| } |
| |
| /* FIXME: Write comments. */ |
| static int sctp_disconnect(struct sock *sk, int flags) |
| { |
| return -EOPNOTSUPP; /* STUB */ |
| } |
| |
| /* 4.1.4 accept() - TCP Style Syntax |
| * |
| * Applications use accept() call to remove an established SCTP |
| * association from the accept queue of the endpoint. A new socket |
| * descriptor will be returned from accept() to represent the newly |
| * formed association. |
| */ |
| static struct sock *sctp_accept(struct sock *sk, int flags, int *err) |
| { |
| struct sctp_sock *sp; |
| struct sctp_endpoint *ep; |
| struct sock *newsk = NULL; |
| struct sctp_association *asoc; |
| long timeo; |
| int error = 0; |
| |
| lock_sock(sk); |
| |
| sp = sctp_sk(sk); |
| ep = sp->ep; |
| |
| if (!sctp_style(sk, TCP)) { |
| error = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| if (!sctp_sstate(sk, LISTENING)) { |
| error = -EINVAL; |
| goto out; |
| } |
| |
| timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); |
| |
| error = sctp_wait_for_accept(sk, timeo); |
| if (error) |
| goto out; |
| |
| /* We treat the list of associations on the endpoint as the accept |
| * queue and pick the first association on the list. |
| */ |
| asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); |
| |
| newsk = sp->pf->create_accept_sk(sk, asoc); |
| if (!newsk) { |
| error = -ENOMEM; |
| goto out; |
| } |
| |
| /* Populate the fields of the newsk from the oldsk and migrate the |
| * asoc to the newsk. |
| */ |
| sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); |
| |
| out: |
| release_sock(sk); |
| *err = error; |
| return newsk; |
| } |
| |
| /* The SCTP ioctl handler. */ |
| static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) |
| { |
| int rc = -ENOTCONN; |
| |
| lock_sock(sk); |
| |
| /* |
| * SEQPACKET-style sockets in LISTENING state are valid, for |
| * SCTP, so only discard TCP-style sockets in LISTENING state. |
| */ |
| if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) |
| goto out; |
| |
| switch (cmd) { |
| case SIOCINQ: { |
| struct sk_buff *skb; |
| unsigned int amount = 0; |
| |
| skb = skb_peek(&sk->sk_receive_queue); |
| if (skb != NULL) { |
| /* |
| * We will only return the amount of this packet since |
| * that is all that will be read. |
| */ |
| amount = skb->len; |
| } |
| rc = put_user(amount, (int __user *)arg); |
| break; |
| } |
| default: |
| rc = -ENOIOCTLCMD; |
| break; |
| } |
| out: |
| release_sock(sk); |
| return rc; |
| } |
| |
| /* This is the function which gets called during socket creation to |
| * initialized the SCTP-specific portion of the sock. |
| * The sock structure should already be zero-filled memory. |
| */ |
| static int sctp_init_sock(struct sock *sk) |
| { |
| struct net *net = sock_net(sk); |
| struct sctp_sock *sp; |
| |
| pr_debug("%s: sk:%p\n", __func__, sk); |
| |
| sp = sctp_sk(sk); |
| |
| /* Initialize the SCTP per socket area. */ |
| switch (sk->sk_type) { |
| case SOCK_SEQPACKET: |
| sp->type = SCTP_SOCKET_UDP; |
| break; |
| case SOCK_STREAM: |
| sp->type = SCTP_SOCKET_TCP; |
| break; |
| default: |
| return -ESOCKTNOSUPPORT; |
| } |
| |
| sk->sk_gso_type = SKB_GSO_SCTP; |
| |
| /* Initialize default send parameters. These parameters can be |
| * modified with the SCTP_DEFAULT_SEND_PARAM socket option. |
| */ |
| sp->default_stream = 0; |
| sp->default_ppid = 0; |
| sp->default_flags = 0; |
| sp->default_context = 0; |
| sp->default_timetolive = 0; |
| |
| sp->default_rcv_context = 0; |
| sp->max_burst = net->sctp.max_burst; |
| |
| sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; |
| |
| /* Initialize default setup parameters. These parameters |
| * can be modified with the SCTP_INITMSG socket option or |
| * overridden by the SCTP_INIT CMSG. |
| */ |
| sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; |
| sp->initmsg.sinit_max_instreams = sctp_max_instreams; |
| sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; |
| sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; |
| |
| /* Initialize default RTO related parameters. These parameters can |
| * be modified for with the SCTP_RTOINFO socket option. |
| */ |
| sp->rtoinfo.srto_initial = net->sctp.rto_initial; |
| sp->rtoinfo.srto_max = net->sctp.rto_max; |
| sp->rtoinfo.srto_min = net->sctp.rto_min; |
| |
| /* Initialize default association related parameters. These parameters |
| * can be modified with the SCTP_ASSOCINFO socket option. |
| */ |
| sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; |
| sp->assocparams.sasoc_number_peer_destinations = 0; |
| sp->assocparams.sasoc_peer_rwnd = 0; |
| sp->assocparams.sasoc_local_rwnd = 0; |
| sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; |
| |
| /* Initialize default event subscriptions. By default, all the |
| * options are off. |
| */ |
| memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); |
| |
| /* Default Peer Address Parameters. These defaults can |
| * be modified via SCTP_PEER_ADDR_PARAMS |
| */ |
| sp->hbinterval = net->sctp.hb_interval; |
| sp->pathmaxrxt = net->sctp.max_retrans_path; |
| sp->pathmtu = 0; /* allow default discovery */ |
| sp->sackdelay = net->sctp.sack_timeout; |
| sp->sackfreq = 2; |
| sp->param_flags = SPP_HB_ENABLE | |
| SPP_PMTUD_ENABLE | |
| SPP_SACKDELAY_ENABLE; |
| |
| /* If enabled no SCTP message fragmentation will be performed. |
| * Configure through SCTP_DISABLE_FRAGMENTS socket option. |
| */ |
| sp->disable_fragments = 0; |
| |
| /* Enable Nagle algorithm by default. */ |
| sp->nodelay = 0; |
| |
| sp->recvrcvinfo = 0; |
| sp->recvnxtinfo = 0; |
| |
| /* Enable by default. */ |
| sp->v4mapped = 1; |
| |
| /* Auto-close idle associations after the configured |
| * number of seconds. A value of 0 disables this |
| * feature. Configure through the SCTP_AUTOCLOSE socket option, |
| * for UDP-style sockets only. |
| */ |
| sp->autoclose = 0; |
| |
| /* User specified fragmentation limit. */ |
| sp->user_frag = 0; |
| |
| sp->adaptation_ind = 0; |
| |
| sp->pf = sctp_get_pf_specific(sk->sk_family); |
| |
| /* Control variables for partial data delivery. */ |
| atomic_set(&sp->pd_mode, 0); |
| skb_queue_head_init(&sp->pd_lobby); |
| sp->frag_interleave = 0; |
| |
| /* Create a per socket endpoint structure. Even if we |
| * change the data structure relationships, this may still |
| * be useful for storing pre-connect address information. |
| */ |
| sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); |
| if (!sp->ep) |
| return -ENOMEM; |
| |
| sp->hmac = NULL; |
| |
| sk->sk_destruct = sctp_destruct_sock; |
| |
| SCTP_DBG_OBJCNT_INC(sock); |
| |
| local_bh_disable(); |
| percpu_counter_inc(&sctp_sockets_allocated); |
| sock_prot_inuse_add(net, sk->sk_prot, 1); |
| |
| /* Nothing can fail after this block, otherwise |
| * sctp_destroy_sock() will be called without addr_wq_lock held |
| */ |
| if (net->sctp.default_auto_asconf) { |
| spin_lock(&sock_net(sk)->sctp.addr_wq_lock); |
| list_add_tail(&sp->auto_asconf_list, |
| &net->sctp.auto_asconf_splist); |
| sp->do_auto_asconf = 1; |
| spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); |
| } else { |
| sp->do_auto_asconf = 0; |
| } |
| |
| local_bh_enable(); |
| |
| return 0; |
| } |
| |
| /* Cleanup any SCTP per socket resources. Must be called with |
| * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true |
| */ |
| static void sctp_destroy_sock(struct sock *sk) |
| { |
| struct sctp_sock *sp; |
| |
| pr_debug("%s: sk:%p\n", __func__, sk); |
| |
| /* Release our hold on the endpoint. */ |
| sp = sctp_sk(sk); |
| /* This could happen during socket init, thus we bail out |
| * early, since the rest of the below is not setup either. |
| */ |
| if (sp->ep == NULL) |
| return; |
| |
| if (sp->do_auto_asconf) { |
| sp->do_auto_asconf = 0; |
| list_del(&sp->auto_asconf_list); |
| } |
| sctp_endpoint_free(sp->ep); |
| local_bh_disable(); |
| percpu_counter_dec(&sctp_sockets_allocated); |
| sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); |
| local_bh_enable(); |
| } |
| |
| /* Triggered when there are no references on the socket anymore */ |
| static void sctp_destruct_sock(struct sock *sk) |
| { |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| /* Free up the HMAC transform. */ |
| crypto_free_shash(sp->hmac); |
| |
| inet_sock_destruct(sk); |
| } |
| |
| /* API 4.1.7 shutdown() - TCP Style Syntax |
| * int shutdown(int socket, int how); |
| * |
| * sd - the socket descriptor of the association to be closed. |
| * how - Specifies the type of shutdown. The values are |
| * as follows: |
| * SHUT_RD |
| * Disables further receive operations. No SCTP |
| * protocol action is taken. |
| * SHUT_WR |
| * Disables further send operations, and initiates |
| * the SCTP shutdown sequence. |
| * SHUT_RDWR |
| * Disables further send and receive operations |
| * and initiates the SCTP shutdown sequence. |
| */ |
| static void sctp_shutdown(struct sock *sk, int how) |
| { |
| struct net *net = sock_net(sk); |
| struct sctp_endpoint *ep; |
| |
| if (!sctp_style(sk, TCP)) |
| return; |
| |
| ep = sctp_sk(sk)->ep; |
| if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { |
| struct sctp_association *asoc; |
| |
| sk->sk_state = SCTP_SS_CLOSING; |
| asoc = list_entry(ep->asocs.next, |
| struct sctp_association, asocs); |
| sctp_primitive_SHUTDOWN(net, asoc, NULL); |
| } |
| } |
| |
| int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, |
| struct sctp_info *info) |
| { |
| struct sctp_transport *prim; |
| struct list_head *pos; |
| int mask; |
| |
| memset(info, 0, sizeof(*info)); |
| if (!asoc) { |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| info->sctpi_s_autoclose = sp->autoclose; |
| info->sctpi_s_adaptation_ind = sp->adaptation_ind; |
| info->sctpi_s_pd_point = sp->pd_point; |
| info->sctpi_s_nodelay = sp->nodelay; |
| info->sctpi_s_disable_fragments = sp->disable_fragments; |
| info->sctpi_s_v4mapped = sp->v4mapped; |
| info->sctpi_s_frag_interleave = sp->frag_interleave; |
| info->sctpi_s_type = sp->type; |
| |
| return 0; |
| } |
| |
| info->sctpi_tag = asoc->c.my_vtag; |
| info->sctpi_state = asoc->state; |
| info->sctpi_rwnd = asoc->a_rwnd; |
| info->sctpi_unackdata = asoc->unack_data; |
| info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); |
| info->sctpi_instrms = asoc->c.sinit_max_instreams; |
| info->sctpi_outstrms = asoc->c.sinit_num_ostreams; |
| list_for_each(pos, &asoc->base.inqueue.in_chunk_list) |
| info->sctpi_inqueue++; |
| list_for_each(pos, &asoc->outqueue.out_chunk_list) |
| info->sctpi_outqueue++; |
| info->sctpi_overall_error = asoc->overall_error_count; |
| info->sctpi_max_burst = asoc->max_burst; |
| info->sctpi_maxseg = asoc->frag_point; |
| info->sctpi_peer_rwnd = asoc->peer.rwnd; |
| info->sctpi_peer_tag = asoc->c.peer_vtag; |
| |
| mask = asoc->peer.ecn_capable << 1; |
| mask = (mask | asoc->peer.ipv4_address) << 1; |
| mask = (mask | asoc->peer.ipv6_address) << 1; |
| mask = (mask | asoc->peer.hostname_address) << 1; |
| mask = (mask | asoc->peer.asconf_capable) << 1; |
| mask = (mask | asoc->peer.prsctp_capable) << 1; |
| mask = (mask | asoc->peer.auth_capable); |
| info->sctpi_peer_capable = mask; |
| mask = asoc->peer.sack_needed << 1; |
| mask = (mask | asoc->peer.sack_generation) << 1; |
| mask = (mask | asoc->peer.zero_window_announced); |
| info->sctpi_peer_sack = mask; |
| |
| info->sctpi_isacks = asoc->stats.isacks; |
| info->sctpi_osacks = asoc->stats.osacks; |
| info->sctpi_opackets = asoc->stats.opackets; |
| info->sctpi_ipackets = asoc->stats.ipackets; |
| info->sctpi_rtxchunks = asoc->stats.rtxchunks; |
| info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; |
| info->sctpi_idupchunks = asoc->stats.idupchunks; |
| info->sctpi_gapcnt = asoc->stats.gapcnt; |
| info->sctpi_ouodchunks = asoc->stats.ouodchunks; |
| info->sctpi_iuodchunks = asoc->stats.iuodchunks; |
| info->sctpi_oodchunks = asoc->stats.oodchunks; |
| info->sctpi_iodchunks = asoc->stats.iodchunks; |
| info->sctpi_octrlchunks = asoc->stats.octrlchunks; |
| info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; |
| |
| prim = asoc->peer.primary_path; |
| memcpy(&info->sctpi_p_address, &prim->ipaddr, |
| sizeof(struct sockaddr_storage)); |
| info->sctpi_p_state = prim->state; |
| info->sctpi_p_cwnd = prim->cwnd; |
| info->sctpi_p_srtt = prim->srtt; |
| info->sctpi_p_rto = jiffies_to_msecs(prim->rto); |
| info->sctpi_p_hbinterval = prim->hbinterval; |
| info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; |
| info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); |
| info->sctpi_p_ssthresh = prim->ssthresh; |
| info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; |
| info->sctpi_p_flight_size = prim->flight_size; |
| info->sctpi_p_error = prim->error_count; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(sctp_get_sctp_info); |
| |
| /* use callback to avoid exporting the core structure */ |
| int sctp_transport_walk_start(struct rhashtable_iter *iter) |
| { |
| int err; |
| |
| err = rhashtable_walk_init(&sctp_transport_hashtable, iter, |
| GFP_KERNEL); |
| if (err) |
| return err; |
| |
| err = rhashtable_walk_start(iter); |
| if (err && err != -EAGAIN) { |
| rhashtable_walk_stop(iter); |
| rhashtable_walk_exit(iter); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| void sctp_transport_walk_stop(struct rhashtable_iter *iter) |
| { |
| rhashtable_walk_stop(iter); |
| rhashtable_walk_exit(iter); |
| } |
| |
| struct sctp_transport *sctp_transport_get_next(struct net *net, |
| struct rhashtable_iter *iter) |
| { |
| struct sctp_transport *t; |
| |
| t = rhashtable_walk_next(iter); |
| for (; t; t = rhashtable_walk_next(iter)) { |
| if (IS_ERR(t)) { |
| if (PTR_ERR(t) == -EAGAIN) |
| continue; |
| break; |
| } |
| |
| if (net_eq(sock_net(t->asoc->base.sk), net) && |
| t->asoc->peer.primary_path == t) |
| break; |
| } |
| |
| return t; |
| } |
| |
| struct sctp_transport *sctp_transport_get_idx(struct net *net, |
| struct rhashtable_iter *iter, |
| int pos) |
| { |
| void *obj = SEQ_START_TOKEN; |
| |
| while (pos && (obj = sctp_transport_get_next(net, iter)) && |
| !IS_ERR(obj)) |
| pos--; |
| |
| return obj; |
| } |
| |
| int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), |
| void *p) { |
| int err = 0; |
| int hash = 0; |
| struct sctp_ep_common *epb; |
| struct sctp_hashbucket *head; |
| |
| for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; |
| hash++, head++) { |
| read_lock(&head->lock); |
| sctp_for_each_hentry(epb, &head->chain) { |
| err = cb(sctp_ep(epb), p); |
| if (err) |
| break; |
| } |
| read_unlock(&head->lock); |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); |
| |
| int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), |
| struct net *net, |
| const union sctp_addr *laddr, |
| const union sctp_addr *paddr, void *p) |
| { |
| struct sctp_transport *transport; |
| int err = -ENOENT; |
| |
| rcu_read_lock(); |
| transport = sctp_addrs_lookup_transport(net, laddr, paddr); |
| if (!transport || !sctp_transport_hold(transport)) { |
| rcu_read_unlock(); |
| goto out; |
| } |
| rcu_read_unlock(); |
| err = cb(transport, p); |
| sctp_transport_put(transport); |
| |
| out: |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); |
| |
| int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), |
| struct net *net, int pos, void *p) { |
| struct rhashtable_iter hti; |
| void *obj; |
| int err; |
| |
| err = sctp_transport_walk_start(&hti); |
| if (err) |
| return err; |
| |
| sctp_transport_get_idx(net, &hti, pos); |
| obj = sctp_transport_get_next(net, &hti); |
| for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) { |
| struct sctp_transport *transport = obj; |
| |
| if (!sctp_transport_hold(transport)) |
| continue; |
| err = cb(transport, p); |
| sctp_transport_put(transport); |
| if (err) |
| break; |
| } |
| sctp_transport_walk_stop(&hti); |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(sctp_for_each_transport); |
| |
| /* 7.2.1 Association Status (SCTP_STATUS) |
| |
| * Applications can retrieve current status information about an |
| * association, including association state, peer receiver window size, |
| * number of unacked data chunks, and number of data chunks pending |
| * receipt. This information is read-only. |
| */ |
| static int sctp_getsockopt_sctp_status(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| struct sctp_status status; |
| struct sctp_association *asoc = NULL; |
| struct sctp_transport *transport; |
| sctp_assoc_t associd; |
| int retval = 0; |
| |
| if (len < sizeof(status)) { |
| retval = -EINVAL; |
| goto out; |
| } |
| |
| len = sizeof(status); |
| if (copy_from_user(&status, optval, len)) { |
| retval = -EFAULT; |
| goto out; |
| } |
| |
| associd = status.sstat_assoc_id; |
| asoc = sctp_id2assoc(sk, associd); |
| if (!asoc) { |
| retval = -EINVAL; |
| goto out; |
| } |
| |
| transport = asoc->peer.primary_path; |
| |
| status.sstat_assoc_id = sctp_assoc2id(asoc); |
| status.sstat_state = sctp_assoc_to_state(asoc); |
| status.sstat_rwnd = asoc->peer.rwnd; |
| status.sstat_unackdata = asoc->unack_data; |
| |
| status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); |
| status.sstat_instrms = asoc->c.sinit_max_instreams; |
| status.sstat_outstrms = asoc->c.sinit_num_ostreams; |
| status.sstat_fragmentation_point = asoc->frag_point; |
| status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); |
| memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, |
| transport->af_specific->sockaddr_len); |
| /* Map ipv4 address into v4-mapped-on-v6 address. */ |
| sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), |
| (union sctp_addr *)&status.sstat_primary.spinfo_address); |
| status.sstat_primary.spinfo_state = transport->state; |
| status.sstat_primary.spinfo_cwnd = transport->cwnd; |
| status.sstat_primary.spinfo_srtt = transport->srtt; |
| status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); |
| status.sstat_primary.spinfo_mtu = transport->pathmtu; |
| |
| if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) |
| status.sstat_primary.spinfo_state = SCTP_ACTIVE; |
| |
| if (put_user(len, optlen)) { |
| retval = -EFAULT; |
| goto out; |
| } |
| |
| pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", |
| __func__, len, status.sstat_state, status.sstat_rwnd, |
| status.sstat_assoc_id); |
| |
| if (copy_to_user(optval, &status, len)) { |
| retval = -EFAULT; |
| goto out; |
| } |
| |
| out: |
| return retval; |
| } |
| |
| |
| /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) |
| * |
| * Applications can retrieve information about a specific peer address |
| * of an association, including its reachability state, congestion |
| * window, and retransmission timer values. This information is |
| * read-only. |
| */ |
| static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| struct sctp_paddrinfo pinfo; |
| struct sctp_transport *transport; |
| int retval = 0; |
| |
| if (len < sizeof(pinfo)) { |
| retval = -EINVAL; |
| goto out; |
| } |
| |
| len = sizeof(pinfo); |
| if (copy_from_user(&pinfo, optval, len)) { |
| retval = -EFAULT; |
| goto out; |
| } |
| |
| transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, |
| pinfo.spinfo_assoc_id); |
| if (!transport) |
| return -EINVAL; |
| |
| pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); |
| pinfo.spinfo_state = transport->state; |
| pinfo.spinfo_cwnd = transport->cwnd; |
| pinfo.spinfo_srtt = transport->srtt; |
| pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); |
| pinfo.spinfo_mtu = transport->pathmtu; |
| |
| if (pinfo.spinfo_state == SCTP_UNKNOWN) |
| pinfo.spinfo_state = SCTP_ACTIVE; |
| |
| if (put_user(len, optlen)) { |
| retval = -EFAULT; |
| goto out; |
| } |
| |
| if (copy_to_user(optval, &pinfo, len)) { |
| retval = -EFAULT; |
| goto out; |
| } |
| |
| out: |
| return retval; |
| } |
| |
| /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) |
| * |
| * This option is a on/off flag. If enabled no SCTP message |
| * fragmentation will be performed. Instead if a message being sent |
| * exceeds the current PMTU size, the message will NOT be sent and |
| * instead a error will be indicated to the user. |
| */ |
| static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| int val; |
| |
| if (len < sizeof(int)) |
| return -EINVAL; |
| |
| len = sizeof(int); |
| val = (sctp_sk(sk)->disable_fragments == 1); |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &val, len)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) |
| * |
| * This socket option is used to specify various notifications and |
| * ancillary data the user wishes to receive. |
| */ |
| static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, |
| int __user *optlen) |
| { |
| if (len == 0) |
| return -EINVAL; |
| if (len > sizeof(struct sctp_event_subscribe)) |
| len = sizeof(struct sctp_event_subscribe); |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) |
| * |
| * This socket option is applicable to the UDP-style socket only. When |
| * set it will cause associations that are idle for more than the |
| * specified number of seconds to automatically close. An association |
| * being idle is defined an association that has NOT sent or received |
| * user data. The special value of '0' indicates that no automatic |
| * close of any associations should be performed. The option expects an |
| * integer defining the number of seconds of idle time before an |
| * association is closed. |
| */ |
| static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) |
| { |
| /* Applicable to UDP-style socket only */ |
| if (sctp_style(sk, TCP)) |
| return -EOPNOTSUPP; |
| if (len < sizeof(int)) |
| return -EINVAL; |
| len = sizeof(int); |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /* Helper routine to branch off an association to a new socket. */ |
| int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) |
| { |
| struct sctp_association *asoc = sctp_id2assoc(sk, id); |
| struct sctp_sock *sp = sctp_sk(sk); |
| struct socket *sock; |
| int err = 0; |
| |
| if (!asoc) |
| return -EINVAL; |
| |
| /* If there is a thread waiting on more sndbuf space for |
| * sending on this asoc, it cannot be peeled. |
| */ |
| if (waitqueue_active(&asoc->wait)) |
| return -EBUSY; |
| |
| /* An association cannot be branched off from an already peeled-off |
| * socket, nor is this supported for tcp style sockets. |
| */ |
| if (!sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| /* Create a new socket. */ |
| err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); |
| if (err < 0) |
| return err; |
| |
| sctp_copy_sock(sock->sk, sk, asoc); |
| |
| /* Make peeled-off sockets more like 1-1 accepted sockets. |
| * Set the daddr and initialize id to something more random |
| */ |
| sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); |
| |
| /* Populate the fields of the newsk from the oldsk and migrate the |
| * asoc to the newsk. |
| */ |
| sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); |
| |
| *sockp = sock; |
| |
| return err; |
| } |
| EXPORT_SYMBOL(sctp_do_peeloff); |
| |
| static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) |
| { |
| sctp_peeloff_arg_t peeloff; |
| struct socket *newsock; |
| struct file *newfile; |
| int retval = 0; |
| |
| if (len < sizeof(sctp_peeloff_arg_t)) |
| return -EINVAL; |
| len = sizeof(sctp_peeloff_arg_t); |
| if (copy_from_user(&peeloff, optval, len)) |
| return -EFAULT; |
| |
| retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); |
| if (retval < 0) |
| goto out; |
| |
| /* Map the socket to an unused fd that can be returned to the user. */ |
| retval = get_unused_fd_flags(0); |
| if (retval < 0) { |
| sock_release(newsock); |
| goto out; |
| } |
| |
| newfile = sock_alloc_file(newsock, 0, NULL); |
| if (IS_ERR(newfile)) { |
| put_unused_fd(retval); |
| sock_release(newsock); |
| return PTR_ERR(newfile); |
| } |
| |
| pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, |
| retval); |
| |
| /* Return the fd mapped to the new socket. */ |
| if (put_user(len, optlen)) { |
| fput(newfile); |
| put_unused_fd(retval); |
| return -EFAULT; |
| } |
| peeloff.sd = retval; |
| if (copy_to_user(optval, &peeloff, len)) { |
| fput(newfile); |
| put_unused_fd(retval); |
| return -EFAULT; |
| } |
| fd_install(retval, newfile); |
| out: |
| return retval; |
| } |
| |
| /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) |
| * |
| * Applications can enable or disable heartbeats for any peer address of |
| * an association, modify an address's heartbeat interval, force a |
| * heartbeat to be sent immediately, and adjust the address's maximum |
| * number of retransmissions sent before an address is considered |
| * unreachable. The following structure is used to access and modify an |
| * address's parameters: |
| * |
| * struct sctp_paddrparams { |
| * sctp_assoc_t spp_assoc_id; |
| * struct sockaddr_storage spp_address; |
| * uint32_t spp_hbinterval; |
| * uint16_t spp_pathmaxrxt; |
| * uint32_t spp_pathmtu; |
| * uint32_t spp_sackdelay; |
| * uint32_t spp_flags; |
| * }; |
| * |
| * spp_assoc_id - (one-to-many style socket) This is filled in the |
| * application, and identifies the association for |
| * this query. |
| * spp_address - This specifies which address is of interest. |
| * spp_hbinterval - This contains the value of the heartbeat interval, |
| * in milliseconds. If a value of zero |
| * is present in this field then no changes are to |
| * be made to this parameter. |
| * spp_pathmaxrxt - This contains the maximum number of |
| * retransmissions before this address shall be |
| * considered unreachable. If a value of zero |
| * is present in this field then no changes are to |
| * be made to this parameter. |
| * spp_pathmtu - When Path MTU discovery is disabled the value |
| * specified here will be the "fixed" path mtu. |
| * Note that if the spp_address field is empty |
| * then all associations on this address will |
| * have this fixed path mtu set upon them. |
| * |
| * spp_sackdelay - When delayed sack is enabled, this value specifies |
| * the number of milliseconds that sacks will be delayed |
| * for. This value will apply to all addresses of an |
| * association if the spp_address field is empty. Note |
| * also, that if delayed sack is enabled and this |
| * value is set to 0, no change is made to the last |
| * recorded delayed sack timer value. |
| * |
| * spp_flags - These flags are used to control various features |
| * on an association. The flag field may contain |
| * zero or more of the following options. |
| * |
| * SPP_HB_ENABLE - Enable heartbeats on the |
| * specified address. Note that if the address |
| * field is empty all addresses for the association |
| * have heartbeats enabled upon them. |
| * |
| * SPP_HB_DISABLE - Disable heartbeats on the |
| * speicifed address. Note that if the address |
| * field is empty all addresses for the association |
| * will have their heartbeats disabled. Note also |
| * that SPP_HB_ENABLE and SPP_HB_DISABLE are |
| * mutually exclusive, only one of these two should |
| * be specified. Enabling both fields will have |
| * undetermined results. |
| * |
| * SPP_HB_DEMAND - Request a user initiated heartbeat |
| * to be made immediately. |
| * |
| * SPP_PMTUD_ENABLE - This field will enable PMTU |
| * discovery upon the specified address. Note that |
| * if the address feild is empty then all addresses |
| * on the association are effected. |
| * |
| * SPP_PMTUD_DISABLE - This field will disable PMTU |
| * discovery upon the specified address. Note that |
| * if the address feild is empty then all addresses |
| * on the association are effected. Not also that |
| * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually |
| * exclusive. Enabling both will have undetermined |
| * results. |
| * |
| * SPP_SACKDELAY_ENABLE - Setting this flag turns |
| * on delayed sack. The time specified in spp_sackdelay |
| * is used to specify the sack delay for this address. Note |
| * that if spp_address is empty then all addresses will |
| * enable delayed sack and take on the sack delay |
| * value specified in spp_sackdelay. |
| * SPP_SACKDELAY_DISABLE - Setting this flag turns |
| * off delayed sack. If the spp_address field is blank then |
| * delayed sack is disabled for the entire association. Note |
| * also that this field is mutually exclusive to |
| * SPP_SACKDELAY_ENABLE, setting both will have undefined |
| * results. |
| */ |
| static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_paddrparams params; |
| struct sctp_transport *trans = NULL; |
| struct sctp_association *asoc = NULL; |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| if (len < sizeof(struct sctp_paddrparams)) |
| return -EINVAL; |
| len = sizeof(struct sctp_paddrparams); |
| if (copy_from_user(¶ms, optval, len)) |
| return -EFAULT; |
| |
| /* If an address other than INADDR_ANY is specified, and |
| * no transport is found, then the request is invalid. |
| */ |
| if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { |
| trans = sctp_addr_id2transport(sk, ¶ms.spp_address, |
| params.spp_assoc_id); |
| if (!trans) { |
| pr_debug("%s: failed no transport\n", __func__); |
| return -EINVAL; |
| } |
| } |
| |
| /* Get association, if assoc_id != 0 and the socket is a one |
| * to many style socket, and an association was not found, then |
| * the id was invalid. |
| */ |
| asoc = sctp_id2assoc(sk, params.spp_assoc_id); |
| if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { |
| pr_debug("%s: failed no association\n", __func__); |
| return -EINVAL; |
| } |
| |
| if (trans) { |
| /* Fetch transport values. */ |
| params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); |
| params.spp_pathmtu = trans->pathmtu; |
| params.spp_pathmaxrxt = trans->pathmaxrxt; |
| params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); |
| |
| /*draft-11 doesn't say what to return in spp_flags*/ |
| params.spp_flags = trans->param_flags; |
| } else if (asoc) { |
| /* Fetch association values. */ |
| params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); |
| params.spp_pathmtu = asoc->pathmtu; |
| params.spp_pathmaxrxt = asoc->pathmaxrxt; |
| params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); |
| |
| /*draft-11 doesn't say what to return in spp_flags*/ |
| params.spp_flags = asoc->param_flags; |
| } else { |
| /* Fetch socket values. */ |
| params.spp_hbinterval = sp->hbinterval; |
| params.spp_pathmtu = sp->pathmtu; |
| params.spp_sackdelay = sp->sackdelay; |
| params.spp_pathmaxrxt = sp->pathmaxrxt; |
| |
| /*draft-11 doesn't say what to return in spp_flags*/ |
| params.spp_flags = sp->param_flags; |
| } |
| |
| if (copy_to_user(optval, ¶ms, len)) |
| return -EFAULT; |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) |
| * |
| * This option will effect the way delayed acks are performed. This |
| * option allows you to get or set the delayed ack time, in |
| * milliseconds. It also allows changing the delayed ack frequency. |
| * Changing the frequency to 1 disables the delayed sack algorithm. If |
| * the assoc_id is 0, then this sets or gets the endpoints default |
| * values. If the assoc_id field is non-zero, then the set or get |
| * effects the specified association for the one to many model (the |
| * assoc_id field is ignored by the one to one model). Note that if |
| * sack_delay or sack_freq are 0 when setting this option, then the |
| * current values will remain unchanged. |
| * |
| * struct sctp_sack_info { |
| * sctp_assoc_t sack_assoc_id; |
| * uint32_t sack_delay; |
| * uint32_t sack_freq; |
| * }; |
| * |
| * sack_assoc_id - This parameter, indicates which association the user |
| * is performing an action upon. Note that if this field's value is |
| * zero then the endpoints default value is changed (effecting future |
| * associations only). |
| * |
| * sack_delay - This parameter contains the number of milliseconds that |
| * the user is requesting the delayed ACK timer be set to. Note that |
| * this value is defined in the standard to be between 200 and 500 |
| * milliseconds. |
| * |
| * sack_freq - This parameter contains the number of packets that must |
| * be received before a sack is sent without waiting for the delay |
| * timer to expire. The default value for this is 2, setting this |
| * value to 1 will disable the delayed sack algorithm. |
| */ |
| static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| struct sctp_sack_info params; |
| struct sctp_association *asoc = NULL; |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| if (len >= sizeof(struct sctp_sack_info)) { |
| len = sizeof(struct sctp_sack_info); |
| |
| if (copy_from_user(¶ms, optval, len)) |
| return -EFAULT; |
| } else if (len == sizeof(struct sctp_assoc_value)) { |
| pr_warn_ratelimited(DEPRECATED |
| "%s (pid %d) " |
| "Use of struct sctp_assoc_value in delayed_ack socket option.\n" |
| "Use struct sctp_sack_info instead\n", |
| current->comm, task_pid_nr(current)); |
| if (copy_from_user(¶ms, optval, len)) |
| return -EFAULT; |
| } else |
| return -EINVAL; |
| |
| /* Get association, if sack_assoc_id != 0 and the socket is a one |
| * to many style socket, and an association was not found, then |
| * the id was invalid. |
| */ |
| asoc = sctp_id2assoc(sk, params.sack_assoc_id); |
| if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| if (asoc) { |
| /* Fetch association values. */ |
| if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { |
| params.sack_delay = jiffies_to_msecs( |
| asoc->sackdelay); |
| params.sack_freq = asoc->sackfreq; |
| |
| } else { |
| params.sack_delay = 0; |
| params.sack_freq = 1; |
| } |
| } else { |
| /* Fetch socket values. */ |
| if (sp->param_flags & SPP_SACKDELAY_ENABLE) { |
| params.sack_delay = sp->sackdelay; |
| params.sack_freq = sp->sackfreq; |
| } else { |
| params.sack_delay = 0; |
| params.sack_freq = 1; |
| } |
| } |
| |
| if (copy_to_user(optval, ¶ms, len)) |
| return -EFAULT; |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* 7.1.3 Initialization Parameters (SCTP_INITMSG) |
| * |
| * Applications can specify protocol parameters for the default association |
| * initialization. The option name argument to setsockopt() and getsockopt() |
| * is SCTP_INITMSG. |
| * |
| * Setting initialization parameters is effective only on an unconnected |
| * socket (for UDP-style sockets only future associations are effected |
| * by the change). With TCP-style sockets, this option is inherited by |
| * sockets derived from a listener socket. |
| */ |
| static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) |
| { |
| if (len < sizeof(struct sctp_initmsg)) |
| return -EINVAL; |
| len = sizeof(struct sctp_initmsg); |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| |
| static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_association *asoc; |
| int cnt = 0; |
| struct sctp_getaddrs getaddrs; |
| struct sctp_transport *from; |
| void __user *to; |
| union sctp_addr temp; |
| struct sctp_sock *sp = sctp_sk(sk); |
| int addrlen; |
| size_t space_left; |
| int bytes_copied; |
| |
| if (len < sizeof(struct sctp_getaddrs)) |
| return -EINVAL; |
| |
| if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) |
| return -EFAULT; |
| |
| /* For UDP-style sockets, id specifies the association to query. */ |
| asoc = sctp_id2assoc(sk, getaddrs.assoc_id); |
| if (!asoc) |
| return -EINVAL; |
| |
| to = optval + offsetof(struct sctp_getaddrs, addrs); |
| space_left = len - offsetof(struct sctp_getaddrs, addrs); |
| |
| list_for_each_entry(from, &asoc->peer.transport_addr_list, |
| transports) { |
| memcpy(&temp, &from->ipaddr, sizeof(temp)); |
| addrlen = sctp_get_pf_specific(sk->sk_family) |
| ->addr_to_user(sp, &temp); |
| if (space_left < addrlen) |
| return -ENOMEM; |
| if (copy_to_user(to, &temp, addrlen)) |
| return -EFAULT; |
| to += addrlen; |
| cnt++; |
| space_left -= addrlen; |
| } |
| |
| if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) |
| return -EFAULT; |
| bytes_copied = ((char __user *)to) - optval; |
| if (put_user(bytes_copied, optlen)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, |
| size_t space_left, int *bytes_copied) |
| { |
| struct sctp_sockaddr_entry *addr; |
| union sctp_addr temp; |
| int cnt = 0; |
| int addrlen; |
| struct net *net = sock_net(sk); |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { |
| if (!addr->valid) |
| continue; |
| |
| if ((PF_INET == sk->sk_family) && |
| (AF_INET6 == addr->a.sa.sa_family)) |
| continue; |
| if ((PF_INET6 == sk->sk_family) && |
| inet_v6_ipv6only(sk) && |
| (AF_INET == addr->a.sa.sa_family)) |
| continue; |
| memcpy(&temp, &addr->a, sizeof(temp)); |
| if (!temp.v4.sin_port) |
| temp.v4.sin_port = htons(port); |
| |
| addrlen = sctp_get_pf_specific(sk->sk_family) |
| ->addr_to_user(sctp_sk(sk), &temp); |
| |
| if (space_left < addrlen) { |
| cnt = -ENOMEM; |
| break; |
| } |
| memcpy(to, &temp, addrlen); |
| |
| to += addrlen; |
| cnt++; |
| space_left -= addrlen; |
| *bytes_copied += addrlen; |
| } |
| rcu_read_unlock(); |
| |
| return cnt; |
| } |
| |
| |
| static int sctp_getsockopt_local_addrs(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_bind_addr *bp; |
| struct sctp_association *asoc; |
| int cnt = 0; |
| struct sctp_getaddrs getaddrs; |
| struct sctp_sockaddr_entry *addr; |
| void __user *to; |
| union sctp_addr temp; |
| struct sctp_sock *sp = sctp_sk(sk); |
| int addrlen; |
| int err = 0; |
| size_t space_left; |
| int bytes_copied = 0; |
| void *addrs; |
| void *buf; |
| |
| if (len < sizeof(struct sctp_getaddrs)) |
| return -EINVAL; |
| |
| if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) |
| return -EFAULT; |
| |
| /* |
| * For UDP-style sockets, id specifies the association to query. |
| * If the id field is set to the value '0' then the locally bound |
| * addresses are returned without regard to any particular |
| * association. |
| */ |
| if (0 == getaddrs.assoc_id) { |
| bp = &sctp_sk(sk)->ep->base.bind_addr; |
| } else { |
| asoc = sctp_id2assoc(sk, getaddrs.assoc_id); |
| if (!asoc) |
| return -EINVAL; |
| bp = &asoc->base.bind_addr; |
| } |
| |
| to = optval + offsetof(struct sctp_getaddrs, addrs); |
| space_left = len - offsetof(struct sctp_getaddrs, addrs); |
| |
| addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); |
| if (!addrs) |
| return -ENOMEM; |
| |
| /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid |
| * addresses from the global local address list. |
| */ |
| if (sctp_list_single_entry(&bp->address_list)) { |
| addr = list_entry(bp->address_list.next, |
| struct sctp_sockaddr_entry, list); |
| if (sctp_is_any(sk, &addr->a)) { |
| cnt = sctp_copy_laddrs(sk, bp->port, addrs, |
| space_left, &bytes_copied); |
| if (cnt < 0) { |
| err = cnt; |
| goto out; |
| } |
| goto copy_getaddrs; |
| } |
| } |
| |
| buf = addrs; |
| /* Protection on the bound address list is not needed since |
| * in the socket option context we hold a socket lock and |
| * thus the bound address list can't change. |
| */ |
| list_for_each_entry(addr, &bp->address_list, list) { |
| memcpy(&temp, &addr->a, sizeof(temp)); |
| addrlen = sctp_get_pf_specific(sk->sk_family) |
| ->addr_to_user(sp, &temp); |
| if (space_left < addrlen) { |
| err = -ENOMEM; /*fixme: right error?*/ |
| goto out; |
| } |
| memcpy(buf, &temp, addrlen); |
| buf += addrlen; |
| bytes_copied += addrlen; |
| cnt++; |
| space_left -= addrlen; |
| } |
| |
| copy_getaddrs: |
| if (copy_to_user(to, addrs, bytes_copied)) { |
| err = -EFAULT; |
| goto out; |
| } |
| if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { |
| err = -EFAULT; |
| goto out; |
| } |
| if (put_user(bytes_copied, optlen)) |
| err = -EFAULT; |
| out: |
| kfree(addrs); |
| return err; |
| } |
| |
| /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) |
| * |
| * Requests that the local SCTP stack use the enclosed peer address as |
| * the association primary. The enclosed address must be one of the |
| * association peer's addresses. |
| */ |
| static int sctp_getsockopt_primary_addr(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_prim prim; |
| struct sctp_association *asoc; |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| if (len < sizeof(struct sctp_prim)) |
| return -EINVAL; |
| |
| len = sizeof(struct sctp_prim); |
| |
| if (copy_from_user(&prim, optval, len)) |
| return -EFAULT; |
| |
| asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); |
| if (!asoc) |
| return -EINVAL; |
| |
| if (!asoc->peer.primary_path) |
| return -ENOTCONN; |
| |
| memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, |
| asoc->peer.primary_path->af_specific->sockaddr_len); |
| |
| sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, |
| (union sctp_addr *)&prim.ssp_addr); |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &prim, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) |
| * |
| * Requests that the local endpoint set the specified Adaptation Layer |
| * Indication parameter for all future INIT and INIT-ACK exchanges. |
| */ |
| static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_setadaptation adaptation; |
| |
| if (len < sizeof(struct sctp_setadaptation)) |
| return -EINVAL; |
| |
| len = sizeof(struct sctp_setadaptation); |
| |
| adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &adaptation, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) |
| * |
| * Applications that wish to use the sendto() system call may wish to |
| * specify a default set of parameters that would normally be supplied |
| * through the inclusion of ancillary data. This socket option allows |
| * such an application to set the default sctp_sndrcvinfo structure. |
| |
| |
| * The application that wishes to use this socket option simply passes |
| * in to this call the sctp_sndrcvinfo structure defined in Section |
| * 5.2.2) The input parameters accepted by this call include |
| * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, |
| * sinfo_timetolive. The user must provide the sinfo_assoc_id field in |
| * to this call if the caller is using the UDP model. |
| * |
| * For getsockopt, it get the default sctp_sndrcvinfo structure. |
| */ |
| static int sctp_getsockopt_default_send_param(struct sock *sk, |
| int len, char __user *optval, |
| int __user *optlen) |
| { |
| struct sctp_sock *sp = sctp_sk(sk); |
| struct sctp_association *asoc; |
| struct sctp_sndrcvinfo info; |
| |
| if (len < sizeof(info)) |
| return -EINVAL; |
| |
| len = sizeof(info); |
| |
| if (copy_from_user(&info, optval, len)) |
| return -EFAULT; |
| |
| asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); |
| if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| if (asoc) { |
| info.sinfo_stream = asoc->default_stream; |
| info.sinfo_flags = asoc->default_flags; |
| info.sinfo_ppid = asoc->default_ppid; |
| info.sinfo_context = asoc->default_context; |
| info.sinfo_timetolive = asoc->default_timetolive; |
| } else { |
| info.sinfo_stream = sp->default_stream; |
| info.sinfo_flags = sp->default_flags; |
| info.sinfo_ppid = sp->default_ppid; |
| info.sinfo_context = sp->default_context; |
| info.sinfo_timetolive = sp->default_timetolive; |
| } |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &info, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* RFC6458, Section 8.1.31. Set/get Default Send Parameters |
| * (SCTP_DEFAULT_SNDINFO) |
| */ |
| static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| struct sctp_sock *sp = sctp_sk(sk); |
| struct sctp_association *asoc; |
| struct sctp_sndinfo info; |
| |
| if (len < sizeof(info)) |
| return -EINVAL; |
| |
| len = sizeof(info); |
| |
| if (copy_from_user(&info, optval, len)) |
| return -EFAULT; |
| |
| asoc = sctp_id2assoc(sk, info.snd_assoc_id); |
| if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| if (asoc) { |
| info.snd_sid = asoc->default_stream; |
| info.snd_flags = asoc->default_flags; |
| info.snd_ppid = asoc->default_ppid; |
| info.snd_context = asoc->default_context; |
| } else { |
| info.snd_sid = sp->default_stream; |
| info.snd_flags = sp->default_flags; |
| info.snd_ppid = sp->default_ppid; |
| info.snd_context = sp->default_context; |
| } |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &info, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * 7.1.5 SCTP_NODELAY |
| * |
| * Turn on/off any Nagle-like algorithm. This means that packets are |
| * generally sent as soon as possible and no unnecessary delays are |
| * introduced, at the cost of more packets in the network. Expects an |
| * integer boolean flag. |
| */ |
| |
| static int sctp_getsockopt_nodelay(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| int val; |
| |
| if (len < sizeof(int)) |
| return -EINVAL; |
| |
| len = sizeof(int); |
| val = (sctp_sk(sk)->nodelay == 1); |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &val, len)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /* |
| * |
| * 7.1.1 SCTP_RTOINFO |
| * |
| * The protocol parameters used to initialize and bound retransmission |
| * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access |
| * and modify these parameters. |
| * All parameters are time values, in milliseconds. A value of 0, when |
| * modifying the parameters, indicates that the current value should not |
| * be changed. |
| * |
| */ |
| static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) { |
| struct sctp_rtoinfo rtoinfo; |
| struct sctp_association *asoc; |
| |
| if (len < sizeof (struct sctp_rtoinfo)) |
| return -EINVAL; |
| |
| len = sizeof(struct sctp_rtoinfo); |
| |
| if (copy_from_user(&rtoinfo, optval, len)) |
| return -EFAULT; |
| |
| asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); |
| |
| if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| /* Values corresponding to the specific association. */ |
| if (asoc) { |
| rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); |
| rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); |
| rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); |
| } else { |
| /* Values corresponding to the endpoint. */ |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| rtoinfo.srto_initial = sp->rtoinfo.srto_initial; |
| rtoinfo.srto_max = sp->rtoinfo.srto_max; |
| rtoinfo.srto_min = sp->rtoinfo.srto_min; |
| } |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| |
| if (copy_to_user(optval, &rtoinfo, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * 7.1.2 SCTP_ASSOCINFO |
| * |
| * This option is used to tune the maximum retransmission attempts |
| * of the association. |
| * Returns an error if the new association retransmission value is |
| * greater than the sum of the retransmission value of the peer. |
| * See [SCTP] for more information. |
| * |
| */ |
| static int sctp_getsockopt_associnfo(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| |
| struct sctp_assocparams assocparams; |
| struct sctp_association *asoc; |
| struct list_head *pos; |
| int cnt = 0; |
| |
| if (len < sizeof (struct sctp_assocparams)) |
| return -EINVAL; |
| |
| len = sizeof(struct sctp_assocparams); |
| |
| if (copy_from_user(&assocparams, optval, len)) |
| return -EFAULT; |
| |
| asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); |
| |
| if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| /* Values correspoinding to the specific association */ |
| if (asoc) { |
| assocparams.sasoc_asocmaxrxt = asoc->max_retrans; |
| assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; |
| assocparams.sasoc_local_rwnd = asoc->a_rwnd; |
| assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); |
| |
| list_for_each(pos, &asoc->peer.transport_addr_list) { |
| cnt++; |
| } |
| |
| assocparams.sasoc_number_peer_destinations = cnt; |
| } else { |
| /* Values corresponding to the endpoint */ |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; |
| assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; |
| assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; |
| assocparams.sasoc_cookie_life = |
| sp->assocparams.sasoc_cookie_life; |
| assocparams.sasoc_number_peer_destinations = |
| sp->assocparams. |
| sasoc_number_peer_destinations; |
| } |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| |
| if (copy_to_user(optval, &assocparams, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) |
| * |
| * This socket option is a boolean flag which turns on or off mapped V4 |
| * addresses. If this option is turned on and the socket is type |
| * PF_INET6, then IPv4 addresses will be mapped to V6 representation. |
| * If this option is turned off, then no mapping will be done of V4 |
| * addresses and a user will receive both PF_INET6 and PF_INET type |
| * addresses on the socket. |
| */ |
| static int sctp_getsockopt_mappedv4(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| int val; |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| if (len < sizeof(int)) |
| return -EINVAL; |
| |
| len = sizeof(int); |
| val = sp->v4mapped; |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &val, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * 7.1.29. Set or Get the default context (SCTP_CONTEXT) |
| * (chapter and verse is quoted at sctp_setsockopt_context()) |
| */ |
| static int sctp_getsockopt_context(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_assoc_value params; |
| struct sctp_sock *sp; |
| struct sctp_association *asoc; |
| |
| if (len < sizeof(struct sctp_assoc_value)) |
| return -EINVAL; |
| |
| len = sizeof(struct sctp_assoc_value); |
| |
| if (copy_from_user(¶ms, optval, len)) |
| return -EFAULT; |
| |
| sp = sctp_sk(sk); |
| |
| if (params.assoc_id != 0) { |
| asoc = sctp_id2assoc(sk, params.assoc_id); |
| if (!asoc) |
| return -EINVAL; |
| params.assoc_value = asoc->default_rcv_context; |
| } else { |
| params.assoc_value = sp->default_rcv_context; |
| } |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, ¶ms, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) |
| * This option will get or set the maximum size to put in any outgoing |
| * SCTP DATA chunk. If a message is larger than this size it will be |
| * fragmented by SCTP into the specified size. Note that the underlying |
| * SCTP implementation may fragment into smaller sized chunks when the |
| * PMTU of the underlying association is smaller than the value set by |
| * the user. The default value for this option is '0' which indicates |
| * the user is NOT limiting fragmentation and only the PMTU will effect |
| * SCTP's choice of DATA chunk size. Note also that values set larger |
| * than the maximum size of an IP datagram will effectively let SCTP |
| * control fragmentation (i.e. the same as setting this option to 0). |
| * |
| * The following structure is used to access and modify this parameter: |
| * |
| * struct sctp_assoc_value { |
| * sctp_assoc_t assoc_id; |
| * uint32_t assoc_value; |
| * }; |
| * |
| * assoc_id: This parameter is ignored for one-to-one style sockets. |
| * For one-to-many style sockets this parameter indicates which |
| * association the user is performing an action upon. Note that if |
| * this field's value is zero then the endpoints default value is |
| * changed (effecting future associations only). |
| * assoc_value: This parameter specifies the maximum size in bytes. |
| */ |
| static int sctp_getsockopt_maxseg(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_assoc_value params; |
| struct sctp_association *asoc; |
| |
| if (len == sizeof(int)) { |
| pr_warn_ratelimited(DEPRECATED |
| "%s (pid %d) " |
| "Use of int in maxseg socket option.\n" |
| "Use struct sctp_assoc_value instead\n", |
| current->comm, task_pid_nr(current)); |
| params.assoc_id = 0; |
| } else if (len >= sizeof(struct sctp_assoc_value)) { |
| len = sizeof(struct sctp_assoc_value); |
| if (copy_from_user(¶ms, optval, sizeof(params))) |
| return -EFAULT; |
| } else |
| return -EINVAL; |
| |
| asoc = sctp_id2assoc(sk, params.assoc_id); |
| if (!asoc && params.assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| if (asoc) |
| params.assoc_value = asoc->frag_point; |
| else |
| params.assoc_value = sctp_sk(sk)->user_frag; |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (len == sizeof(int)) { |
| if (copy_to_user(optval, ¶ms.assoc_value, len)) |
| return -EFAULT; |
| } else { |
| if (copy_to_user(optval, ¶ms, len)) |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) |
| * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) |
| */ |
| static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| int val; |
| |
| if (len < sizeof(int)) |
| return -EINVAL; |
| |
| len = sizeof(int); |
| |
| val = sctp_sk(sk)->frag_interleave; |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &val, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * 7.1.25. Set or Get the sctp partial delivery point |
| * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) |
| */ |
| static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| u32 val; |
| |
| if (len < sizeof(u32)) |
| return -EINVAL; |
| |
| len = sizeof(u32); |
| |
| val = sctp_sk(sk)->pd_point; |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &val, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) |
| * (chapter and verse is quoted at sctp_setsockopt_maxburst()) |
| */ |
| static int sctp_getsockopt_maxburst(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| struct sctp_assoc_value params; |
| struct sctp_sock *sp; |
| struct sctp_association *asoc; |
| |
| if (len == sizeof(int)) { |
| pr_warn_ratelimited(DEPRECATED |
| "%s (pid %d) " |
| "Use of int in max_burst socket option.\n" |
| "Use struct sctp_assoc_value instead\n", |
| current->comm, task_pid_nr(current)); |
| params.assoc_id = 0; |
| } else if (len >= sizeof(struct sctp_assoc_value)) { |
| len = sizeof(struct sctp_assoc_value); |
| if (copy_from_user(¶ms, optval, len)) |
| return -EFAULT; |
| } else |
| return -EINVAL; |
| |
| sp = sctp_sk(sk); |
| |
| if (params.assoc_id != 0) { |
| asoc = sctp_id2assoc(sk, params.assoc_id); |
| if (!asoc) |
| return -EINVAL; |
| params.assoc_value = asoc->max_burst; |
| } else |
| params.assoc_value = sp->max_burst; |
| |
| if (len == sizeof(int)) { |
| if (copy_to_user(optval, ¶ms.assoc_value, len)) |
| return -EFAULT; |
| } else { |
| if (copy_to_user(optval, ¶ms, len)) |
| return -EFAULT; |
| } |
| |
| return 0; |
| |
| } |
| |
| static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_endpoint *ep = sctp_sk(sk)->ep; |
| struct sctp_hmacalgo __user *p = (void __user *)optval; |
| struct sctp_hmac_algo_param *hmacs; |
| __u16 data_len = 0; |
| u32 num_idents; |
| int i; |
| |
| if (!ep->auth_enable) |
| return -EACCES; |
| |
| hmacs = ep->auth_hmacs_list; |
| data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); |
| |
| if (len < sizeof(struct sctp_hmacalgo) + data_len) |
| return -EINVAL; |
| |
| len = sizeof(struct sctp_hmacalgo) + data_len; |
| num_idents = data_len / sizeof(u16); |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (put_user(num_idents, &p->shmac_num_idents)) |
| return -EFAULT; |
| for (i = 0; i < num_idents; i++) { |
| __u16 hmacid = ntohs(hmacs->hmac_ids[i]); |
| |
| if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) |
| return -EFAULT; |
| } |
| return 0; |
| } |
| |
| static int sctp_getsockopt_active_key(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_endpoint *ep = sctp_sk(sk)->ep; |
| struct sctp_authkeyid val; |
| struct sctp_association *asoc; |
| |
| if (!ep->auth_enable) |
| return -EACCES; |
| |
| if (len < sizeof(struct sctp_authkeyid)) |
| return -EINVAL; |
| if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) |
| return -EFAULT; |
| |
| asoc = sctp_id2assoc(sk, val.scact_assoc_id); |
| if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| if (asoc) |
| val.scact_keynumber = asoc->active_key_id; |
| else |
| val.scact_keynumber = ep->active_key_id; |
| |
| len = sizeof(struct sctp_authkeyid); |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &val, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_endpoint *ep = sctp_sk(sk)->ep; |
| struct sctp_authchunks __user *p = (void __user *)optval; |
| struct sctp_authchunks val; |
| struct sctp_association *asoc; |
| struct sctp_chunks_param *ch; |
| u32 num_chunks = 0; |
| char __user *to; |
| |
| if (!ep->auth_enable) |
| return -EACCES; |
| |
| if (len < sizeof(struct sctp_authchunks)) |
| return -EINVAL; |
| |
| if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) |
| return -EFAULT; |
| |
| to = p->gauth_chunks; |
| asoc = sctp_id2assoc(sk, val.gauth_assoc_id); |
| if (!asoc) |
| return -EINVAL; |
| |
| ch = asoc->peer.peer_chunks; |
| if (!ch) |
| goto num; |
| |
| /* See if the user provided enough room for all the data */ |
| num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); |
| if (len < num_chunks) |
| return -EINVAL; |
| |
| if (copy_to_user(to, ch->chunks, num_chunks)) |
| return -EFAULT; |
| num: |
| len = sizeof(struct sctp_authchunks) + num_chunks; |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (put_user(num_chunks, &p->gauth_number_of_chunks)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_endpoint *ep = sctp_sk(sk)->ep; |
| struct sctp_authchunks __user *p = (void __user *)optval; |
| struct sctp_authchunks val; |
| struct sctp_association *asoc; |
| struct sctp_chunks_param *ch; |
| u32 num_chunks = 0; |
| char __user *to; |
| |
| if (!ep->auth_enable) |
| return -EACCES; |
| |
| if (len < sizeof(struct sctp_authchunks)) |
| return -EINVAL; |
| |
| if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) |
| return -EFAULT; |
| |
| to = p->gauth_chunks; |
| asoc = sctp_id2assoc(sk, val.gauth_assoc_id); |
| if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) |
| return -EINVAL; |
| |
| if (asoc) |
| ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; |
| else |
| ch = ep->auth_chunk_list; |
| |
| if (!ch) |
| goto num; |
| |
| num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); |
| if (len < sizeof(struct sctp_authchunks) + num_chunks) |
| return -EINVAL; |
| |
| if (copy_to_user(to, ch->chunks, num_chunks)) |
| return -EFAULT; |
| num: |
| len = sizeof(struct sctp_authchunks) + num_chunks; |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (put_user(num_chunks, &p->gauth_number_of_chunks)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) |
| * This option gets the current number of associations that are attached |
| * to a one-to-many style socket. The option value is an uint32_t. |
| */ |
| static int sctp_getsockopt_assoc_number(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_sock *sp = sctp_sk(sk); |
| struct sctp_association *asoc; |
| u32 val = 0; |
| |
| if (sctp_style(sk, TCP)) |
| return -EOPNOTSUPP; |
| |
| if (len < sizeof(u32)) |
| return -EINVAL; |
| |
| len = sizeof(u32); |
| |
| list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { |
| val++; |
| } |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &val, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * 8.1.23 SCTP_AUTO_ASCONF |
| * See the corresponding setsockopt entry as description |
| */ |
| static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| int val = 0; |
| |
| if (len < sizeof(int)) |
| return -EINVAL; |
| |
| len = sizeof(int); |
| if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) |
| val = 1; |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &val, len)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /* |
| * 8.2.6. Get the Current Identifiers of Associations |
| * (SCTP_GET_ASSOC_ID_LIST) |
| * |
| * This option gets the current list of SCTP association identifiers of |
| * the SCTP associations handled by a one-to-many style socket. |
| */ |
| static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, |
| char __user *optval, int __user *optlen) |
| { |
| struct sctp_sock *sp = sctp_sk(sk); |
| struct sctp_association *asoc; |
| struct sctp_assoc_ids *ids; |
| u32 num = 0; |
| |
| if (sctp_style(sk, TCP)) |
| return -EOPNOTSUPP; |
| |
| if (len < sizeof(struct sctp_assoc_ids)) |
| return -EINVAL; |
| |
| list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { |
| num++; |
| } |
| |
| if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) |
| return -EINVAL; |
| |
| len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; |
| |
| ids = kmalloc(len, GFP_USER | __GFP_NOWARN); |
| if (unlikely(!ids)) |
| return -ENOMEM; |
| |
| ids->gaids_number_of_ids = num; |
| num = 0; |
| list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { |
| ids->gaids_assoc_id[num++] = asoc->assoc_id; |
| } |
| |
| if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { |
| kfree(ids); |
| return -EFAULT; |
| } |
| |
| kfree(ids); |
| return 0; |
| } |
| |
| /* |
| * SCTP_PEER_ADDR_THLDS |
| * |
| * This option allows us to fetch the partially failed threshold for one or all |
| * transports in an association. See Section 6.1 of: |
| * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt |
| */ |
| static int sctp_getsockopt_paddr_thresholds(struct sock *sk, |
| char __user *optval, |
| int len, |
| int __user *optlen) |
| { |
| struct sctp_paddrthlds val; |
| struct sctp_transport *trans; |
| struct sctp_association *asoc; |
| |
| if (len < sizeof(struct sctp_paddrthlds)) |
| return -EINVAL; |
| len = sizeof(struct sctp_paddrthlds); |
| if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) |
| return -EFAULT; |
| |
| if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { |
| asoc = sctp_id2assoc(sk, val.spt_assoc_id); |
| if (!asoc) |
| return -ENOENT; |
| |
| val.spt_pathpfthld = asoc->pf_retrans; |
| val.spt_pathmaxrxt = asoc->pathmaxrxt; |
| } else { |
| trans = sctp_addr_id2transport(sk, &val.spt_address, |
| val.spt_assoc_id); |
| if (!trans) |
| return -ENOENT; |
| |
| val.spt_pathmaxrxt = trans->pathmaxrxt; |
| val.spt_pathpfthld = trans->pf_retrans; |
| } |
| |
| if (put_user(len, optlen) || copy_to_user(optval, &val, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * SCTP_GET_ASSOC_STATS |
| * |
| * This option retrieves local per endpoint statistics. It is modeled |
| * after OpenSolaris' implementation |
| */ |
| static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| struct sctp_assoc_stats sas; |
| struct sctp_association *asoc = NULL; |
| |
| /* User must provide at least the assoc id */ |
| if (len < sizeof(sctp_assoc_t)) |
| return -EINVAL; |
| |
| /* Allow the struct to grow and fill in as much as possible */ |
| len = min_t(size_t, len, sizeof(sas)); |
| |
| if (copy_from_user(&sas, optval, len)) |
| return -EFAULT; |
| |
| asoc = sctp_id2assoc(sk, sas.sas_assoc_id); |
| if (!asoc) |
| return -EINVAL; |
| |
| sas.sas_rtxchunks = asoc->stats.rtxchunks; |
| sas.sas_gapcnt = asoc->stats.gapcnt; |
| sas.sas_outofseqtsns = asoc->stats.outofseqtsns; |
| sas.sas_osacks = asoc->stats.osacks; |
| sas.sas_isacks = asoc->stats.isacks; |
| sas.sas_octrlchunks = asoc->stats.octrlchunks; |
| sas.sas_ictrlchunks = asoc->stats.ictrlchunks; |
| sas.sas_oodchunks = asoc->stats.oodchunks; |
| sas.sas_iodchunks = asoc->stats.iodchunks; |
| sas.sas_ouodchunks = asoc->stats.ouodchunks; |
| sas.sas_iuodchunks = asoc->stats.iuodchunks; |
| sas.sas_idupchunks = asoc->stats.idupchunks; |
| sas.sas_opackets = asoc->stats.opackets; |
| sas.sas_ipackets = asoc->stats.ipackets; |
| |
| /* New high max rto observed, will return 0 if not a single |
| * RTO update took place. obs_rto_ipaddr will be bogus |
| * in such a case |
| */ |
| sas.sas_maxrto = asoc->stats.max_obs_rto; |
| memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, |
| sizeof(struct sockaddr_storage)); |
| |
| /* Mark beginning of a new observation period */ |
| asoc->stats.max_obs_rto = asoc->rto_min; |
| |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| |
| pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); |
| |
| if (copy_to_user(optval, &sas, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| int val = 0; |
| |
| if (len < sizeof(int)) |
| return -EINVAL; |
| |
| len = sizeof(int); |
| if (sctp_sk(sk)->recvrcvinfo) |
| val = 1; |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &val, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| int val = 0; |
| |
| if (len < sizeof(int)) |
| return -EINVAL; |
| |
| len = sizeof(int); |
| if (sctp_sk(sk)->recvnxtinfo) |
| val = 1; |
| if (put_user(len, optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &val, len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int sctp_getsockopt_pr_supported(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| struct sctp_assoc_value params; |
| struct sctp_association *asoc; |
| int retval = -EFAULT; |
| |
| if (len < sizeof(params)) { |
| retval = -EINVAL; |
| goto out; |
| } |
| |
| len = sizeof(params); |
| if (copy_from_user(¶ms, optval, len)) |
| goto out; |
| |
| asoc = sctp_id2assoc(sk, params.assoc_id); |
| if (asoc) { |
| params.assoc_value = asoc->prsctp_enable; |
| } else if (!params.assoc_id) { |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| params.assoc_value = sp->ep->prsctp_enable; |
| } else { |
| retval = -EINVAL; |
| goto out; |
| } |
| |
| if (put_user(len, optlen)) |
| goto out; |
| |
| if (copy_to_user(optval, ¶ms, len)) |
| goto out; |
| |
| retval = 0; |
| |
| out: |
| return retval; |
| } |
| |
| static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| struct sctp_default_prinfo info; |
| struct sctp_association *asoc; |
| int retval = -EFAULT; |
| |
| if (len < sizeof(info)) { |
| retval = -EINVAL; |
| goto out; |
| } |
| |
| len = sizeof(info); |
| if (copy_from_user(&info, optval, len)) |
| goto out; |
| |
| asoc = sctp_id2assoc(sk, info.pr_assoc_id); |
| if (asoc) { |
| info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); |
| info.pr_value = asoc->default_timetolive; |
| } else if (!info.pr_assoc_id) { |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| info.pr_policy = SCTP_PR_POLICY(sp->default_flags); |
| info.pr_value = sp->default_timetolive; |
| } else { |
| retval = -EINVAL; |
| goto out; |
| } |
| |
| if (put_user(len, optlen)) |
| goto out; |
| |
| if (copy_to_user(optval, &info, len)) |
| goto out; |
| |
| retval = 0; |
| |
| out: |
| return retval; |
| } |
| |
| static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, |
| char __user *optval, |
| int __user *optlen) |
| { |
| struct sctp_prstatus params; |
| struct sctp_association *asoc; |
| int policy; |
| int retval = -EINVAL; |
| |
| if (len < sizeof(params)) |
| goto out; |
| |
| len = sizeof(params); |
| if (copy_from_user(¶ms, optval, len)) { |
| retval = -EFAULT; |
| goto out; |
| } |
| |
| policy = params.sprstat_policy; |
| if (policy & ~SCTP_PR_SCTP_MASK) |
| goto out; |
| |
| asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); |
| if (!asoc) |
| goto out; |
| |
| if (policy == SCTP_PR_SCTP_NONE) { |
| params.sprstat_abandoned_unsent = 0; |
| params.sprstat_abandoned_sent = 0; |
| for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { |
| params.sprstat_abandoned_unsent += |
| asoc->abandoned_unsent[policy]; |
| params.sprstat_abandoned_sent += |
| asoc->abandoned_sent[policy]; |
| } |
| } else { |
| params.sprstat_abandoned_unsent = |
| asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; |
| params.sprstat_abandoned_sent = |
| asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; |
| } |
| |
| if (put_user(len, optlen)) { |
| retval = -EFAULT; |
| goto out; |
| } |
| |
| if (copy_to_user(optval, ¶ms, len)) { |
| retval = -EFAULT; |
| goto out; |
| } |
| |
| retval = 0; |
| |
| out: |
| return retval; |
| } |
| |
| static int sctp_getsockopt(struct sock *sk, int level, int optname, |
| char __user *optval, int __user *optlen) |
| { |
| int retval = 0; |
| int len; |
| |
| pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); |
| |
| /* I can hardly begin to describe how wrong this is. This is |
| * so broken as to be worse than useless. The API draft |
| * REALLY is NOT helpful here... I am not convinced that the |
| * semantics of getsockopt() with a level OTHER THAN SOL_SCTP |
| * are at all well-founded. |
| */ |
| if (level != SOL_SCTP) { |
| struct sctp_af *af = sctp_sk(sk)->pf->af; |
| |
| retval = af->getsockopt(sk, level, optname, optval, optlen); |
| return retval; |
| } |
| |
| if (get_user(len, optlen)) |
| return -EFAULT; |
| |
| if (len < 0) |
| return -EINVAL; |
| |
| lock_sock(sk); |
| |
| switch (optname) { |
| case SCTP_STATUS: |
| retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); |
| break; |
| case SCTP_DISABLE_FRAGMENTS: |
| retval = sctp_getsockopt_disable_fragments(sk, len, optval, |
| optlen); |
| break; |
| case SCTP_EVENTS: |
| retval = sctp_getsockopt_events(sk, len, optval, optlen); |
| break; |
| case SCTP_AUTOCLOSE: |
| retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); |
| break; |
| case SCTP_SOCKOPT_PEELOFF: |
| retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); |
| break; |
| case SCTP_PEER_ADDR_PARAMS: |
| retval = sctp_getsockopt_peer_addr_params(sk, len, optval, |
| optlen); |
| break; |
| case SCTP_DELAYED_SACK: |
| retval = sctp_getsockopt_delayed_ack(sk, len, optval, |
| optlen); |
| break; |
| case SCTP_INITMSG: |
| retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); |
| break; |
| case SCTP_GET_PEER_ADDRS: |
| retval = sctp_getsockopt_peer_addrs(sk, len, optval, |
| optlen); |
| break; |
| case SCTP_GET_LOCAL_ADDRS: |
| retval = sctp_getsockopt_local_addrs(sk, len, optval, |
| optlen); |
| break; |
| case SCTP_SOCKOPT_CONNECTX3: |
| retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); |
| break; |
| case SCTP_DEFAULT_SEND_PARAM: |
| retval = sctp_getsockopt_default_send_param(sk, len, |
| optval, optlen); |
| break; |
| case SCTP_DEFAULT_SNDINFO: |
| retval = sctp_getsockopt_default_sndinfo(sk, len, |
| optval, optlen); |
| break; |
| case SCTP_PRIMARY_ADDR: |
| retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); |
| break; |
| case SCTP_NODELAY: |
| retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); |
| break; |
| case SCTP_RTOINFO: |
| retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); |
| break; |
| case SCTP_ASSOCINFO: |
| retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); |
| break; |
| case SCTP_I_WANT_MAPPED_V4_ADDR: |
| retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); |
| break; |
| case SCTP_MAXSEG: |
| retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); |
| break; |
| case SCTP_GET_PEER_ADDR_INFO: |
| retval = sctp_getsockopt_peer_addr_info(sk, len, optval, |
| optlen); |
| break; |
| case SCTP_ADAPTATION_LAYER: |
| retval = sctp_getsockopt_adaptation_layer(sk, len, optval, |
| optlen); |
| break; |
| case SCTP_CONTEXT: |
| retval = sctp_getsockopt_context(sk, len, optval, optlen); |
| break; |
| case SCTP_FRAGMENT_INTERLEAVE: |
| retval = sctp_getsockopt_fragment_interleave(sk, len, optval, |
| optlen); |
| break; |
| case SCTP_PARTIAL_DELIVERY_POINT: |
| retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, |
| optlen); |
| break; |
| case SCTP_MAX_BURST: |
| retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); |
| break; |
| case SCTP_AUTH_KEY: |
| case SCTP_AUTH_CHUNK: |
| case SCTP_AUTH_DELETE_KEY: |
| retval = -EOPNOTSUPP; |
| break; |
| case SCTP_HMAC_IDENT: |
| retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); |
| break; |
| case SCTP_AUTH_ACTIVE_KEY: |
| retval = sctp_getsockopt_active_key(sk, len, optval, optlen); |
| break; |
| case SCTP_PEER_AUTH_CHUNKS: |
| retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, |
| optlen); |
| break; |
| case SCTP_LOCAL_AUTH_CHUNKS: |
| retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, |
| optlen); |
| break; |
| case SCTP_GET_ASSOC_NUMBER: |
| retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); |
| break; |
| case SCTP_GET_ASSOC_ID_LIST: |
| retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); |
| break; |
| case SCTP_AUTO_ASCONF: |
| retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); |
| break; |
| case SCTP_PEER_ADDR_THLDS: |
| retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); |
| break; |
| case SCTP_GET_ASSOC_STATS: |
| retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); |
| break; |
| case SCTP_RECVRCVINFO: |
| retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); |
| break; |
| case SCTP_RECVNXTINFO: |
| retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); |
| break; |
| case SCTP_PR_SUPPORTED: |
| retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); |
| break; |
| case SCTP_DEFAULT_PRINFO: |
| retval = sctp_getsockopt_default_prinfo(sk, len, optval, |
| optlen); |
| break; |
| case SCTP_PR_ASSOC_STATUS: |
| retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, |
| optlen); |
| break; |
| default: |
| retval = -ENOPROTOOPT; |
| break; |
| } |
| |
| release_sock(sk); |
| return retval; |
| } |
| |
| static int sctp_hash(struct sock *sk) |
| { |
| /* STUB */ |
| return 0; |
| } |
| |
| static void sctp_unhash(struct sock *sk) |
| { |
| /* STUB */ |
| } |
| |
| /* Check if port is acceptable. Possibly find first available port. |
| * |
| * The port hash table (contained in the 'global' SCTP protocol storage |
| * returned by struct sctp_protocol *sctp_get_protocol()). The hash |
| * table is an array of 4096 lists (sctp_bind_hashbucket). Each |
| * list (the list number is the port number hashed out, so as you |
| * would expect from a hash function, all the ports in a given list have |
| * such a number that hashes out to the same list number; you were |
| * expecting that, right?); so each list has a set of ports, with a |
| * link to the socket (struct sock) that uses it, the port number and |
| * a fastreuse flag (FIXME: NPI ipg). |
| */ |
| static struct sctp_bind_bucket *sctp_bucket_create( |
| struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); |
| |
| static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) |
| { |
| struct sctp_bind_hashbucket *head; /* hash list */ |
| struct sctp_bind_bucket *pp; |
| unsigned short snum; |
| int ret; |
| |
| snum = ntohs(addr->v4.sin_port); |
| |
| pr_debug("%s: begins, snum:%d\n", __func__, snum); |
| |
| local_bh_disable(); |
| |
| if (snum == 0) { |
| /* Search for an available port. */ |
| int low, high, remaining, index; |
| unsigned int rover; |
| struct net *net = sock_net(sk); |
| |
| inet_get_local_port_range(net, &low, &high); |
| remaining = (high - low) + 1; |
| rover = prandom_u32() % remaining + low; |
| |
| do { |
| rover++; |
| if ((rover < low) || (rover > high)) |
| rover = low; |
| if (inet_is_local_reserved_port(net, rover)) |
| continue; |
| index = sctp_phashfn(sock_net(sk), rover); |
| head = &sctp_port_hashtable[index]; |
| spin_lock(&head->lock); |
| sctp_for_each_hentry(pp, &head->chain) |
| if ((pp->port == rover) && |
| net_eq(sock_net(sk), pp->net)) |
| goto next; |
| break; |
| next: |
| spin_unlock(&head->lock); |
| } while (--remaining > 0); |
| |
| /* Exhausted local port range during search? */ |
| ret = 1; |
| if (remaining <= 0) |
| goto fail; |
| |
| /* OK, here is the one we will use. HEAD (the port |
| * hash table list entry) is non-NULL and we hold it's |
| * mutex. |
| */ |
| snum = rover; |
| } else { |
| /* We are given an specific port number; we verify |
| * that it is not being used. If it is used, we will |
| * exahust the search in the hash list corresponding |
| * to the port number (snum) - we detect that with the |
| * port iterator, pp being NULL. |
| */ |
| head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; |
| spin_lock(&head->lock); |
| sctp_for_each_hentry(pp, &head->chain) { |
| if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) |
| goto pp_found; |
| } |
| } |
| pp = NULL; |
| goto pp_not_found; |
| pp_found: |
| if (!hlist_empty(&pp->owner)) { |
| /* We had a port hash table hit - there is an |
| * available port (pp != NULL) and it is being |
| * used by other socket (pp->owner not empty); that other |
| * socket is going to be sk2. |
| */ |
| int reuse = sk->sk_reuse; |
| struct sock *sk2; |
| |
| pr_debug("%s: found a possible match\n", __func__); |
| |
| if (pp->fastreuse && sk->sk_reuse && |
| sk->sk_state != SCTP_SS_LISTENING) |
| goto success; |
| |
| /* Run through the list of sockets bound to the port |
| * (pp->port) [via the pointers bind_next and |
| * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, |
| * we get the endpoint they describe and run through |
| * the endpoint's list of IP (v4 or v6) addresses, |
| * comparing each of the addresses with the address of |
| * the socket sk. If we find a match, then that means |
| * that this port/socket (sk) combination are already |
| * in an endpoint. |
| */ |
| sk_for_each_bound(sk2, &pp->owner) { |
| struct sctp_endpoint *ep2; |
| ep2 = sctp_sk(sk2)->ep; |
| |
| if (sk == sk2 || |
| (reuse && sk2->sk_reuse && |
| sk2->sk_state != SCTP_SS_LISTENING)) |
| continue; |
| |
| if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, |
| sctp_sk(sk2), sctp_sk(sk))) { |
| ret = (long)sk2; |
| goto fail_unlock; |
| } |
| } |
| |
| pr_debug("%s: found a match\n", __func__); |
| } |
| pp_not_found: |
| /* If there was a hash table miss, create a new port. */ |
| ret = 1; |
| if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) |
| goto fail_unlock; |
| |
| /* In either case (hit or miss), make sure fastreuse is 1 only |
| * if sk->sk_reuse is too (that is, if the caller requested |
| * SO_REUSEADDR on this socket -sk-). |
| */ |
| if (hlist_empty(&pp->owner)) { |
| if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) |
| pp->fastreuse = 1; |
| else |
| pp->fastreuse = 0; |
| } else if (pp->fastreuse && |
| (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) |
| pp->fastreuse = 0; |
| |
| /* We are set, so fill up all the data in the hash table |
| * entry, tie the socket list information with the rest of the |
| * sockets FIXME: Blurry, NPI (ipg). |
| */ |
| success: |
| if (!sctp_sk(sk)->bind_hash) { |
| inet_sk(sk)->inet_num = snum; |
| sk_add_bind_node(sk, &pp->owner); |
| sctp_sk(sk)->bind_hash = pp; |
| } |
| ret = 0; |
| |
| fail_unlock: |
| spin_unlock(&head->lock); |
| |
| fail: |
| local_bh_enable(); |
| return ret; |
| } |
| |
| /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral |
| * port is requested. |
| */ |
| static int sctp_get_port(struct sock *sk, unsigned short snum) |
| { |
| union sctp_addr addr; |
| struct sctp_af *af = sctp_sk(sk)->pf->af; |
| |
| /* Set up a dummy address struct from the sk. */ |
| af->from_sk(&addr, sk); |
| addr.v4.sin_port = htons(snum); |
| |
| /* Note: sk->sk_num gets filled in if ephemeral port request. */ |
| return !!sctp_get_port_local(sk, &addr); |
| } |
| |
| /* |
| * Move a socket to LISTENING state. |
| */ |
| static int sctp_listen_start(struct sock *sk, int backlog) |
| { |
| struct sctp_sock *sp = sctp_sk(sk); |
| struct sctp_endpoint *ep = sp->ep; |
| struct crypto_shash *tfm = NULL; |
| char alg[32]; |
| |
| /* Allocate HMAC for generating cookie. */ |
| if (!sp->hmac && sp->sctp_hmac_alg) { |
| sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); |
| tfm = crypto_alloc_shash(alg, 0, 0); |
| if (IS_ERR(tfm)) { |
| net_info_ratelimited("failed to load transform for %s: %ld\n", |
| sp->sctp_hmac_alg, PTR_ERR(tfm)); |
| return -ENOSYS; |
| } |
| sctp_sk(sk)->hmac = tfm; |
| } |
| |
| /* |
| * If a bind() or sctp_bindx() is not called prior to a listen() |
| * call that allows new associations to be accepted, the system |
| * picks an ephemeral port and will choose an address set equivalent |
| * to binding with a wildcard address. |
| * |
| * This is not currently spelled out in the SCTP sockets |
| * extensions draft, but follows the practice as seen in TCP |
| * sockets. |
| * |
| */ |
| sk->sk_state = SCTP_SS_LISTENING; |
| if (!ep->base.bind_addr.port) { |
| if (sctp_autobind(sk)) |
| return -EAGAIN; |
| } else { |
| if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { |
| sk->sk_state = SCTP_SS_CLOSED; |
| return -EADDRINUSE; |
| } |
| } |
| |
| sk->sk_max_ack_backlog = backlog; |
| sctp_hash_endpoint(ep); |
| return 0; |
| } |
| |
| /* |
| * 4.1.3 / 5.1.3 listen() |
| * |
| * By default, new associations are not accepted for UDP style sockets. |
| * An application uses listen() to mark a socket as being able to |
| * accept new associations. |
| * |
| * On TCP style sockets, applications use listen() to ready the SCTP |
| * endpoint for accepting inbound associations. |
| * |
| * On both types of endpoints a backlog of '0' disables listening. |
| * |
| * Move a socket to LISTENING state. |
| */ |
| int sctp_inet_listen(struct socket *sock, int backlog) |
| { |
| struct sock *sk = sock->sk; |
| struct sctp_endpoint *ep = sctp_sk(sk)->ep; |
| int err = -EINVAL; |
| |
| if (unlikely(backlog < 0)) |
| return err; |
| |
| lock_sock(sk); |
| |
| /* Peeled-off sockets are not allowed to listen(). */ |
| if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) |
| goto out; |
| |
| if (sock->state != SS_UNCONNECTED) |
| goto out; |
| |
| if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) |
| goto out; |
| |
| /* If backlog is zero, disable listening. */ |
| if (!backlog) { |
| if (sctp_sstate(sk, CLOSED)) |
| goto out; |
| |
| err = 0; |
| sctp_unhash_endpoint(ep); |
| sk->sk_state = SCTP_SS_CLOSED; |
| if (sk->sk_reuse) |
| sctp_sk(sk)->bind_hash->fastreuse = 1; |
| goto out; |
| } |
| |
| /* If we are already listening, just update the backlog */ |
| if (sctp_sstate(sk, LISTENING)) |
| sk->sk_max_ack_backlog = backlog; |
| else { |
| err = sctp_listen_start(sk, backlog); |
| if (err) |
| goto out; |
| } |
| |
| err = 0; |
| out: |
| release_sock(sk); |
| return err; |
| } |
| |
| /* |
| * This function is done by modeling the current datagram_poll() and the |
| * tcp_poll(). Note that, based on these implementations, we don't |
| * lock the socket in this function, even though it seems that, |
| * ideally, locking or some other mechanisms can be used to ensure |
| * the integrity of the counters (sndbuf and wmem_alloc) used |
| * in this place. We assume that we don't need locks either until proven |
| * otherwise. |
| * |
| * Another thing to note is that we include the Async I/O support |
| * here, again, by modeling the current TCP/UDP code. We don't have |
| * a good way to test with it yet. |
| */ |
| unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) |
| { |
| struct sock *sk = sock->sk; |
| struct sctp_sock *sp = sctp_sk(sk); |
| unsigned int mask; |
| |
| poll_wait(file, sk_sleep(sk), wait); |
| |
| sock_rps_record_flow(sk); |
| |
| /* A TCP-style listening socket becomes readable when the accept queue |
| * is not empty. |
| */ |
| if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) |
| return (!list_empty(&sp->ep->asocs)) ? |
| (POLLIN | POLLRDNORM) : 0; |
| |
| mask = 0; |
| |
| /* Is there any exceptional events? */ |
| if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) |
| mask |= POLLERR | |
| (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); |
| if (sk->sk_shutdown & RCV_SHUTDOWN) |
| mask |= POLLRDHUP | POLLIN | POLLRDNORM; |
| if (sk->sk_shutdown == SHUTDOWN_MASK) |
| mask |= POLLHUP; |
| |
| /* Is it readable? Reconsider this code with TCP-style support. */ |
| if (!skb_queue_empty(&sk->sk_receive_queue)) |
| mask |= POLLIN | POLLRDNORM; |
| |
| /* The association is either gone or not ready. */ |
| if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) |
| return mask; |
| |
| /* Is it writable? */ |
| if (sctp_writeable(sk)) { |
| mask |= POLLOUT | POLLWRNORM; |
| } else { |
| sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); |
| /* |
| * Since the socket is not locked, the buffer |
| * might be made available after the writeable check and |
| * before the bit is set. This could cause a lost I/O |
| * signal. tcp_poll() has a race breaker for this race |
| * condition. Based on their implementation, we put |
| * in the following code to cover it as well. |
| */ |
| if (sctp_writeable(sk)) |
| mask |= POLLOUT | POLLWRNORM; |
| } |
| return mask; |
| } |
| |
| /******************************************************************** |
| * 2nd Level Abstractions |
| ********************************************************************/ |
| |
| static struct sctp_bind_bucket *sctp_bucket_create( |
| struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) |
| { |
| struct sctp_bind_bucket *pp; |
| |
| pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); |
| if (pp) { |
| SCTP_DBG_OBJCNT_INC(bind_bucket); |
| pp->port = snum; |
| pp->fastreuse = 0; |
| INIT_HLIST_HEAD(&pp->owner); |
| pp->net = net; |
| hlist_add_head(&pp->node, &head->chain); |
| } |
| return pp; |
| } |
| |
| /* Caller must hold hashbucket lock for this tb with local BH disabled */ |
| static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) |
| { |
| if (pp && hlist_empty(&pp->owner)) { |
| __hlist_del(&pp->node); |
| kmem_cache_free(sctp_bucket_cachep, pp); |
| SCTP_DBG_OBJCNT_DEC(bind_bucket); |
| } |
| } |
| |
| /* Release this socket's reference to a local port. */ |
| static inline void __sctp_put_port(struct sock *sk) |
| { |
| struct sctp_bind_hashbucket *head = |
| &sctp_port_hashtable[sctp_phashfn(sock_net(sk), |
| inet_sk(sk)->inet_num)]; |
| struct sctp_bind_bucket *pp; |
| |
| spin_lock(&head->lock); |
| pp = sctp_sk(sk)->bind_hash; |
| __sk_del_bind_node(sk); |
| sctp_sk(sk)->bind_hash = NULL; |
| inet_sk(sk)->inet_num = 0; |
| sctp_bucket_destroy(pp); |
| spin_unlock(&head->lock); |
| } |
| |
| void sctp_put_port(struct sock *sk) |
| { |
| local_bh_disable(); |
| __sctp_put_port(sk); |
| local_bh_enable(); |
| } |
| |
| /* |
| * The system picks an ephemeral port and choose an address set equivalent |
| * to binding with a wildcard address. |
| * One of those addresses will be the primary address for the association. |
| * This automatically enables the multihoming capability of SCTP. |
| */ |
| static int sctp_autobind(struct sock *sk) |
| { |
| union sctp_addr autoaddr; |
| struct sctp_af *af; |
| __be16 port; |
| |
| /* Initialize a local sockaddr structure to INADDR_ANY. */ |
| af = sctp_sk(sk)->pf->af; |
| |
| port = htons(inet_sk(sk)->inet_num); |
| af->inaddr_any(&autoaddr, port); |
| |
| return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); |
| } |
| |
| /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. |
| * |
| * From RFC 2292 |
| * 4.2 The cmsghdr Structure * |
| * |
| * When ancillary data is sent or received, any number of ancillary data |
| * objects can be specified by the msg_control and msg_controllen members of |
| * the msghdr structure, because each object is preceded by |
| * a cmsghdr structure defining the object's length (the cmsg_len member). |
| * Historically Berkeley-derived implementations have passed only one object |
| * at a time, but this API allows multiple objects to be |
| * passed in a single call to sendmsg() or recvmsg(). The following example |
| * shows two ancillary data objects in a control buffer. |
| * |
| * |<--------------------------- msg_controllen -------------------------->| |
| * | | |
| * |
| * |<----- ancillary data object ----->|<----- ancillary data object ----->| |
| * |
| * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| |
| * | | | |
| * |
| * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | |
| * |
| * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | |
| * | | | | | |
| * |
| * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ |
| * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| |
| * |
| * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| |
| * |
| * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ |
| * ^ |
| * | |
| * |
| * msg_control |
| * points here |
| */ |
| static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) |
| { |
| struct cmsghdr *cmsg; |
| struct msghdr *my_msg = (struct msghdr *)msg; |
| |
| for_each_cmsghdr(cmsg, my_msg) { |
| if (!CMSG_OK(my_msg, cmsg)) |
| return -EINVAL; |
| |
| /* Should we parse this header or ignore? */ |
| if (cmsg->cmsg_level != IPPROTO_SCTP) |
| continue; |
| |
| /* Strictly check lengths following example in SCM code. */ |
| switch (cmsg->cmsg_type) { |
| case SCTP_INIT: |
| /* SCTP Socket API Extension |
| * 5.3.1 SCTP Initiation Structure (SCTP_INIT) |
| * |
| * This cmsghdr structure provides information for |
| * initializing new SCTP associations with sendmsg(). |
| * The SCTP_INITMSG socket option uses this same data |
| * structure. This structure is not used for |
| * recvmsg(). |
| * |
| * cmsg_level cmsg_type cmsg_data[] |
| * ------------ ------------ ---------------------- |
| * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg |
| */ |
| if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) |
| return -EINVAL; |
| |
| cmsgs->init = CMSG_DATA(cmsg); |
| break; |
| |
| case SCTP_SNDRCV: |
| /* SCTP Socket API Extension |
| * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) |
| * |
| * This cmsghdr structure specifies SCTP options for |
| * sendmsg() and describes SCTP header information |
| * about a received message through recvmsg(). |
| * |
| * cmsg_level cmsg_type cmsg_data[] |
| * ------------ ------------ ---------------------- |
| * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo |
| */ |
| if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) |
| return -EINVAL; |
| |
| cmsgs->srinfo = CMSG_DATA(cmsg); |
| |
| if (cmsgs->srinfo->sinfo_flags & |
| ~(SCTP_UNORDERED | SCTP_ADDR_OVER | |
| SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | |
| SCTP_ABORT | SCTP_EOF)) |
| return -EINVAL; |
| break; |
| |
| case SCTP_SNDINFO: |
| /* SCTP Socket API Extension |
| * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) |
| * |
| * This cmsghdr structure specifies SCTP options for |
| * sendmsg(). This structure and SCTP_RCVINFO replaces |
| * SCTP_SNDRCV which has been deprecated. |
| * |
| * cmsg_level cmsg_type cmsg_data[] |
| * ------------ ------------ --------------------- |
| * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo |
| */ |
| if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) |
| return -EINVAL; |
| |
| cmsgs->sinfo = CMSG_DATA(cmsg); |
| |
| if (cmsgs->sinfo->snd_flags & |
| ~(SCTP_UNORDERED | SCTP_ADDR_OVER | |
| SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | |
| SCTP_ABORT | SCTP_EOF)) |
| return -EINVAL; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Wait for a packet.. |
| * Note: This function is the same function as in core/datagram.c |
| * with a few modifications to make lksctp work. |
| */ |
| static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) |
| { |
| int error; |
| DEFINE_WAIT(wait); |
| |
| prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); |
| |
| /* Socket errors? */ |
| error = sock_error(sk); |
| if (error) |
| goto out; |
| |
| if (!skb_queue_empty(&sk->sk_receive_queue)) |
| goto ready; |
| |
| /* Socket shut down? */ |
| if (sk->sk_shutdown & RCV_SHUTDOWN) |
| goto out; |
| |
| /* Sequenced packets can come disconnected. If so we report the |
| * problem. |
| */ |
| error = -ENOTCONN; |
| |
| /* Is there a good reason to think that we may receive some data? */ |
| if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) |
| goto out; |
| |
| /* Handle signals. */ |
| if (signal_pending(current)) |
| goto interrupted; |
| |
| /* Let another process have a go. Since we are going to sleep |
| * anyway. Note: This may cause odd behaviors if the message |
| * does not fit in the user's buffer, but this seems to be the |
| * only way to honor MSG_DONTWAIT realistically. |
| */ |
| release_sock(sk); |
| *timeo_p = schedule_timeout(*timeo_p); |
| lock_sock(sk); |
| |
| ready: |
| finish_wait(sk_sleep(sk), &wait); |
| return 0; |
| |
| interrupted: |
| error = sock_intr_errno(*timeo_p); |
| |
| out: |
| finish_wait(sk_sleep(sk), &wait); |
| *err = error; |
| return error; |
| } |
| |
| /* Receive a datagram. |
| * Note: This is pretty much the same routine as in core/datagram.c |
| * with a few changes to make lksctp work. |
| */ |
| struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, |
| int noblock, int *err) |
| { |
| int error; |
| struct sk_buff *skb; |
| long timeo; |
| |
| timeo = sock_rcvtimeo(sk, noblock); |
| |
| pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, |
| MAX_SCHEDULE_TIMEOUT); |
| |
| do { |
| /* Again only user level code calls this function, |
| * so nothing interrupt level |
| * will suddenly eat the receive_queue. |
| * |
| * Look at current nfs client by the way... |
| * However, this function was correct in any case. 8) |
| */ |
| if (flags & MSG_PEEK) { |
| skb = skb_peek(&sk->sk_receive_queue); |
| if (skb) |
| atomic_inc(&skb->users); |
| } else { |
| skb = __skb_dequeue(&sk->sk_receive_queue); |
| } |
| |
| if (skb) |
| return skb; |
| |
| /* Caller is allowed not to check sk->sk_err before calling. */ |
| error = sock_error(sk); |
| if (error) |
| goto no_packet; |
| |
| if (sk->sk_shutdown & RCV_SHUTDOWN) |
| break; |
| |
| if (sk_can_busy_loop(sk) && |
| sk_busy_loop(sk, noblock)) |
| continue; |
| |
| /* User doesn't want to wait. */ |
| error = -EAGAIN; |
| if (!timeo) |
| goto no_packet; |
| } while (sctp_wait_for_packet(sk, err, &timeo) == 0); |
| |
| return NULL; |
| |
| no_packet: |
| *err = error; |
| return NULL; |
| } |
| |
| /* If sndbuf has changed, wake up per association sndbuf waiters. */ |
| static void __sctp_write_space(struct sctp_association *asoc) |
| { |
| struct sock *sk = asoc->base.sk; |
| |
| if (sctp_wspace(asoc) <= 0) |
| return; |
| |
| if (waitqueue_active(&asoc->wait)) |
| wake_up_interruptible(&asoc->wait); |
| |
| if (sctp_writeable(sk)) { |
| struct socket_wq *wq; |
| |
| rcu_read_lock(); |
| wq = rcu_dereference(sk->sk_wq); |
| if (wq) { |
| if (waitqueue_active(&wq->wait)) |
| wake_up_interruptible(&wq->wait); |
| |
| /* Note that we try to include the Async I/O support |
| * here by modeling from the current TCP/UDP code. |
| * We have not tested with it yet. |
| */ |
| if (!(sk->sk_shutdown & SEND_SHUTDOWN)) |
| sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); |
| } |
| rcu_read_unlock(); |
| } |
| } |
| |
| static void sctp_wake_up_waiters(struct sock *sk, |
| struct sctp_association *asoc) |
| { |
| struct sctp_association *tmp = asoc; |
| |
| /* We do accounting for the sndbuf space per association, |
| * so we only need to wake our own association. |
| */ |
| if (asoc->ep->sndbuf_policy) |
| return __sctp_write_space(asoc); |
| |
| /* If association goes down and is just flushing its |
| * outq, then just normally notify others. |
| */ |
| if (asoc->base.dead) |
| return sctp_write_space(sk); |
| |
| /* Accounting for the sndbuf space is per socket, so we |
| * need to wake up others, try to be fair and in case of |
| * other associations, let them have a go first instead |
| * of just doing a sctp_write_space() call. |
| * |
| * Note that we reach sctp_wake_up_waiters() only when |
| * associations free up queued chunks, thus we are under |
| * lock and the list of associations on a socket is |
| * guaranteed not to change. |
| */ |
| for (tmp = list_next_entry(tmp, asocs); 1; |
| tmp = list_next_entry(tmp, asocs)) { |
| /* Manually skip the head element. */ |
| if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) |
| continue; |
| /* Wake up association. */ |
| __sctp_write_space(tmp); |
| /* We've reached the end. */ |
| if (tmp == asoc) |
| break; |
| } |
| } |
| |
| /* Do accounting for the sndbuf space. |
| * Decrement the used sndbuf space of the corresponding association by the |
| * data size which was just transmitted(freed). |
| */ |
| static void sctp_wfree(struct sk_buff *skb) |
| { |
| struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; |
| struct sctp_association *asoc = chunk->asoc; |
| struct sock *sk = asoc->base.sk; |
| |
| asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + |
| sizeof(struct sk_buff) + |
| sizeof(struct sctp_chunk); |
| |
| atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); |
| |
| /* |
| * This undoes what is done via sctp_set_owner_w and sk_mem_charge |
| */ |
| sk->sk_wmem_queued -= skb->truesize; |
| sk_mem_uncharge(sk, skb->truesize); |
| |
| sock_wfree(skb); |
| sctp_wake_up_waiters(sk, asoc); |
| |
| sctp_association_put(asoc); |
| } |
| |
| /* Do accounting for the receive space on the socket. |
| * Accounting for the association is done in ulpevent.c |
| * We set this as a destructor for the cloned data skbs so that |
| * accounting is done at the correct time. |
| */ |
| void sctp_sock_rfree(struct sk_buff *skb) |
| { |
| struct sock *sk = skb->sk; |
| struct sctp_ulpevent *event = sctp_skb2event(skb); |
| |
| atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); |
| |
| /* |
| * Mimic the behavior of sock_rfree |
| */ |
| sk_mem_uncharge(sk, event->rmem_len); |
| } |
| |
| |
| /* Helper function to wait for space in the sndbuf. */ |
| static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, |
| size_t msg_len) |
| { |
| struct sock *sk = asoc->base.sk; |
| int err = 0; |
| long current_timeo = *timeo_p; |
| DEFINE_WAIT(wait); |
| |
| pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, |
| *timeo_p, msg_len); |
| |
| /* Increment the association's refcnt. */ |
| sctp_association_hold(asoc); |
| |
| /* Wait on the association specific sndbuf space. */ |
| for (;;) { |
| prepare_to_wait_exclusive(&asoc->wait, &wait, |
| TASK_INTERRUPTIBLE); |
| if (!*timeo_p) |
| goto do_nonblock; |
| if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || |
| asoc->base.dead) |
| goto do_error; |
| if (signal_pending(current)) |
| goto do_interrupted; |
| if (msg_len <= sctp_wspace(asoc)) |
| break; |
| |
| /* Let another process have a go. Since we are going |
| * to sleep anyway. |
| */ |
| release_sock(sk); |
| current_timeo = schedule_timeout(current_timeo); |
| lock_sock(sk); |
| |
| *timeo_p = current_timeo; |
| } |
| |
| out: |
| finish_wait(&asoc->wait, &wait); |
| |
| /* Release the association's refcnt. */ |
| sctp_association_put(asoc); |
| |
| return err; |
| |
| do_error: |
| err = -EPIPE; |
| goto out; |
| |
| do_interrupted: |
| err = sock_intr_errno(*timeo_p); |
| goto out; |
| |
| do_nonblock: |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| void sctp_data_ready(struct sock *sk) |
| { |
| struct socket_wq *wq; |
| |
| rcu_read_lock(); |
| wq = rcu_dereference(sk->sk_wq); |
| if (skwq_has_sleeper(wq)) |
| wake_up_interruptible_sync_poll(&wq->wait, POLLIN | |
| POLLRDNORM | POLLRDBAND); |
| sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); |
| rcu_read_unlock(); |
| } |
| |
| /* If socket sndbuf has changed, wake up all per association waiters. */ |
| void sctp_write_space(struct sock *sk) |
| { |
| struct sctp_association *asoc; |
| |
| /* Wake up the tasks in each wait queue. */ |
| list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { |
| __sctp_write_space(asoc); |
| } |
| } |
| |
| /* Is there any sndbuf space available on the socket? |
| * |
| * Note that sk_wmem_alloc is the sum of the send buffers on all of the |
| * associations on the same socket. For a UDP-style socket with |
| * multiple associations, it is possible for it to be "unwriteable" |
| * prematurely. I assume that this is acceptable because |
| * a premature "unwriteable" is better than an accidental "writeable" which |
| * would cause an unwanted block under certain circumstances. For the 1-1 |
| * UDP-style sockets or TCP-style sockets, this code should work. |
| * - Daisy |
| */ |
| static int sctp_writeable(struct sock *sk) |
| { |
| int amt = 0; |
| |
| amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); |
| if (amt < 0) |
| amt = 0; |
| return amt; |
| } |
| |
| /* Wait for an association to go into ESTABLISHED state. If timeout is 0, |
| * returns immediately with EINPROGRESS. |
| */ |
| static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) |
| { |
| struct sock *sk = asoc->base.sk; |
| int err = 0; |
| long current_timeo = *timeo_p; |
| DEFINE_WAIT(wait); |
| |
| pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); |
| |
| /* Increment the association's refcnt. */ |
| sctp_association_hold(asoc); |
| |
| for (;;) { |
| prepare_to_wait_exclusive(&asoc->wait, &wait, |
| TASK_INTERRUPTIBLE); |
| if (!*timeo_p) |
| goto do_nonblock; |
| if (sk->sk_shutdown & RCV_SHUTDOWN) |
| break; |
| if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || |
| asoc->base.dead) |
| goto do_error; |
| if (signal_pending(current)) |
| goto do_interrupted; |
| |
| if (sctp_state(asoc, ESTABLISHED)) |
| break; |
| |
| /* Let another process have a go. Since we are going |
| * to sleep anyway. |
| */ |
| release_sock(sk); |
| current_timeo = schedule_timeout(current_timeo); |
| lock_sock(sk); |
| |
| *timeo_p = current_timeo; |
| } |
| |
| out: |
| finish_wait(&asoc->wait, &wait); |
| |
| /* Release the association's refcnt. */ |
| sctp_association_put(asoc); |
| |
| return err; |
| |
| do_error: |
| if (asoc->init_err_counter + 1 > asoc->max_init_attempts) |
| err = -ETIMEDOUT; |
| else |
| err = -ECONNREFUSED; |
| goto out; |
| |
| do_interrupted: |
| err = sock_intr_errno(*timeo_p); |
| goto out; |
| |
| do_nonblock: |
| err = -EINPROGRESS; |
| goto out; |
| } |
| |
| static int sctp_wait_for_accept(struct sock *sk, long timeo) |
| { |
| struct sctp_endpoint *ep; |
| int err = 0; |
| DEFINE_WAIT(wait); |
| |
| ep = sctp_sk(sk)->ep; |
| |
| |
| for (;;) { |
| prepare_to_wait_exclusive(sk_sleep(sk), &wait, |
| TASK_INTERRUPTIBLE); |
| |
| if (list_empty(&ep->asocs)) { |
| release_sock(sk); |
| timeo = schedule_timeout(timeo); |
| lock_sock(sk); |
| } |
| |
| err = -EINVAL; |
| if (!sctp_sstate(sk, LISTENING)) |
| break; |
| |
| err = 0; |
| if (!list_empty(&ep->asocs)) |
| break; |
| |
| err = sock_intr_errno(timeo); |
| if (signal_pending(current)) |
| break; |
| |
| err = -EAGAIN; |
| if (!timeo) |
| break; |
| } |
| |
| finish_wait(sk_sleep(sk), &wait); |
| |
| return err; |
| } |
| |
| static void sctp_wait_for_close(struct sock *sk, long timeout) |
| { |
| DEFINE_WAIT(wait); |
| |
| do { |
| prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); |
| if (list_empty(&sctp_sk(sk)->ep->asocs)) |
| break; |
| release_sock(sk); |
| timeout = schedule_timeout(timeout); |
| lock_sock(sk); |
| } while (!signal_pending(current) && timeout); |
| |
| finish_wait(sk_sleep(sk), &wait); |
| } |
| |
| static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) |
| { |
| struct sk_buff *frag; |
| |
| if (!skb->data_len) |
| goto done; |
| |
| /* Don't forget the fragments. */ |
| skb_walk_frags(skb, frag) |
| sctp_skb_set_owner_r_frag(frag, sk); |
| |
| done: |
| sctp_skb_set_owner_r(skb, sk); |
| } |
| |
| void sctp_copy_sock(struct sock *newsk, struct sock *sk, |
| struct sctp_association *asoc) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| struct inet_sock *newinet; |
| |
| newsk->sk_type = sk->sk_type; |
| newsk->sk_bound_dev_if = sk->sk_bound_dev_if; |
| newsk->sk_flags = sk->sk_flags; |
| newsk->sk_tsflags = sk->sk_tsflags; |
| newsk->sk_no_check_tx = sk->sk_no_check_tx; |
| newsk->sk_no_check_rx = sk->sk_no_check_rx; |
| newsk->sk_reuse = sk->sk_reuse; |
| |
| newsk->sk_shutdown = sk->sk_shutdown; |
| newsk->sk_destruct = sctp_destruct_sock; |
| newsk->sk_family = sk->sk_family; |
| newsk->sk_protocol = IPPROTO_SCTP; |
| newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; |
| newsk->sk_sndbuf = sk->sk_sndbuf; |
| newsk->sk_rcvbuf = sk->sk_rcvbuf; |
| newsk->sk_lingertime = sk->sk_lingertime; |
| newsk->sk_rcvtimeo = sk->sk_rcvtimeo; |
| newsk->sk_sndtimeo = sk->sk_sndtimeo; |
| newsk->sk_rxhash = sk->sk_rxhash; |
| |
| newinet = inet_sk(newsk); |
| |
| /* Initialize sk's sport, dport, rcv_saddr and daddr for |
| * getsockname() and getpeername() |
| */ |
| newinet->inet_sport = inet->inet_sport; |
| newinet->inet_saddr = inet->inet_saddr; |
| newinet->inet_rcv_saddr = inet->inet_rcv_saddr; |
| newinet->inet_dport = htons(asoc->peer.port); |
| newinet->pmtudisc = inet->pmtudisc; |
| newinet->inet_id = asoc->next_tsn ^ jiffies; |
| |
| newinet->uc_ttl = inet->uc_ttl; |
| newinet->mc_loop = 1; |
| newinet->mc_ttl = 1; |
| newinet->mc_index = 0; |
| newinet->mc_list = NULL; |
| |
| if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) |
| net_enable_timestamp(); |
| |
| security_sk_clone(sk, newsk); |
| } |
| |
| static inline void sctp_copy_descendant(struct sock *sk_to, |
| const struct sock *sk_from) |
| { |
| int ancestor_size = sizeof(struct inet_sock) + |
| sizeof(struct sctp_sock) - |
| offsetof(struct sctp_sock, auto_asconf_list); |
| |
| if (sk_from->sk_family == PF_INET6) |
| ancestor_size += sizeof(struct ipv6_pinfo); |
| |
| __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); |
| } |
| |
| /* Populate the fields of the newsk from the oldsk and migrate the assoc |
| * and its messages to the newsk. |
| */ |
| static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, |
| struct sctp_association *assoc, |
| sctp_socket_type_t type) |
| { |
| struct sctp_sock *oldsp = sctp_sk(oldsk); |
| struct sctp_sock *newsp = sctp_sk(newsk); |
| struct sctp_bind_bucket *pp; /* hash list port iterator */ |
| struct sctp_endpoint *newep = newsp->ep; |
| struct sk_buff *skb, *tmp; |
| struct sctp_ulpevent *event; |
| struct sctp_bind_hashbucket *head; |
| |
| /* Migrate socket buffer sizes and all the socket level options to the |
| * new socket. |
| */ |
| newsk->sk_sndbuf = oldsk->sk_sndbuf; |
| newsk->sk_rcvbuf = oldsk->sk_rcvbuf; |
| /* Brute force copy old sctp opt. */ |
| sctp_copy_descendant(newsk, oldsk); |
| |
| /* Restore the ep value that was overwritten with the above structure |
| * copy. |
| */ |
| newsp->ep = newep; |
| newsp->hmac = NULL; |
| |
| /* Hook this new socket in to the bind_hash list. */ |
| head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), |
| inet_sk(oldsk)->inet_num)]; |
| spin_lock_bh(&head->lock); |
| pp = sctp_sk(oldsk)->bind_hash; |
| sk_add_bind_node(newsk, &pp->owner); |
| sctp_sk(newsk)->bind_hash = pp; |
| inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; |
| spin_unlock_bh(&head->lock); |
| |
| /* Copy the bind_addr list from the original endpoint to the new |
| * endpoint so that we can handle restarts properly |
| */ |
| sctp_bind_addr_dup(&newsp->ep->base.bind_addr, |
| &oldsp->ep->base.bind_addr, GFP_KERNEL); |
| |
| /* Move any messages in the old socket's receive queue that are for the |
| * peeled off association to the new socket's receive queue. |
| */ |
| sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { |
| event = sctp_skb2event(skb); |
| if (event->asoc == assoc) { |
| __skb_unlink(skb, &oldsk->sk_receive_queue); |
| __skb_queue_tail(&newsk->sk_receive_queue, skb); |
| sctp_skb_set_owner_r_frag(skb, newsk); |
| } |
| } |
| |
| /* Clean up any messages pending delivery due to partial |
| * delivery. Three cases: |
| * 1) No partial deliver; no work. |
| * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. |
| * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. |
| */ |
| skb_queue_head_init(&newsp->pd_lobby); |
| atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); |
| |
| if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { |
| struct sk_buff_head *queue; |
| |
| /* Decide which queue to move pd_lobby skbs to. */ |
| if (assoc->ulpq.pd_mode) { |
| queue = &newsp->pd_lobby; |
| } else |
| queue = &newsk->sk_receive_queue; |
| |
| /* Walk through the pd_lobby, looking for skbs that |
| * need moved to the new socket. |
| */ |
| sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { |
| event = sctp_skb2event(skb); |
| if (event->asoc == assoc) { |
| __skb_unlink(skb, &oldsp->pd_lobby); |
| __skb_queue_tail(queue, skb); |
| sctp_skb_set_owner_r_frag(skb, newsk); |
| } |
| } |
| |
| /* Clear up any skbs waiting for the partial |
| * delivery to finish. |
| */ |
| if (assoc->ulpq.pd_mode) |
| sctp_clear_pd(oldsk, NULL); |
| |
| } |
| |
| sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) |
| sctp_skb_set_owner_r_frag(skb, newsk); |
| |
| sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) |
| sctp_skb_set_owner_r_frag(skb, newsk); |
| |
| /* Set the type of socket to indicate that it is peeled off from the |
| * original UDP-style socket or created with the accept() call on a |
| * TCP-style socket.. |
| */ |
| newsp->type = type; |
| |
| /* Mark the new socket "in-use" by the user so that any packets |
| * that may arrive on the association after we've moved it are |
| * queued to the backlog. This prevents a potential race between |
| * backlog processing on the old socket and new-packet processing |
| * on the new socket. |
| * |
| * The caller has just allocated newsk so we can guarantee that other |
| * paths won't try to lock it and then oldsk. |
| */ |
| lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); |
| sctp_assoc_migrate(assoc, newsk); |
| |
| /* If the association on the newsk is already closed before accept() |
| * is called, set RCV_SHUTDOWN flag. |
| */ |
| if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { |
| newsk->sk_state = SCTP_SS_CLOSED; |
| newsk->sk_shutdown |= RCV_SHUTDOWN; |
| } else { |
| newsk->sk_state = SCTP_SS_ESTABLISHED; |
| } |
| |
| release_sock(newsk); |
| } |
| |
| |
| /* This proto struct describes the ULP interface for SCTP. */ |
| struct proto sctp_prot = { |
| .name = "SCTP", |
| .owner = THIS_MODULE, |
| .close = sctp_close, |
| .connect = sctp_connect, |
| .disconnect = sctp_disconnect, |
| .accept = sctp_accept, |
| .ioctl = sctp_ioctl, |
| .init = sctp_init_sock, |
| .destroy = sctp_destroy_sock, |
| .shutdown = sctp_shutdown, |
| .setsockopt = sctp_setsockopt, |
| .getsockopt = sctp_getsockopt, |
| .sendmsg = sctp_sendmsg, |
| .recvmsg = sctp_recvmsg, |
| .bind = sctp_bind, |
| .backlog_rcv = sctp_backlog_rcv, |
| .hash = sctp_hash, |
| .unhash = sctp_unhash, |
| .get_port = sctp_get_port, |
| .obj_size = sizeof(struct sctp_sock), |
| .sysctl_mem = sysctl_sctp_mem, |
| .sysctl_rmem = sysctl_sctp_rmem, |
| .sysctl_wmem = sysctl_sctp_wmem, |
| .memory_pressure = &sctp_memory_pressure, |
| .enter_memory_pressure = sctp_enter_memory_pressure, |
| .memory_allocated = &sctp_memory_allocated, |
| .sockets_allocated = &sctp_sockets_allocated, |
| }; |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| |
| #include <net/transp_v6.h> |
| static void sctp_v6_destroy_sock(struct sock *sk) |
| { |
| sctp_destroy_sock(sk); |
| inet6_destroy_sock(sk); |
| } |
| |
| struct proto sctpv6_prot = { |
| .name = "SCTPv6", |
| .owner = THIS_MODULE, |
| .close = sctp_close, |
| .connect = sctp_connect, |
| .disconnect = sctp_disconnect, |
| .accept = sctp_accept, |
| .ioctl = sctp_ioctl, |
| .init = sctp_init_sock, |
| .destroy = sctp_v6_destroy_sock, |
| .shutdown = sctp_shutdown, |
| .setsockopt = sctp_setsockopt, |
| .getsockopt = sctp_getsockopt, |
| .sendmsg = sctp_sendmsg, |
| .recvmsg = sctp_recvmsg, |
| .bind = sctp_bind, |
| .backlog_rcv = sctp_backlog_rcv, |
| .hash = sctp_hash, |
| .unhash = sctp_unhash, |
| .get_port = sctp_get_port, |
| .obj_size = sizeof(struct sctp6_sock), |
| .sysctl_mem = sysctl_sctp_mem, |
| .sysctl_rmem = sysctl_sctp_rmem, |
| .sysctl_wmem = sysctl_sctp_wmem, |
| .memory_pressure = &sctp_memory_pressure, |
| .enter_memory_pressure = sctp_enter_memory_pressure, |
| .memory_allocated = &sctp_memory_allocated, |
| .sockets_allocated = &sctp_sockets_allocated, |
| }; |
| #endif /* IS_ENABLED(CONFIG_IPV6) */ |