| /* |
| * fs/f2fs/gc.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/fs.h> |
| #include <linux/module.h> |
| #include <linux/backing-dev.h> |
| #include <linux/proc_fs.h> |
| #include <linux/init.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/kthread.h> |
| #include <linux/delay.h> |
| #include <linux/freezer.h> |
| #include <linux/blkdev.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| #include "segment.h" |
| #include "gc.h" |
| |
| static struct kmem_cache *winode_slab; |
| |
| static int gc_thread_func(void *data) |
| { |
| struct f2fs_sb_info *sbi = data; |
| wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; |
| long wait_ms; |
| |
| wait_ms = GC_THREAD_MIN_SLEEP_TIME; |
| |
| do { |
| if (try_to_freeze()) |
| continue; |
| else |
| wait_event_interruptible_timeout(*wq, |
| kthread_should_stop(), |
| msecs_to_jiffies(wait_ms)); |
| if (kthread_should_stop()) |
| break; |
| |
| f2fs_balance_fs(sbi); |
| |
| if (!test_opt(sbi, BG_GC)) |
| continue; |
| |
| /* |
| * [GC triggering condition] |
| * 0. GC is not conducted currently. |
| * 1. There are enough dirty segments. |
| * 2. IO subsystem is idle by checking the # of writeback pages. |
| * 3. IO subsystem is idle by checking the # of requests in |
| * bdev's request list. |
| * |
| * Note) We have to avoid triggering GCs too much frequently. |
| * Because it is possible that some segments can be |
| * invalidated soon after by user update or deletion. |
| * So, I'd like to wait some time to collect dirty segments. |
| */ |
| if (!mutex_trylock(&sbi->gc_mutex)) |
| continue; |
| |
| if (!is_idle(sbi)) { |
| wait_ms = increase_sleep_time(wait_ms); |
| mutex_unlock(&sbi->gc_mutex); |
| continue; |
| } |
| |
| if (has_enough_invalid_blocks(sbi)) |
| wait_ms = decrease_sleep_time(wait_ms); |
| else |
| wait_ms = increase_sleep_time(wait_ms); |
| |
| sbi->bg_gc++; |
| |
| if (f2fs_gc(sbi, 1) == GC_NONE) |
| wait_ms = GC_THREAD_NOGC_SLEEP_TIME; |
| else if (wait_ms == GC_THREAD_NOGC_SLEEP_TIME) |
| wait_ms = GC_THREAD_MAX_SLEEP_TIME; |
| |
| } while (!kthread_should_stop()); |
| return 0; |
| } |
| |
| int start_gc_thread(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_gc_kthread *gc_th; |
| |
| gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL); |
| if (!gc_th) |
| return -ENOMEM; |
| |
| sbi->gc_thread = gc_th; |
| init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); |
| sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, |
| GC_THREAD_NAME); |
| if (IS_ERR(gc_th->f2fs_gc_task)) { |
| kfree(gc_th); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| void stop_gc_thread(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_gc_kthread *gc_th = sbi->gc_thread; |
| if (!gc_th) |
| return; |
| kthread_stop(gc_th->f2fs_gc_task); |
| kfree(gc_th); |
| sbi->gc_thread = NULL; |
| } |
| |
| static int select_gc_type(int gc_type) |
| { |
| return (gc_type == BG_GC) ? GC_CB : GC_GREEDY; |
| } |
| |
| static void select_policy(struct f2fs_sb_info *sbi, int gc_type, |
| int type, struct victim_sel_policy *p) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| if (p->alloc_mode) { |
| p->gc_mode = GC_GREEDY; |
| p->dirty_segmap = dirty_i->dirty_segmap[type]; |
| p->ofs_unit = 1; |
| } else { |
| p->gc_mode = select_gc_type(gc_type); |
| p->dirty_segmap = dirty_i->dirty_segmap[DIRTY]; |
| p->ofs_unit = sbi->segs_per_sec; |
| } |
| p->offset = sbi->last_victim[p->gc_mode]; |
| } |
| |
| static unsigned int get_max_cost(struct f2fs_sb_info *sbi, |
| struct victim_sel_policy *p) |
| { |
| if (p->gc_mode == GC_GREEDY) |
| return (1 << sbi->log_blocks_per_seg) * p->ofs_unit; |
| else if (p->gc_mode == GC_CB) |
| return UINT_MAX; |
| else /* No other gc_mode */ |
| return 0; |
| } |
| |
| static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned int segno; |
| |
| /* |
| * If the gc_type is FG_GC, we can select victim segments |
| * selected by background GC before. |
| * Those segments guarantee they have small valid blocks. |
| */ |
| segno = find_next_bit(dirty_i->victim_segmap[BG_GC], |
| TOTAL_SEGS(sbi), 0); |
| if (segno < TOTAL_SEGS(sbi)) { |
| clear_bit(segno, dirty_i->victim_segmap[BG_GC]); |
| return segno; |
| } |
| return NULL_SEGNO; |
| } |
| |
| static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int secno = GET_SECNO(sbi, segno); |
| unsigned int start = secno * sbi->segs_per_sec; |
| unsigned long long mtime = 0; |
| unsigned int vblocks; |
| unsigned char age = 0; |
| unsigned char u; |
| unsigned int i; |
| |
| for (i = 0; i < sbi->segs_per_sec; i++) |
| mtime += get_seg_entry(sbi, start + i)->mtime; |
| vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec); |
| |
| mtime = div_u64(mtime, sbi->segs_per_sec); |
| vblocks = div_u64(vblocks, sbi->segs_per_sec); |
| |
| u = (vblocks * 100) >> sbi->log_blocks_per_seg; |
| |
| /* Handle if the system time is changed by user */ |
| if (mtime < sit_i->min_mtime) |
| sit_i->min_mtime = mtime; |
| if (mtime > sit_i->max_mtime) |
| sit_i->max_mtime = mtime; |
| if (sit_i->max_mtime != sit_i->min_mtime) |
| age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), |
| sit_i->max_mtime - sit_i->min_mtime); |
| |
| return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); |
| } |
| |
| static unsigned int get_gc_cost(struct f2fs_sb_info *sbi, unsigned int segno, |
| struct victim_sel_policy *p) |
| { |
| if (p->alloc_mode == SSR) |
| return get_seg_entry(sbi, segno)->ckpt_valid_blocks; |
| |
| /* alloc_mode == LFS */ |
| if (p->gc_mode == GC_GREEDY) |
| return get_valid_blocks(sbi, segno, sbi->segs_per_sec); |
| else |
| return get_cb_cost(sbi, segno); |
| } |
| |
| /* |
| * This function is called from two pathes. |
| * One is garbage collection and the other is SSR segment selection. |
| * When it is called during GC, it just gets a victim segment |
| * and it does not remove it from dirty seglist. |
| * When it is called from SSR segment selection, it finds a segment |
| * which has minimum valid blocks and removes it from dirty seglist. |
| */ |
| static int get_victim_by_default(struct f2fs_sb_info *sbi, |
| unsigned int *result, int gc_type, int type, char alloc_mode) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| struct victim_sel_policy p; |
| unsigned int segno; |
| int nsearched = 0; |
| |
| p.alloc_mode = alloc_mode; |
| select_policy(sbi, gc_type, type, &p); |
| |
| p.min_segno = NULL_SEGNO; |
| p.min_cost = get_max_cost(sbi, &p); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| |
| if (p.alloc_mode == LFS && gc_type == FG_GC) { |
| p.min_segno = check_bg_victims(sbi); |
| if (p.min_segno != NULL_SEGNO) |
| goto got_it; |
| } |
| |
| while (1) { |
| unsigned long cost; |
| |
| segno = find_next_bit(p.dirty_segmap, |
| TOTAL_SEGS(sbi), p.offset); |
| if (segno >= TOTAL_SEGS(sbi)) { |
| if (sbi->last_victim[p.gc_mode]) { |
| sbi->last_victim[p.gc_mode] = 0; |
| p.offset = 0; |
| continue; |
| } |
| break; |
| } |
| p.offset = ((segno / p.ofs_unit) * p.ofs_unit) + p.ofs_unit; |
| |
| if (test_bit(segno, dirty_i->victim_segmap[FG_GC])) |
| continue; |
| if (gc_type == BG_GC && |
| test_bit(segno, dirty_i->victim_segmap[BG_GC])) |
| continue; |
| if (IS_CURSEC(sbi, GET_SECNO(sbi, segno))) |
| continue; |
| |
| cost = get_gc_cost(sbi, segno, &p); |
| |
| if (p.min_cost > cost) { |
| p.min_segno = segno; |
| p.min_cost = cost; |
| } |
| |
| if (cost == get_max_cost(sbi, &p)) |
| continue; |
| |
| if (nsearched++ >= MAX_VICTIM_SEARCH) { |
| sbi->last_victim[p.gc_mode] = segno; |
| break; |
| } |
| } |
| got_it: |
| if (p.min_segno != NULL_SEGNO) { |
| *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; |
| if (p.alloc_mode == LFS) { |
| int i; |
| for (i = 0; i < p.ofs_unit; i++) |
| set_bit(*result + i, |
| dirty_i->victim_segmap[gc_type]); |
| } |
| } |
| mutex_unlock(&dirty_i->seglist_lock); |
| |
| return (p.min_segno == NULL_SEGNO) ? 0 : 1; |
| } |
| |
| static const struct victim_selection default_v_ops = { |
| .get_victim = get_victim_by_default, |
| }; |
| |
| static struct inode *find_gc_inode(nid_t ino, struct list_head *ilist) |
| { |
| struct list_head *this; |
| struct inode_entry *ie; |
| |
| list_for_each(this, ilist) { |
| ie = list_entry(this, struct inode_entry, list); |
| if (ie->inode->i_ino == ino) |
| return ie->inode; |
| } |
| return NULL; |
| } |
| |
| static void add_gc_inode(struct inode *inode, struct list_head *ilist) |
| { |
| struct list_head *this; |
| struct inode_entry *new_ie, *ie; |
| |
| list_for_each(this, ilist) { |
| ie = list_entry(this, struct inode_entry, list); |
| if (ie->inode == inode) { |
| iput(inode); |
| return; |
| } |
| } |
| repeat: |
| new_ie = kmem_cache_alloc(winode_slab, GFP_NOFS); |
| if (!new_ie) { |
| cond_resched(); |
| goto repeat; |
| } |
| new_ie->inode = inode; |
| list_add_tail(&new_ie->list, ilist); |
| } |
| |
| static void put_gc_inode(struct list_head *ilist) |
| { |
| struct inode_entry *ie, *next_ie; |
| list_for_each_entry_safe(ie, next_ie, ilist, list) { |
| iput(ie->inode); |
| list_del(&ie->list); |
| kmem_cache_free(winode_slab, ie); |
| } |
| } |
| |
| static int check_valid_map(struct f2fs_sb_info *sbi, |
| unsigned int segno, int offset) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct seg_entry *sentry; |
| int ret; |
| |
| mutex_lock(&sit_i->sentry_lock); |
| sentry = get_seg_entry(sbi, segno); |
| ret = f2fs_test_bit(offset, sentry->cur_valid_map); |
| mutex_unlock(&sit_i->sentry_lock); |
| return ret ? GC_OK : GC_NEXT; |
| } |
| |
| /* |
| * This function compares node address got in summary with that in NAT. |
| * On validity, copy that node with cold status, otherwise (invalid node) |
| * ignore that. |
| */ |
| static int gc_node_segment(struct f2fs_sb_info *sbi, |
| struct f2fs_summary *sum, unsigned int segno, int gc_type) |
| { |
| bool initial = true; |
| struct f2fs_summary *entry; |
| int off; |
| |
| next_step: |
| entry = sum; |
| for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { |
| nid_t nid = le32_to_cpu(entry->nid); |
| struct page *node_page; |
| int err; |
| |
| /* |
| * It makes sure that free segments are able to write |
| * all the dirty node pages before CP after this CP. |
| * So let's check the space of dirty node pages. |
| */ |
| if (should_do_checkpoint(sbi)) { |
| mutex_lock(&sbi->cp_mutex); |
| block_operations(sbi); |
| return GC_BLOCKED; |
| } |
| |
| err = check_valid_map(sbi, segno, off); |
| if (err == GC_ERROR) |
| return err; |
| else if (err == GC_NEXT) |
| continue; |
| |
| if (initial) { |
| ra_node_page(sbi, nid); |
| continue; |
| } |
| node_page = get_node_page(sbi, nid); |
| if (IS_ERR(node_page)) |
| continue; |
| |
| /* set page dirty and write it */ |
| if (!PageWriteback(node_page)) |
| set_page_dirty(node_page); |
| f2fs_put_page(node_page, 1); |
| stat_inc_node_blk_count(sbi, 1); |
| } |
| if (initial) { |
| initial = false; |
| goto next_step; |
| } |
| |
| if (gc_type == FG_GC) { |
| struct writeback_control wbc = { |
| .sync_mode = WB_SYNC_ALL, |
| .nr_to_write = LONG_MAX, |
| .for_reclaim = 0, |
| }; |
| sync_node_pages(sbi, 0, &wbc); |
| } |
| return GC_DONE; |
| } |
| |
| /* |
| * Calculate start block index that this node page contains |
| */ |
| block_t start_bidx_of_node(unsigned int node_ofs) |
| { |
| block_t start_bidx; |
| unsigned int bidx, indirect_blks; |
| int dec; |
| |
| indirect_blks = 2 * NIDS_PER_BLOCK + 4; |
| |
| start_bidx = 1; |
| if (node_ofs == 0) { |
| start_bidx = 0; |
| } else if (node_ofs <= 2) { |
| bidx = node_ofs - 1; |
| } else if (node_ofs <= indirect_blks) { |
| dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); |
| bidx = node_ofs - 2 - dec; |
| } else { |
| dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); |
| bidx = node_ofs - 5 - dec; |
| } |
| |
| if (start_bidx) |
| start_bidx = bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE; |
| return start_bidx; |
| } |
| |
| static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, |
| struct node_info *dni, block_t blkaddr, unsigned int *nofs) |
| { |
| struct page *node_page; |
| nid_t nid; |
| unsigned int ofs_in_node; |
| block_t source_blkaddr; |
| |
| nid = le32_to_cpu(sum->nid); |
| ofs_in_node = le16_to_cpu(sum->ofs_in_node); |
| |
| node_page = get_node_page(sbi, nid); |
| if (IS_ERR(node_page)) |
| return GC_NEXT; |
| |
| get_node_info(sbi, nid, dni); |
| |
| if (sum->version != dni->version) { |
| f2fs_put_page(node_page, 1); |
| return GC_NEXT; |
| } |
| |
| *nofs = ofs_of_node(node_page); |
| source_blkaddr = datablock_addr(node_page, ofs_in_node); |
| f2fs_put_page(node_page, 1); |
| |
| if (source_blkaddr != blkaddr) |
| return GC_NEXT; |
| return GC_OK; |
| } |
| |
| static void move_data_page(struct inode *inode, struct page *page, int gc_type) |
| { |
| if (page->mapping != inode->i_mapping) |
| goto out; |
| |
| if (inode != page->mapping->host) |
| goto out; |
| |
| if (PageWriteback(page)) |
| goto out; |
| |
| if (gc_type == BG_GC) { |
| set_page_dirty(page); |
| set_cold_data(page); |
| } else { |
| struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); |
| mutex_lock_op(sbi, DATA_WRITE); |
| if (clear_page_dirty_for_io(page) && |
| S_ISDIR(inode->i_mode)) { |
| dec_page_count(sbi, F2FS_DIRTY_DENTS); |
| inode_dec_dirty_dents(inode); |
| } |
| set_cold_data(page); |
| do_write_data_page(page); |
| mutex_unlock_op(sbi, DATA_WRITE); |
| clear_cold_data(page); |
| } |
| out: |
| f2fs_put_page(page, 1); |
| } |
| |
| /* |
| * This function tries to get parent node of victim data block, and identifies |
| * data block validity. If the block is valid, copy that with cold status and |
| * modify parent node. |
| * If the parent node is not valid or the data block address is different, |
| * the victim data block is ignored. |
| */ |
| static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, |
| struct list_head *ilist, unsigned int segno, int gc_type) |
| { |
| struct super_block *sb = sbi->sb; |
| struct f2fs_summary *entry; |
| block_t start_addr; |
| int err, off; |
| int phase = 0; |
| |
| start_addr = START_BLOCK(sbi, segno); |
| |
| next_step: |
| entry = sum; |
| for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { |
| struct page *data_page; |
| struct inode *inode; |
| struct node_info dni; /* dnode info for the data */ |
| unsigned int ofs_in_node, nofs; |
| block_t start_bidx; |
| |
| /* |
| * It makes sure that free segments are able to write |
| * all the dirty node pages before CP after this CP. |
| * So let's check the space of dirty node pages. |
| */ |
| if (should_do_checkpoint(sbi)) { |
| mutex_lock(&sbi->cp_mutex); |
| block_operations(sbi); |
| err = GC_BLOCKED; |
| goto stop; |
| } |
| |
| err = check_valid_map(sbi, segno, off); |
| if (err == GC_ERROR) |
| goto stop; |
| else if (err == GC_NEXT) |
| continue; |
| |
| if (phase == 0) { |
| ra_node_page(sbi, le32_to_cpu(entry->nid)); |
| continue; |
| } |
| |
| /* Get an inode by ino with checking validity */ |
| err = check_dnode(sbi, entry, &dni, start_addr + off, &nofs); |
| if (err == GC_ERROR) |
| goto stop; |
| else if (err == GC_NEXT) |
| continue; |
| |
| if (phase == 1) { |
| ra_node_page(sbi, dni.ino); |
| continue; |
| } |
| |
| start_bidx = start_bidx_of_node(nofs); |
| ofs_in_node = le16_to_cpu(entry->ofs_in_node); |
| |
| if (phase == 2) { |
| inode = f2fs_iget_nowait(sb, dni.ino); |
| if (IS_ERR(inode)) |
| continue; |
| |
| data_page = find_data_page(inode, |
| start_bidx + ofs_in_node); |
| if (IS_ERR(data_page)) |
| goto next_iput; |
| |
| f2fs_put_page(data_page, 0); |
| add_gc_inode(inode, ilist); |
| } else { |
| inode = find_gc_inode(dni.ino, ilist); |
| if (inode) { |
| data_page = get_lock_data_page(inode, |
| start_bidx + ofs_in_node); |
| if (IS_ERR(data_page)) |
| continue; |
| move_data_page(inode, data_page, gc_type); |
| stat_inc_data_blk_count(sbi, 1); |
| } |
| } |
| continue; |
| next_iput: |
| iput(inode); |
| } |
| if (++phase < 4) |
| goto next_step; |
| err = GC_DONE; |
| stop: |
| if (gc_type == FG_GC) |
| f2fs_submit_bio(sbi, DATA, true); |
| return err; |
| } |
| |
| static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, |
| int gc_type, int type) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| int ret; |
| mutex_lock(&sit_i->sentry_lock); |
| ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, type, LFS); |
| mutex_unlock(&sit_i->sentry_lock); |
| return ret; |
| } |
| |
| static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno, |
| struct list_head *ilist, int gc_type) |
| { |
| struct page *sum_page; |
| struct f2fs_summary_block *sum; |
| int ret = GC_DONE; |
| |
| /* read segment summary of victim */ |
| sum_page = get_sum_page(sbi, segno); |
| if (IS_ERR(sum_page)) |
| return GC_ERROR; |
| |
| /* |
| * CP needs to lock sum_page. In this time, we don't need |
| * to lock this page, because this summary page is not gone anywhere. |
| * Also, this page is not gonna be updated before GC is done. |
| */ |
| unlock_page(sum_page); |
| sum = page_address(sum_page); |
| |
| switch (GET_SUM_TYPE((&sum->footer))) { |
| case SUM_TYPE_NODE: |
| ret = gc_node_segment(sbi, sum->entries, segno, gc_type); |
| break; |
| case SUM_TYPE_DATA: |
| ret = gc_data_segment(sbi, sum->entries, ilist, segno, gc_type); |
| break; |
| } |
| stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer))); |
| stat_inc_call_count(sbi->stat_info); |
| |
| f2fs_put_page(sum_page, 0); |
| return ret; |
| } |
| |
| int f2fs_gc(struct f2fs_sb_info *sbi, int nGC) |
| { |
| unsigned int segno; |
| int old_free_secs, cur_free_secs; |
| int gc_status, nfree; |
| struct list_head ilist; |
| int gc_type = BG_GC; |
| |
| INIT_LIST_HEAD(&ilist); |
| gc_more: |
| nfree = 0; |
| gc_status = GC_NONE; |
| |
| if (has_not_enough_free_secs(sbi)) |
| old_free_secs = reserved_sections(sbi); |
| else |
| old_free_secs = free_sections(sbi); |
| |
| while (sbi->sb->s_flags & MS_ACTIVE) { |
| int i; |
| if (has_not_enough_free_secs(sbi)) |
| gc_type = FG_GC; |
| |
| cur_free_secs = free_sections(sbi) + nfree; |
| |
| /* We got free space successfully. */ |
| if (nGC < cur_free_secs - old_free_secs) |
| break; |
| |
| if (!__get_victim(sbi, &segno, gc_type, NO_CHECK_TYPE)) |
| break; |
| |
| for (i = 0; i < sbi->segs_per_sec; i++) { |
| /* |
| * do_garbage_collect will give us three gc_status: |
| * GC_ERROR, GC_DONE, and GC_BLOCKED. |
| * If GC is finished uncleanly, we have to return |
| * the victim to dirty segment list. |
| */ |
| gc_status = do_garbage_collect(sbi, segno + i, |
| &ilist, gc_type); |
| if (gc_status != GC_DONE) |
| goto stop; |
| nfree++; |
| } |
| } |
| stop: |
| if (has_not_enough_free_secs(sbi) || gc_status == GC_BLOCKED) { |
| write_checkpoint(sbi, (gc_status == GC_BLOCKED), false); |
| if (nfree) |
| goto gc_more; |
| } |
| mutex_unlock(&sbi->gc_mutex); |
| |
| put_gc_inode(&ilist); |
| BUG_ON(!list_empty(&ilist)); |
| return gc_status; |
| } |
| |
| void build_gc_manager(struct f2fs_sb_info *sbi) |
| { |
| DIRTY_I(sbi)->v_ops = &default_v_ops; |
| } |
| |
| int create_gc_caches(void) |
| { |
| winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes", |
| sizeof(struct inode_entry), NULL); |
| if (!winode_slab) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void destroy_gc_caches(void) |
| { |
| kmem_cache_destroy(winode_slab); |
| } |