blob: 725fc585cabe220aae950350ee100189cf1ebaf7 [file] [log] [blame]
/*
* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include "cpr3-regulator.h"
#define MSM8953_APSS_FUSE_CORNERS 4
#define SDM632_POWER_APSS_FUSE_CORNERS 4
#define SDM632_PERF_APSS_FUSE_CORNERS 4
/**
* struct cpr4_apss_fuses - APSS specific fuse data
* @ro_sel: Ring oscillator select fuse parameter value for each
* fuse corner
* @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
* for each fuse corner (raw, not converted to a voltage)
* @target_quot: CPR target quotient fuse parameter value for each fuse
* corner
* @quot_offset: CPR target quotient offset fuse parameter value for each
* fuse corner (raw, not unpacked) used for target quotient
* interpolation
* @speed_bin: Application processor speed bin fuse parameter value for
* the given chip
* @cpr_fusing_rev: CPR fusing revision fuse parameter value
* @foundry_id: Foundry identifier fuse parameter value for the given
* chip
* @boost_cfg: CPR boost configuration fuse parameter value
* @boost_voltage: CPR boost voltage fuse parameter value (raw, not
* converted to a voltage)
* @aging_init_quot_diff: Initial quotient difference between CPR aging
* min and max sensors measured at time of manufacturing
*
* This struct holds the values for all of the fuses read from memory.
*/
struct cpr4_apss_fuses {
u64 *ro_sel;
u64 *init_voltage;
u64 *target_quot;
u64 *quot_offset;
u64 speed_bin;
u64 cpr_fusing_rev;
u64 foundry_id;
u64 boost_cfg;
u64 boost_voltage;
u64 misc;
u64 aging_init_quot_diff;
};
/*
* fuse combo = fusing revision + 8 * (speed bin)
* where: fusing revision = 0 - 7 and speed bin = 0 - 7
*/
#define CPR4_MSM8953_APSS_FUSE_COMBO_COUNT 64
#define CPR4_SDM632_APSS_FUSE_COMBO_COUNT 64
/*
* Constants which define the name of each fuse corner.
*/
enum cpr4_msm8953_apss_fuse_corner {
CPR4_MSM8953_APSS_FUSE_CORNER_LOWSVS = 0,
CPR4_MSM8953_APSS_FUSE_CORNER_SVS = 1,
CPR4_MSM8953_APSS_FUSE_CORNER_NOM = 2,
CPR4_MSM8953_APSS_FUSE_CORNER_TURBO_L1 = 3,
};
static const char * const cpr4_msm8953_apss_fuse_corner_name[] = {
[CPR4_MSM8953_APSS_FUSE_CORNER_LOWSVS] = "LowSVS",
[CPR4_MSM8953_APSS_FUSE_CORNER_SVS] = "SVS",
[CPR4_MSM8953_APSS_FUSE_CORNER_NOM] = "NOM",
[CPR4_MSM8953_APSS_FUSE_CORNER_TURBO_L1] = "TURBO_L1",
};
enum cpr4_sdm632_power_apss_fuse_corner {
CPR4_SDM632_POWER_APSS_FUSE_CORNER_LOWSVS = 0,
CPR4_SDM632_POWER_APSS_FUSE_CORNER_SVS_L1 = 1,
CPR4_SDM632_POWER_APSS_FUSE_CORNER_NOM = 2,
CPR4_SDM632_POWER_APSS_FUSE_CORNER_TURBO_L1 = 3,
};
static const char * const cpr4_sdm632_power_apss_fuse_corner_name[] = {
[CPR4_SDM632_POWER_APSS_FUSE_CORNER_LOWSVS] = "LowSVS",
[CPR4_SDM632_POWER_APSS_FUSE_CORNER_SVS_L1] = "SVS_L1",
[CPR4_SDM632_POWER_APSS_FUSE_CORNER_NOM] = "NOM",
[CPR4_SDM632_POWER_APSS_FUSE_CORNER_TURBO_L1] = "TURBO_L1",
};
enum cpr4_sdm632_perf_apss_fuse_corner {
CPR4_SDM632_PERF_APSS_FUSE_CORNER_LOWSVS = 0,
CPR4_SDM632_PERF_APSS_FUSE_CORNER_SVS_L1 = 1,
CPR4_SDM632_PERF_APSS_FUSE_CORNER_NOM = 2,
CPR4_SDM632_PERF_APSS_FUSE_CORNER_TURBO_L1 = 3,
};
static const char * const cpr4_sdm632_perf_apss_fuse_corner_name[] = {
[CPR4_SDM632_PERF_APSS_FUSE_CORNER_LOWSVS] = "LowSVS",
[CPR4_SDM632_PERF_APSS_FUSE_CORNER_SVS_L1] = "SVS_L1",
[CPR4_SDM632_PERF_APSS_FUSE_CORNER_NOM] = "NOM",
[CPR4_SDM632_PERF_APSS_FUSE_CORNER_TURBO_L1] = "TURBO_L1",
};
/* APSS cluster thread IDs */
#define CPR4_APSS_POWER_CLUSTER_ID 0
#define CPR4_APSS_PERF_CLUSTER_ID 1
/*
* MSM8953 APSS fuse parameter locations:
*
* Structs are organized with the following dimensions:
* Outer: 0 to 3 for fuse corners from lowest to highest corner
* Inner: large enough to hold the longest set of parameter segments which
* fully defines a fuse parameter, +1 (for NULL termination).
* Each segment corresponds to a contiguous group of bits from a
* single fuse row. These segments are concatentated together in
* order to form the full fuse parameter value. The segments for
* a given parameter may correspond to different fuse rows.
*/
static const struct cpr3_fuse_param
msm8953_apss_ro_sel_param[MSM8953_APSS_FUSE_CORNERS][2] = {
{{73, 12, 15}, {} },
{{73, 8, 11}, {} },
{{73, 4, 7}, {} },
{{73, 0, 3}, {} },
};
static const struct cpr3_fuse_param
msm8953_apss_init_voltage_param[MSM8953_APSS_FUSE_CORNERS][2] = {
{{71, 24, 29}, {} },
{{71, 18, 23}, {} },
{{71, 12, 17}, {} },
{{71, 6, 11}, {} },
};
static const struct cpr3_fuse_param
msm8953_apss_target_quot_param[MSM8953_APSS_FUSE_CORNERS][2] = {
{{72, 44, 55}, {} },
{{72, 32, 43}, {} },
{{72, 20, 31}, {} },
{{72, 8, 19}, {} },
};
static const struct cpr3_fuse_param
msm8953_apss_quot_offset_param[MSM8953_APSS_FUSE_CORNERS][2] = {
{{} },
{{71, 46, 52}, {} },
{{71, 39, 45}, {} },
{{71, 32, 38}, {} },
};
static const struct cpr3_fuse_param msm8953_cpr_fusing_rev_param[] = {
{71, 53, 55},
{},
};
static const struct cpr3_fuse_param msm8953_apss_speed_bin_param[] = {
{36, 40, 42},
{},
};
static const struct cpr3_fuse_param msm8953_apss_foundry_id_param[] = {
{37, 40, 42},
{},
};
static const struct cpr3_fuse_param msm8953_cpr_boost_fuse_cfg_param[] = {
{36, 43, 45},
{},
};
static const struct cpr3_fuse_param msm8953_apss_boost_fuse_volt_param[] = {
{71, 0, 5},
{},
};
static const struct cpr3_fuse_param msm8953_misc_fuse_volt_adj_param[] = {
{36, 54, 54},
{},
};
static const struct cpr3_fuse_param msm8953_apss_aging_init_quot_diff_param[]
= {
{72, 0, 7},
{},
};
/*
* SDM632 APSS fuse parameter locations:
*
* Structs are organized with the following dimensions:
* Outer: 0 to 3 for fuse corners from lowest to highest corner
* Inner: large enough to hold the longest set of parameter segments which
* fully defines a fuse parameter, +1 (for NULL termination).
* Each segment corresponds to a contiguous group of bits from a
* single fuse row. These segments are concatentated together in
* order to form the full fuse parameter value. The segments for
* a given parameter may correspond to different fuse rows.
*/
static const struct cpr3_fuse_param
sdm632_apss_ro_sel_param[2][SDM632_POWER_APSS_FUSE_CORNERS][2] = {
[CPR4_APSS_POWER_CLUSTER_ID] = {
{{73, 28, 31}, {} },
{{73, 20, 23}, {} },
{{73, 16, 19}, {} },
{{73, 12, 15}, {} },
},
[CPR4_APSS_PERF_CLUSTER_ID] = {
{{73, 28, 31}, {} },
{{73, 8, 11}, {} },
{{73, 4, 7}, {} },
{{73, 0, 3}, {} },
},
};
static const struct cpr3_fuse_param
sdm632_apss_init_voltage_param[2][SDM632_POWER_APSS_FUSE_CORNERS][2] = {
[CPR4_APSS_POWER_CLUSTER_ID] = {
{{74, 18, 23}, {} },
{{71, 24, 29}, {} },
{{74, 6, 11}, {} },
{{74, 0, 5}, {} },
},
[CPR4_APSS_PERF_CLUSTER_ID] = {
{{74, 18, 23}, {} },
{{71, 18, 23}, {} },
{{71, 12, 17}, {} },
{{71, 6, 11}, {} },
},
};
static const struct cpr3_fuse_param
sdm632_apss_target_quot_param[2][SDM632_POWER_APSS_FUSE_CORNERS][2] = {
[CPR4_APSS_POWER_CLUSTER_ID] = {
{{75, 44, 55}, {} },
{{72, 44, 55}, {} },
{{75, 20, 31}, {} },
{{75, 8, 19}, {} },
},
[CPR4_APSS_PERF_CLUSTER_ID] = {
{{75, 44, 55}, {} },
{{72, 32, 43}, {} },
{{72, 20, 31}, {} },
{{72, 8, 19}, {} },
},
};
static const struct cpr3_fuse_param
sdm632_apss_quot_offset_param[2][SDM632_POWER_APSS_FUSE_CORNERS][2] = {
[CPR4_APSS_POWER_CLUSTER_ID] = {
{{} },
{{71, 46, 52}, {} },
{{74, 32, 38}, {} },
{{74, 24, 30}, {} },
},
[CPR4_APSS_PERF_CLUSTER_ID] = {
{{} },
{{74, 39, 45}, {} },
{{71, 39, 45}, {} },
{{71, 32, 38}, {} },
},
};
/*
* The maximum number of fuse combinations possible for the selected fuse
* parameters in fuse combo map logic.
* Here, possible speed-bin values = 8, fuse revision values = 8, and foundry
* identifier values = 8. Total number of combinations = 512 (i.e., 8 * 8 * 8)
*/
#define CPR4_APSS_FUSE_COMBO_MAP_MAX_COUNT 512
/*
* The number of possible values for misc fuse is
* 2^(#bits defined for misc fuse)
*/
#define MSM8953_MISC_FUSE_VAL_COUNT BIT(1)
/*
* Open loop voltage fuse reference voltages in microvolts for MSM8953
*/
static const int msm8953_apss_fuse_ref_volt
[MSM8953_APSS_FUSE_CORNERS] = {
645000,
720000,
865000,
1065000,
};
/*
* Open loop voltage fuse reference voltages in microvolts for SDM632
*/
static const int
sdm632_apss_fuse_ref_volt[2][SDM632_POWER_APSS_FUSE_CORNERS] = {
[CPR4_APSS_POWER_CLUSTER_ID] = {
645000,
790000,
865000,
1065000,
},
[CPR4_APSS_PERF_CLUSTER_ID] = {
645000,
790000,
865000,
1065000,
},
};
#define CPR4_APSS_FUSE_STEP_VOLT 10000
#define CPR4_APSS_VOLTAGE_FUSE_SIZE 6
#define CPR4_APSS_QUOT_OFFSET_SCALE 5
#define MSM8953_APSS_CPR_SENSOR_COUNT 13
#define SDM632_APSS_CPR_SENSOR_COUNT 16
#define SDM632_APSS_THREAD0_SENSOR_MIN 0
#define SDM632_APSS_THREAD0_SENSOR_MAX 6
#define SDM632_APSS_THREAD1_SENSOR_MIN 7
#define SDM632_APSS_THREAD1_SENSOR_MAX 15
#define CPR4_APSS_CPR_CLOCK_RATE 19200000
#define MSM8953_APSS_MAX_TEMP_POINTS 3
#define MSM8953_APSS_TEMP_SENSOR_ID_START 4
#define MSM8953_APSS_TEMP_SENSOR_ID_END 13
/*
* Boost voltage fuse reference and ceiling voltages in microvolts for
* MSM8953.
*/
#define MSM8953_APSS_BOOST_FUSE_REF_VOLT 1140000
#define MSM8953_APSS_BOOST_CEILING_VOLT 1140000
#define MSM8953_APSS_BOOST_FLOOR_VOLT 900000
#define MAX_BOOST_CONFIG_FUSE_VALUE 8
#define MSM8953_APSS_CPR_SDELTA_CORE_COUNT 15
/*
* Array of integer values mapped to each of the boost config fuse values to
* indicate boost enable/disable status.
*/
static bool boost_fuse[MAX_BOOST_CONFIG_FUSE_VALUE] = {0, 1, 1, 1, 1, 1, 1, 1};
/* CPR Aging parameters for msm8953 */
#define MSM8953_APSS_AGING_INIT_QUOT_DIFF_SCALE 1
#define MSM8953_APSS_AGING_INIT_QUOT_DIFF_SIZE 8
#define MSM8953_APSS_AGING_SENSOR_ID 6
/* Use a very high value for max aging margin to be applied */
#define MSM8953_APSS_AGING_MAX_AGE_MARGIN_QUOT (-1000)
/*
* SOC IDs
*/
enum soc_id {
MSM8953_SOC_ID = 1,
SDM632_SOC_ID = 2,
};
/**
* cpr4_msm8953_apss_read_fuse_data() - load MSM8953 APSS specific fuse
* parameter values
* @vreg: Pointer to the CPR3 regulator
* @fuse: APSS specific fuse data
*
* This function fills cpr4_apss_fuses struct with values read out of hardware
* fuses.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_msm8953_apss_read_fuse_data(struct cpr3_regulator *vreg,
struct cpr4_apss_fuses *fuse)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
int i, rc;
rc = cpr3_read_fuse_param(base, msm8953_misc_fuse_volt_adj_param,
&fuse->misc);
if (rc) {
cpr3_err(vreg, "Unable to read misc voltage adjustment fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR misc fuse value = %llu\n", fuse->misc);
if (fuse->misc >= MSM8953_MISC_FUSE_VAL_COUNT) {
cpr3_err(vreg, "CPR misc fuse value = %llu, should be < %lu\n",
fuse->misc, MSM8953_MISC_FUSE_VAL_COUNT);
return -EINVAL;
}
rc = cpr3_read_fuse_param(base, msm8953_apss_aging_init_quot_diff_param,
&fuse->aging_init_quot_diff);
if (rc) {
cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
rc);
return rc;
}
for (i = 0; i < MSM8953_APSS_FUSE_CORNERS; i++) {
rc = cpr3_read_fuse_param(base,
msm8953_apss_init_voltage_param[i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msm8953_apss_target_quot_param[i],
&fuse->target_quot[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msm8953_apss_ro_sel_param[i],
&fuse->ro_sel[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msm8953_apss_quot_offset_param[i],
&fuse->quot_offset[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
i, rc);
return rc;
}
}
rc = cpr3_read_fuse_param(base, msm8953_cpr_boost_fuse_cfg_param,
&fuse->boost_cfg);
if (rc) {
cpr3_err(vreg, "Unable to read CPR boost config fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "Voltage boost fuse config = %llu boost = %s\n",
fuse->boost_cfg, boost_fuse[fuse->boost_cfg]
? "enable" : "disable");
rc = cpr3_read_fuse_param(base,
msm8953_apss_boost_fuse_volt_param,
&fuse->boost_voltage);
if (rc) {
cpr3_err(vreg, "failed to read boost fuse voltage, rc=%d\n",
rc);
return rc;
}
vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
if (vreg->fuse_combo >= CPR4_MSM8953_APSS_FUSE_COMBO_COUNT) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
vreg->fuse_combo);
return -EINVAL;
}
return 0;
}
/**
* cpr4_sdm632_apss_read_fuse_data() - load SDM632 APSS specific fuse
* parameter values
* @vreg: Pointer to the CPR3 regulator
* @fuse: APSS specific fuse data
*
* This function fills cpr4_apss_fuses struct with values read out of hardware
* fuses.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_sdm632_apss_read_fuse_data(struct cpr3_regulator *vreg,
struct cpr4_apss_fuses *fuse)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
int i, id, rc, fuse_corners;
id = vreg->thread->thread_id;
if (id == CPR4_APSS_POWER_CLUSTER_ID)
fuse_corners = SDM632_POWER_APSS_FUSE_CORNERS;
else
fuse_corners = SDM632_PERF_APSS_FUSE_CORNERS;
for (i = 0; i < fuse_corners; i++) {
rc = cpr3_read_fuse_param(base,
sdm632_apss_init_voltage_param[id][i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm632_apss_target_quot_param[id][i],
&fuse->target_quot[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm632_apss_ro_sel_param[id][i],
&fuse->ro_sel[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm632_apss_quot_offset_param[id][i],
&fuse->quot_offset[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
i, rc);
return rc;
}
}
vreg->fuse_combo = fuse->cpr_fusing_rev + (8 * fuse->speed_bin);
if (vreg->fuse_combo >= CPR4_SDM632_APSS_FUSE_COMBO_COUNT) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
vreg->fuse_combo);
return -EINVAL;
}
return 0;
}
/**
* cpr4_apss_read_fuse_data() - load APSS specific fuse parameter values
* @vreg: Pointer to the CPR3 regulator
*
* This function allocates a cpr4_apss_fuses struct, fills it with
* values read out of hardware fuses, and finally copies common fuse values
* into the CPR3 regulator struct.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_read_fuse_data(struct cpr3_regulator *vreg)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
struct cpr4_apss_fuses *fuse;
int rc, fuse_corners;
enum soc_id soc_revision;
fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
if (!fuse)
return -ENOMEM;
soc_revision = vreg->thread->ctrl->soc_revision;
switch (soc_revision) {
case MSM8953_SOC_ID:
fuse_corners = MSM8953_APSS_FUSE_CORNERS;
break;
case SDM632_SOC_ID:
if (vreg->thread->thread_id == CPR4_APSS_POWER_CLUSTER_ID)
fuse_corners = SDM632_POWER_APSS_FUSE_CORNERS;
else
fuse_corners = SDM632_PERF_APSS_FUSE_CORNERS;
break;
default:
cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision);
return -EINVAL;
}
fuse->ro_sel = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
sizeof(*fuse->ro_sel), GFP_KERNEL);
fuse->init_voltage = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
sizeof(*fuse->init_voltage), GFP_KERNEL);
fuse->target_quot = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
sizeof(*fuse->target_quot), GFP_KERNEL);
fuse->quot_offset = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
sizeof(*fuse->quot_offset), GFP_KERNEL);
if (!fuse->ro_sel || !fuse->init_voltage || !fuse->target_quot
|| !fuse->quot_offset)
return -ENOMEM;
rc = cpr3_read_fuse_param(base, msm8953_apss_speed_bin_param,
&fuse->speed_bin);
if (rc) {
cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc);
return rc;
}
rc = cpr3_read_fuse_param(base, msm8953_cpr_fusing_rev_param,
&fuse->cpr_fusing_rev);
if (rc) {
cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
rc);
return rc;
}
rc = cpr3_read_fuse_param(base, msm8953_apss_foundry_id_param,
&fuse->foundry_id);
if (rc) {
cpr3_err(vreg, "Unable to read foundry id fuse, rc=%d\n", rc);
return rc;
}
cpr3_info(vreg, "speed bin = %llu, CPR fusing revision = %llu, foundry id = %llu\n",
fuse->speed_bin, fuse->cpr_fusing_rev,
fuse->foundry_id);
switch (soc_revision) {
case MSM8953_SOC_ID:
rc = cpr4_msm8953_apss_read_fuse_data(vreg, fuse);
if (rc) {
cpr3_err(vreg, "msm8953 apss fuse data read failed, rc=%d\n",
rc);
return rc;
}
break;
case SDM632_SOC_ID:
rc = cpr4_sdm632_apss_read_fuse_data(vreg, fuse);
if (rc) {
cpr3_err(vreg, "sdm632 apss fuse data read failed, rc=%d\n",
rc);
return rc;
}
break;
default:
cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision);
return -EINVAL;
}
vreg->speed_bin_fuse = fuse->speed_bin;
vreg->cpr_rev_fuse = fuse->cpr_fusing_rev;
vreg->fuse_corner_count = fuse_corners;
vreg->platform_fuses = fuse;
return 0;
}
/**
* cpr4_apss_parse_corner_data() - parse APSS corner data from device tree
* properties of the CPR3 regulator's device node
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_parse_corner_data(struct cpr3_regulator *vreg)
{
int rc;
rc = cpr3_parse_common_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
return rc;
}
return rc;
}
/**
* cpr4_apss_parse_misc_fuse_voltage_adjustments() - fill an array from a
* portion of the voltage adjustments specified based on
* miscellaneous fuse bits.
* @vreg: Pointer to the CPR3 regulator
* @volt_adjust: Voltage adjustment output data array which must be
* of size vreg->corner_count
*
* cpr3_parse_common_corner_data() must be called for vreg before this function
* is called so that speed bin size elements are initialized.
*
* Two formats are supported for the device tree property:
* 1. Length == tuple_list_size * vreg->corner_count
* (reading begins at index 0)
* 2. Length == tuple_list_size * vreg->speed_bin_corner_sum
* (reading begins at index tuple_list_size * vreg->speed_bin_offset)
*
* Here, tuple_list_size is the number of possible values for misc fuse.
* All other property lengths are treated as errors.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_parse_misc_fuse_voltage_adjustments(
struct cpr3_regulator *vreg, u32 *volt_adjust)
{
struct device_node *node = vreg->of_node;
struct cpr4_apss_fuses *fuse = vreg->platform_fuses;
int tuple_list_size = MSM8953_MISC_FUSE_VAL_COUNT;
int i, offset, rc, len = 0;
const char *prop_name = "qcom,cpr-misc-fuse-voltage-adjustment";
if (!of_find_property(node, prop_name, &len)) {
cpr3_err(vreg, "property %s is missing\n", prop_name);
return -EINVAL;
}
if (len == tuple_list_size * vreg->corner_count * sizeof(u32)) {
offset = 0;
} else if (vreg->speed_bin_corner_sum > 0 &&
len == tuple_list_size * vreg->speed_bin_corner_sum
* sizeof(u32)) {
offset = tuple_list_size * vreg->speed_bin_offset
+ fuse->misc * vreg->corner_count;
} else {
if (vreg->speed_bin_corner_sum > 0)
cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
prop_name, len,
tuple_list_size * vreg->corner_count
* sizeof(u32),
tuple_list_size * vreg->speed_bin_corner_sum
* sizeof(u32));
else
cpr3_err(vreg, "property %s has invalid length=%d, should be %zu\n",
prop_name, len,
tuple_list_size * vreg->corner_count
* sizeof(u32));
return -EINVAL;
}
for (i = 0; i < vreg->corner_count; i++) {
rc = of_property_read_u32_index(node, prop_name, offset + i,
&volt_adjust[i]);
if (rc) {
cpr3_err(vreg, "error reading property %s, rc=%d\n",
prop_name, rc);
return rc;
}
}
return 0;
}
/**
* cpr4_apss_calculate_open_loop_voltages() - calculate the open-loop
* voltage for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* If open-loop voltage interpolation is allowed in device tree, then
* this function calculates the open-loop voltage for a given corner using
* linear interpolation. This interpolation is performed using the processor
* frequencies of the lower and higher Fmax corners along with their fused
* open-loop voltages.
*
* If open-loop voltage interpolation is not allowed, then this function uses
* the Fmax fused open-loop voltage for all of the corners associated with a
* given fuse corner.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_calculate_open_loop_voltages(struct cpr3_regulator *vreg)
{
struct device_node *node = vreg->of_node;
struct cpr4_apss_fuses *fuse = vreg->platform_fuses;
int i, j, id, rc = 0;
bool allow_interpolation;
u64 freq_low, volt_low, freq_high, volt_high;
const int *ref_volt;
int *fuse_volt, *misc_adj_volt;
int *fmax_corner;
const char * const *corner_name;
enum soc_id soc_revision;
fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
GFP_KERNEL);
fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
GFP_KERNEL);
if (!fuse_volt || !fmax_corner) {
rc = -ENOMEM;
goto done;
}
id = vreg->thread->thread_id;
soc_revision = vreg->thread->ctrl->soc_revision;
switch (soc_revision) {
case MSM8953_SOC_ID:
ref_volt = msm8953_apss_fuse_ref_volt;
corner_name = cpr4_msm8953_apss_fuse_corner_name;
break;
case SDM632_SOC_ID:
ref_volt = sdm632_apss_fuse_ref_volt[id];
if (id == CPR4_APSS_POWER_CLUSTER_ID)
corner_name = cpr4_sdm632_power_apss_fuse_corner_name;
else
corner_name = cpr4_sdm632_perf_apss_fuse_corner_name;
break;
default:
cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision);
rc = -EINVAL;
goto done;
}
for (i = 0; i < vreg->fuse_corner_count; i++) {
fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(ref_volt[i],
CPR4_APSS_FUSE_STEP_VOLT, fuse->init_voltage[i],
CPR4_APSS_VOLTAGE_FUSE_SIZE);
/* Log fused open-loop voltage values for debugging purposes. */
cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n", corner_name[i],
fuse_volt[i]);
}
rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
if (rc) {
cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
rc);
goto done;
}
allow_interpolation = of_property_read_bool(node,
"qcom,allow-voltage-interpolation");
for (i = 1; i < vreg->fuse_corner_count; i++) {
if (fuse_volt[i] < fuse_volt[i - 1]) {
cpr3_info(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
i, fuse_volt[i], i - 1, fuse_volt[i - 1],
i, fuse_volt[i - 1]);
fuse_volt[i] = fuse_volt[i - 1];
}
}
if (!allow_interpolation) {
/* Use fused open-loop voltage for lower frequencies. */
for (i = 0; i < vreg->corner_count; i++)
vreg->corner[i].open_loop_volt
= fuse_volt[vreg->corner[i].cpr_fuse_corner];
goto done;
}
/* Determine highest corner mapped to each fuse corner */
j = vreg->fuse_corner_count - 1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == j) {
fmax_corner[j] = i;
j--;
}
}
if (j >= 0) {
cpr3_err(vreg, "invalid fuse corner mapping\n");
rc = -EINVAL;
goto done;
}
/*
* Interpolation is not possible for corners mapped to the lowest fuse
* corner so use the fuse corner value directly.
*/
for (i = 0; i <= fmax_corner[0]; i++)
vreg->corner[i].open_loop_volt = fuse_volt[0];
/* Interpolate voltages for the higher fuse corners. */
for (i = 1; i < vreg->fuse_corner_count; i++) {
freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
volt_low = fuse_volt[i - 1];
freq_high = vreg->corner[fmax_corner[i]].proc_freq;
volt_high = fuse_volt[i];
for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
vreg->corner[j].open_loop_volt = cpr3_interpolate(
freq_low, volt_low, freq_high, volt_high,
vreg->corner[j].proc_freq);
}
done:
if (rc == 0) {
cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
for (i = 0; i < vreg->corner_count; i++)
cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
vreg->corner[i].open_loop_volt);
rc = cpr3_adjust_open_loop_voltages(vreg);
if (rc)
cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
rc);
if (of_find_property(node,
"qcom,cpr-misc-fuse-voltage-adjustment",
NULL)) {
misc_adj_volt = kcalloc(vreg->corner_count,
sizeof(*misc_adj_volt), GFP_KERNEL);
if (!misc_adj_volt) {
rc = -ENOMEM;
goto _exit;
}
rc = cpr4_apss_parse_misc_fuse_voltage_adjustments(vreg,
misc_adj_volt);
if (rc) {
cpr3_err(vreg, "qcom,cpr-misc-fuse-voltage-adjustment reading failed, rc=%d\n",
rc);
kfree(misc_adj_volt);
goto _exit;
}
for (i = 0; i < vreg->corner_count; i++)
vreg->corner[i].open_loop_volt
+= misc_adj_volt[i];
kfree(misc_adj_volt);
}
}
_exit:
kfree(fuse_volt);
kfree(fmax_corner);
return rc;
}
/**
* cpr4_msm8953_apss_set_no_interpolation_quotients() - use the fused target
* quotient values for lower frequencies.
* @vreg: Pointer to the CPR3 regulator
* @volt_adjust: Pointer to array of per-corner closed-loop adjustment
* voltages
* @volt_adjust_fuse: Pointer to array of per-fuse-corner closed-loop
* adjustment voltages
* @ro_scale: Pointer to array of per-fuse-corner RO scaling factor
* values with units of QUOT/V
*
* Return: 0 on success, errno on failure
*/
static int cpr4_msm8953_apss_set_no_interpolation_quotients(
struct cpr3_regulator *vreg, int *volt_adjust,
int *volt_adjust_fuse, int *ro_scale)
{
struct cpr4_apss_fuses *fuse = vreg->platform_fuses;
u32 quot, ro;
int quot_adjust;
int i, fuse_corner;
for (i = 0; i < vreg->corner_count; i++) {
fuse_corner = vreg->corner[i].cpr_fuse_corner;
quot = fuse->target_quot[fuse_corner];
quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
volt_adjust_fuse[fuse_corner] +
volt_adjust[i]);
ro = fuse->ro_sel[fuse_corner];
vreg->corner[i].target_quot[ro] = quot + quot_adjust;
cpr3_debug(vreg, "corner=%d RO=%u target quot=%u\n",
i, ro, quot);
if (quot_adjust)
cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n",
i, ro, quot, vreg->corner[i].target_quot[ro],
volt_adjust_fuse[fuse_corner] +
volt_adjust[i]);
}
return 0;
}
/**
* cpr4_apss_calculate_target_quotients() - calculate the CPR target
* quotient for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* If target quotient interpolation is allowed in device tree, then this
* function calculates the target quotient for a given corner using linear
* interpolation. This interpolation is performed using the processor
* frequencies of the lower and higher Fmax corners along with the fused
* target quotient and quotient offset of the higher Fmax corner.
*
* If target quotient interpolation is not allowed, then this function uses
* the Fmax fused target quotient for all of the corners associated with a
* given fuse corner.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_calculate_target_quotients(struct cpr3_regulator *vreg)
{
struct cpr4_apss_fuses *fuse = vreg->platform_fuses;
int rc;
bool allow_interpolation;
u64 freq_low, freq_high, prev_quot;
u64 *quot_low;
u64 *quot_high;
u32 quot, ro;
int i, j, fuse_corner, quot_adjust;
int *fmax_corner;
int *volt_adjust, *volt_adjust_fuse, *ro_scale;
int *voltage_adj_misc;
int lowest_fuse_corner, highest_fuse_corner;
const char * const *corner_name;
switch (vreg->thread->ctrl->soc_revision) {
case MSM8953_SOC_ID:
corner_name = cpr4_msm8953_apss_fuse_corner_name;
lowest_fuse_corner = CPR4_MSM8953_APSS_FUSE_CORNER_LOWSVS;
highest_fuse_corner = CPR4_MSM8953_APSS_FUSE_CORNER_TURBO_L1;
break;
case SDM632_SOC_ID:
if (vreg->thread->thread_id == CPR4_APSS_POWER_CLUSTER_ID) {
corner_name = cpr4_sdm632_power_apss_fuse_corner_name;
lowest_fuse_corner =
CPR4_SDM632_POWER_APSS_FUSE_CORNER_LOWSVS;
highest_fuse_corner =
CPR4_SDM632_POWER_APSS_FUSE_CORNER_TURBO_L1;
} else {
corner_name = cpr4_sdm632_perf_apss_fuse_corner_name;
lowest_fuse_corner =
CPR4_SDM632_PERF_APSS_FUSE_CORNER_LOWSVS;
highest_fuse_corner =
CPR4_SDM632_PERF_APSS_FUSE_CORNER_TURBO_L1;
}
break;
default:
cpr3_err(vreg, "unsupported soc id = %d\n",
vreg->thread->ctrl->soc_revision);
return -EINVAL;
}
/* Log fused quotient values for debugging purposes. */
cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu\n",
corner_name[lowest_fuse_corner],
fuse->ro_sel[lowest_fuse_corner],
fuse->target_quot[lowest_fuse_corner]);
for (i = lowest_fuse_corner + 1; i <= highest_fuse_corner; i++)
cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n",
corner_name[i], fuse->ro_sel[i], fuse->target_quot[i],
fuse->ro_sel[i], fuse->quot_offset[i] *
CPR4_APSS_QUOT_OFFSET_SCALE);
allow_interpolation = of_property_read_bool(vreg->of_node,
"qcom,allow-quotient-interpolation");
volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
GFP_KERNEL);
volt_adjust_fuse = kcalloc(vreg->fuse_corner_count,
sizeof(*volt_adjust_fuse), GFP_KERNEL);
ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale),
GFP_KERNEL);
fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
GFP_KERNEL);
quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low),
GFP_KERNEL);
quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high),
GFP_KERNEL);
if (!volt_adjust || !volt_adjust_fuse || !ro_scale ||
!fmax_corner || !quot_low || !quot_high) {
rc = -ENOMEM;
goto done;
}
rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0],
volt_adjust, volt_adjust_fuse, ro_scale);
if (rc) {
cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
rc);
goto done;
}
if (of_find_property(vreg->of_node,
"qcom,cpr-misc-fuse-voltage-adjustment", NULL)) {
voltage_adj_misc = kcalloc(vreg->corner_count,
sizeof(*voltage_adj_misc), GFP_KERNEL);
if (!voltage_adj_misc) {
rc = -ENOMEM;
goto done;
}
rc = cpr4_apss_parse_misc_fuse_voltage_adjustments(vreg,
voltage_adj_misc);
if (rc) {
cpr3_err(vreg, "qcom,cpr-misc-fuse-voltage-adjustment reading failed, rc=%d\n",
rc);
kfree(voltage_adj_misc);
goto done;
}
for (i = 0; i < vreg->corner_count; i++)
volt_adjust[i] += voltage_adj_misc[i];
kfree(voltage_adj_misc);
}
if (!allow_interpolation) {
/* Use fused target quotients for lower frequencies. */
return cpr4_msm8953_apss_set_no_interpolation_quotients(
vreg, volt_adjust, volt_adjust_fuse, ro_scale);
}
/* Determine highest corner mapped to each fuse corner */
j = vreg->fuse_corner_count - 1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == j) {
fmax_corner[j] = i;
j--;
}
}
if (j >= 0) {
cpr3_err(vreg, "invalid fuse corner mapping\n");
rc = -EINVAL;
goto done;
}
/*
* Interpolation is not possible for corners mapped to the lowest fuse
* corner so use the fuse corner value directly.
*/
i = lowest_fuse_corner;
quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]);
quot = fuse->target_quot[i] + quot_adjust;
quot_high[i] = quot_low[i] = quot;
ro = fuse->ro_sel[i];
if (quot_adjust)
cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n",
i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]);
for (i = 0; i <= fmax_corner[lowest_fuse_corner]; i++)
vreg->corner[i].target_quot[ro] = quot;
for (i = lowest_fuse_corner + 1; i < vreg->fuse_corner_count; i++) {
quot_high[i] = fuse->target_quot[i];
if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
quot_low[i] = quot_high[i - 1];
else
quot_low[i] = quot_high[i]
- fuse->quot_offset[i]
* CPR4_APSS_QUOT_OFFSET_SCALE;
if (quot_high[i] < quot_low[i]) {
cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n",
i, quot_high[i], i, quot_low[i],
i, quot_low[i]);
quot_high[i] = quot_low[i];
}
}
/* Perform per-fuse-corner target quotient adjustment */
for (i = 1; i < vreg->fuse_corner_count; i++) {
quot_adjust = cpr3_quot_adjustment(ro_scale[i],
volt_adjust_fuse[i]);
if (quot_adjust) {
prev_quot = quot_high[i];
quot_high[i] += quot_adjust;
cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n",
i, fuse->ro_sel[i], prev_quot, quot_high[i],
volt_adjust_fuse[i]);
}
if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
quot_low[i] = quot_high[i - 1];
else
quot_low[i] += cpr3_quot_adjustment(ro_scale[i],
volt_adjust_fuse[i - 1]);
if (quot_high[i] < quot_low[i]) {
cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n",
i, quot_high[i], i, quot_low[i],
i, quot_low[i]);
quot_high[i] = quot_low[i];
}
}
/* Interpolate voltages for the higher fuse corners. */
for (i = 1; i < vreg->fuse_corner_count; i++) {
freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
freq_high = vreg->corner[fmax_corner[i]].proc_freq;
ro = fuse->ro_sel[i];
for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
vreg->corner[j].target_quot[ro] = cpr3_interpolate(
freq_low, quot_low[i], freq_high, quot_high[i],
vreg->corner[j].proc_freq);
}
/* Perform per-corner target quotient adjustment */
for (i = 0; i < vreg->corner_count; i++) {
fuse_corner = vreg->corner[i].cpr_fuse_corner;
ro = fuse->ro_sel[fuse_corner];
quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
volt_adjust[i]);
if (quot_adjust) {
prev_quot = vreg->corner[i].target_quot[ro];
vreg->corner[i].target_quot[ro] += quot_adjust;
cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n",
i, ro, prev_quot,
vreg->corner[i].target_quot[ro],
volt_adjust[i]);
}
}
/* Ensure that target quotients increase monotonically */
for (i = 1; i < vreg->corner_count; i++) {
ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner];
if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro
&& vreg->corner[i].target_quot[ro]
< vreg->corner[i - 1].target_quot[ro]) {
cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
i, ro, vreg->corner[i].target_quot[ro],
i - 1, ro, vreg->corner[i - 1].target_quot[ro],
i, ro, vreg->corner[i - 1].target_quot[ro]);
vreg->corner[i].target_quot[ro]
= vreg->corner[i - 1].target_quot[ro];
}
}
done:
kfree(volt_adjust);
kfree(volt_adjust_fuse);
kfree(ro_scale);
kfree(fmax_corner);
kfree(quot_low);
kfree(quot_high);
return rc;
}
/**
* cpr4_apss_print_settings() - print out APSS CPR configuration settings into
* the kernel log for debugging purposes
* @vreg: Pointer to the CPR3 regulator
*/
static void cpr4_apss_print_settings(struct cpr3_regulator *vreg)
{
struct cpr3_corner *corner;
int i;
cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
for (i = 0; i < vreg->corner_count; i++) {
corner = &vreg->corner[i];
cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
i, corner->proc_freq, corner->cpr_fuse_corner,
corner->floor_volt, corner->open_loop_volt,
corner->ceiling_volt);
}
if (vreg->thread->ctrl->apm)
cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n",
vreg->thread->ctrl->apm_threshold_volt,
vreg->thread->ctrl->apm_adj_volt);
}
/**
* cpr4_apss_init_thread() - perform steps necessary to initialize the
* configuration data for a CPR3 thread
* @thread: Pointer to the CPR3 thread
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_init_thread(struct cpr3_thread *thread)
{
int rc;
rc = cpr3_parse_common_thread_data(thread);
if (rc) {
cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n",
thread->thread_id, rc);
return rc;
}
return 0;
}
/**
* cpr4_apss_parse_temp_adj_properties() - parse temperature based
* adjustment properties from device tree.
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_parse_temp_adj_properties(struct cpr3_controller *ctrl)
{
struct device_node *of_node = ctrl->dev->of_node;
int rc, i, len, temp_point_count;
if (!of_find_property(of_node, "qcom,cpr-temp-point-map", &len)) {
/*
* Temperature based adjustments are not defined. Single
* temperature band is still valid for per-online-core
* adjustments.
*/
ctrl->temp_band_count = 1;
return 0;
}
temp_point_count = len / sizeof(u32);
if (temp_point_count <= 0
|| temp_point_count > MSM8953_APSS_MAX_TEMP_POINTS) {
cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n",
temp_point_count, MSM8953_APSS_MAX_TEMP_POINTS);
return -EINVAL;
}
ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count,
sizeof(*ctrl->temp_points), GFP_KERNEL);
if (!ctrl->temp_points)
return -ENOMEM;
rc = of_property_read_u32_array(of_node, "qcom,cpr-temp-point-map",
ctrl->temp_points, temp_point_count);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n",
rc);
return rc;
}
for (i = 0; i < temp_point_count; i++)
cpr3_debug(ctrl, "Temperature Point %d=%d\n", i,
ctrl->temp_points[i]);
/*
* If t1, t2, and t3 are the temperature points, then the temperature
* bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).
*/
ctrl->temp_band_count = temp_point_count + 1;
cpr3_debug(ctrl, "Number of temp bands =%d\n", ctrl->temp_band_count);
rc = of_property_read_u32(of_node, "qcom,cpr-initial-temp-band",
&ctrl->initial_temp_band);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n",
rc);
return rc;
}
if (ctrl->initial_temp_band >= ctrl->temp_band_count) {
cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n",
ctrl->initial_temp_band, ctrl->temp_band_count - 1);
return -EINVAL;
}
ctrl->temp_sensor_id_start = MSM8953_APSS_TEMP_SENSOR_ID_START;
ctrl->temp_sensor_id_end = MSM8953_APSS_TEMP_SENSOR_ID_END;
ctrl->allow_temp_adj = true;
return rc;
}
/**
* cpr4_apss_parse_boost_properties() - parse configuration data for boost
* voltage adjustment for CPR3 regulator from device tree.
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_parse_boost_properties(struct cpr3_regulator *vreg)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
struct cpr4_apss_fuses *fuse = vreg->platform_fuses;
struct cpr3_corner *corner;
int i, boost_voltage, final_boost_volt, rc = 0;
int *boost_table = NULL, *boost_temp_adj = NULL;
int boost_voltage_adjust = 0, boost_num_cores = 0;
u32 boost_allowed = 0;
if (!boost_fuse[fuse->boost_cfg])
/* Voltage boost is disabled in fuse */
return 0;
if (of_find_property(vreg->of_node, "qcom,allow-boost", NULL)) {
rc = cpr3_parse_array_property(vreg, "qcom,allow-boost", 1,
&boost_allowed);
if (rc)
return rc;
}
if (!boost_allowed) {
/* Voltage boost is not enabled for this regulator */
return 0;
}
boost_voltage = cpr3_convert_open_loop_voltage_fuse(
MSM8953_APSS_BOOST_FUSE_REF_VOLT,
CPR4_APSS_FUSE_STEP_VOLT,
fuse->boost_voltage,
CPR4_APSS_VOLTAGE_FUSE_SIZE);
/* Log boost voltage value for debugging purposes. */
cpr3_info(vreg, "Boost open-loop=%7d uV\n", boost_voltage);
if (of_find_property(vreg->of_node,
"qcom,cpr-boost-voltage-fuse-adjustment", NULL)) {
rc = cpr3_parse_array_property(vreg,
"qcom,cpr-boost-voltage-fuse-adjustment",
1, &boost_voltage_adjust);
if (rc) {
cpr3_err(vreg, "qcom,cpr-boost-voltage-fuse-adjustment reading failed, rc=%d\n",
rc);
return rc;
}
boost_voltage += boost_voltage_adjust;
/* Log boost voltage value for debugging purposes. */
cpr3_info(vreg, "Adjusted boost open-loop=%7d uV\n",
boost_voltage);
}
/* Limit boost voltage value between ceiling and floor voltage limits */
boost_voltage = min(boost_voltage, MSM8953_APSS_BOOST_CEILING_VOLT);
boost_voltage = max(boost_voltage, MSM8953_APSS_BOOST_FLOOR_VOLT);
/*
* The boost feature can only be used for the highest voltage corner.
* Also, keep core-count adjustments disabled when the boost feature
* is enabled.
*/
corner = &vreg->corner[vreg->corner_count - 1];
if (!corner->sdelta) {
/*
* If core-count/temp adjustments are not defined, the cpr4
* sdelta for this corner will not be allocated. Allocate it
* here for boost configuration.
*/
corner->sdelta = devm_kzalloc(ctrl->dev,
sizeof(*corner->sdelta), GFP_KERNEL);
if (!corner->sdelta)
return -ENOMEM;
}
corner->sdelta->temp_band_count = ctrl->temp_band_count;
rc = of_property_read_u32(vreg->of_node, "qcom,cpr-num-boost-cores",
&boost_num_cores);
if (rc) {
cpr3_err(vreg, "qcom,cpr-num-boost-cores reading failed, rc=%d\n",
rc);
return rc;
}
if (boost_num_cores <= 0
|| boost_num_cores > MSM8953_APSS_CPR_SDELTA_CORE_COUNT) {
cpr3_err(vreg, "Invalid boost number of cores = %d\n",
boost_num_cores);
return -EINVAL;
}
corner->sdelta->boost_num_cores = boost_num_cores;
boost_table = devm_kcalloc(ctrl->dev, corner->sdelta->temp_band_count,
sizeof(*boost_table), GFP_KERNEL);
if (!boost_table)
return -ENOMEM;
if (of_find_property(vreg->of_node,
"qcom,cpr-boost-temp-adjustment", NULL)) {
boost_temp_adj = kcalloc(corner->sdelta->temp_band_count,
sizeof(*boost_temp_adj), GFP_KERNEL);
if (!boost_temp_adj)
return -ENOMEM;
rc = cpr3_parse_array_property(vreg,
"qcom,cpr-boost-temp-adjustment",
corner->sdelta->temp_band_count,
boost_temp_adj);
if (rc) {
cpr3_err(vreg, "qcom,cpr-boost-temp-adjustment reading failed, rc=%d\n",
rc);
goto done;
}
}
for (i = 0; i < corner->sdelta->temp_band_count; i++) {
/* Apply static adjustments to boost voltage */
final_boost_volt = boost_voltage + (boost_temp_adj == NULL
? 0 : boost_temp_adj[i]);
/*
* Limit final adjusted boost voltage value between ceiling
* and floor voltage limits
*/
final_boost_volt = min(final_boost_volt,
MSM8953_APSS_BOOST_CEILING_VOLT);
final_boost_volt = max(final_boost_volt,
MSM8953_APSS_BOOST_FLOOR_VOLT);
boost_table[i] = (corner->open_loop_volt - final_boost_volt)
/ ctrl->step_volt;
cpr3_debug(vreg, "Adjusted boost voltage margin for temp band %d = %d steps\n",
i, boost_table[i]);
}
corner->ceiling_volt = MSM8953_APSS_BOOST_CEILING_VOLT;
corner->sdelta->boost_table = boost_table;
corner->sdelta->allow_boost = true;
corner->sdelta->allow_core_count_adj = false;
vreg->allow_boost = true;
ctrl->allow_boost = true;
done:
kfree(boost_temp_adj);
return rc;
}
/*
* Constants which define the selection fuse parameters used in fuse combo map
* logic.
*/
enum cpr4_apss_fuse_combo_parameters {
CPR4_APSS_SPEED_BIN = 0,
CPR4_APSS_CPR_FUSE_REV,
CPR4_APSS_FOUNDRY_ID,
CPR4_APSS_FUSE_COMBO_PARAM_COUNT,
};
/**
* cpr4_parse_fuse_combo_map() - parse APSS fuse combo map data from device tree
* properties of the CPR3 regulator's device node
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr4_parse_fuse_combo_map(struct cpr3_regulator *vreg)
{
struct cpr4_apss_fuses *fuse = vreg->platform_fuses;
u64 *fuse_val;
int rc;
fuse_val = kcalloc(CPR4_APSS_FUSE_COMBO_PARAM_COUNT,
sizeof(*fuse_val), GFP_KERNEL);
if (!fuse_val)
return -ENOMEM;
fuse_val[CPR4_APSS_SPEED_BIN] = fuse->speed_bin;
fuse_val[CPR4_APSS_CPR_FUSE_REV] = fuse->cpr_fusing_rev;
fuse_val[CPR4_APSS_FOUNDRY_ID] = fuse->foundry_id;
rc = cpr3_parse_fuse_combo_map(vreg, fuse_val,
CPR4_APSS_FUSE_COMBO_PARAM_COUNT);
if (rc == -ENODEV) {
cpr3_debug(vreg, "using legacy fuse combo logic, rc=%d\n",
rc);
rc = 0;
} else if (rc < 0) {
cpr3_err(vreg, "error reading fuse combo map data, rc=%d\n",
rc);
} else if (vreg->fuse_combo >= CPR4_APSS_FUSE_COMBO_MAP_MAX_COUNT) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
vreg->fuse_combo);
rc = -EINVAL;
}
kfree(fuse_val);
return rc;
}
/**
* cpr4_apss_init_regulator() - perform all steps necessary to initialize the
* configuration data for a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_init_regulator(struct cpr3_regulator *vreg)
{
struct cpr4_apss_fuses *fuse;
int rc;
rc = cpr4_apss_read_fuse_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
return rc;
}
fuse = vreg->platform_fuses;
rc = cpr4_parse_fuse_combo_map(vreg);
if (rc) {
cpr3_err(vreg, "error while parsing fuse combo map, rc=%d\n",
rc);
return rc;
}
rc = cpr4_apss_parse_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
rc);
return rc;
}
rc = cpr3_mem_acc_init(vreg);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(vreg, "unable to initialize mem-acc regulator settings, rc=%d\n",
rc);
return rc;
}
rc = cpr4_apss_calculate_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
rc);
return rc;
}
rc = cpr3_limit_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
rc);
return rc;
}
cpr3_open_loop_voltage_as_ceiling(vreg);
rc = cpr3_limit_floor_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
return rc;
}
rc = cpr4_apss_calculate_target_quotients(vreg);
if (rc) {
cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n",
rc);
return rc;
}
rc = cpr4_parse_core_count_temp_voltage_adj(vreg, false);
if (rc) {
cpr3_err(vreg, "unable to parse temperature and core count voltage adjustments, rc=%d\n",
rc);
return rc;
}
if (vreg->allow_core_count_adj && (vreg->max_core_count <= 0
|| vreg->max_core_count >
MSM8953_APSS_CPR_SDELTA_CORE_COUNT)) {
cpr3_err(vreg, "qcom,max-core-count has invalid value = %d\n",
vreg->max_core_count);
return -EINVAL;
}
rc = cpr4_apss_parse_boost_properties(vreg);
if (rc) {
cpr3_err(vreg, "unable to parse boost adjustments, rc=%d\n",
rc);
return rc;
}
cpr4_apss_print_settings(vreg);
return rc;
}
/**
* cpr4_apss_init_aging() - perform APSS CPR4 controller specific
* aging initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_init_aging(struct cpr3_controller *ctrl)
{
struct cpr4_apss_fuses *fuse = NULL;
struct cpr3_regulator *vreg = NULL;
u32 aging_ro_scale;
int i, j, rc;
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
if (ctrl->thread[i].vreg[j].aging_allowed) {
ctrl->aging_required = true;
vreg = &ctrl->thread[i].vreg[j];
fuse = vreg->platform_fuses;
break;
}
}
}
if (!ctrl->aging_required || !fuse)
return 0;
rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor",
1, &aging_ro_scale);
if (rc)
return rc;
if (aging_ro_scale == 0) {
cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n",
aging_ro_scale);
return -EINVAL;
}
ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL;
ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE;
ctrl->aging_sensor_count = 1;
ctrl->aging_sensor = kzalloc(sizeof(*ctrl->aging_sensor), GFP_KERNEL);
if (!ctrl->aging_sensor)
return -ENOMEM;
ctrl->aging_sensor->sensor_id = MSM8953_APSS_AGING_SENSOR_ID;
ctrl->aging_sensor->ro_scale = aging_ro_scale;
ctrl->aging_sensor->init_quot_diff
= cpr3_convert_open_loop_voltage_fuse(0,
MSM8953_APSS_AGING_INIT_QUOT_DIFF_SCALE,
fuse->aging_init_quot_diff,
MSM8953_APSS_AGING_INIT_QUOT_DIFF_SIZE);
if (ctrl->aging_sensor->init_quot_diff == 0) {
/*
* Initial quotient difference value '0' has a special meaning
* in MSM8953 fusing scheme. Use max age margin quotient
* difference to consider full aging margin of 15 mV.
*/
ctrl->aging_sensor->init_quot_diff
= MSM8953_APSS_AGING_MAX_AGE_MARGIN_QUOT;
cpr3_debug(ctrl, "Init quotient diff = 0, use max age margin quotient\n");
}
cpr3_info(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n",
ctrl->aging_sensor->sensor_id,
ctrl->aging_sensor->init_quot_diff,
ctrl->aging_sensor->ro_scale);
return 0;
}
/**
* cpr4_apss_init_controller() - perform APSS CPR4 controller specific
* initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_init_controller(struct cpr3_controller *ctrl)
{
int i, rc;
rc = cpr3_parse_common_ctrl_data(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-down-error-step-limit",
&ctrl->down_error_step_limit);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-down-error-step-limit, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-up-error-step-limit",
&ctrl->up_error_step_limit);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-up-error-step-limit, rc=%d\n",
rc);
return rc;
}
/*
* Use fixed step quotient if specified otherwise use dynamic
* calculated per RO step quotient
*/
of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-step-quot-fixed",
&ctrl->step_quot_fixed);
ctrl->use_dynamic_step_quot = ctrl->step_quot_fixed ? false : true;
ctrl->saw_use_unit_mV = of_property_read_bool(ctrl->dev->of_node,
"qcom,cpr-saw-use-unit-mV");
of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-voltage-settling-time",
&ctrl->voltage_settling_time);
ctrl->vdd_limit_regulator = devm_regulator_get(ctrl->dev, "vdd-limit");
if (IS_ERR(ctrl->vdd_limit_regulator)) {
rc = PTR_ERR(ctrl->vdd_limit_regulator);
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to request vdd-limit regulator, rc=%d\n",
rc);
return rc;
}
rc = cpr3_apm_init(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to initialize APM settings, rc=%d\n",
rc);
return rc;
}
rc = cpr4_apss_parse_temp_adj_properties(ctrl);
if (rc) {
cpr3_err(ctrl, "unable to parse temperature adjustment properties, rc=%d\n",
rc);
return rc;
}
switch (ctrl->soc_revision) {
case MSM8953_SOC_ID:
ctrl->sensor_count = MSM8953_APSS_CPR_SENSOR_COUNT;
break;
case SDM632_SOC_ID:
ctrl->sensor_count = SDM632_APSS_CPR_SENSOR_COUNT;
break;
default:
cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision);
return -EINVAL;
}
/*
* MSM8953 APSS only has one thread (0) per controller so the zeroed
* array does not need further modification.
*/
ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
sizeof(*ctrl->sensor_owner), GFP_KERNEL);
if (!ctrl->sensor_owner)
return -ENOMEM;
/* Specify sensor ownership for SDM632 APSS CPR */
if (ctrl->soc_revision == SDM632_SOC_ID) {
for (i = SDM632_APSS_THREAD0_SENSOR_MIN;
i <= SDM632_APSS_THREAD0_SENSOR_MAX; i++)
ctrl->sensor_owner[i] = 0;
for (i = SDM632_APSS_THREAD1_SENSOR_MIN;
i <= SDM632_APSS_THREAD1_SENSOR_MAX; i++)
ctrl->sensor_owner[i] = 1;
}
ctrl->cpr_clock_rate = CPR4_APSS_CPR_CLOCK_RATE;
ctrl->ctrl_type = CPR_CTRL_TYPE_CPR4;
ctrl->supports_hw_closed_loop = true;
ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node,
"qcom,cpr-hw-closed-loop");
return 0;
}
#if CONFIG_PM
static int cpr4_apss_regulator_suspend(struct device *dev)
{
struct cpr3_controller *ctrl = dev_get_drvdata(dev);
return cpr3_regulator_suspend(ctrl);
}
static int cpr4_apss_regulator_resume(struct device *dev)
{
struct cpr3_controller *ctrl = dev_get_drvdata(dev);
return cpr3_regulator_resume(ctrl);
}
#else
#define cpr4_apss_regulator_suspend NULL
#define cpr4_apss_regulator_resume NULL
#endif
static const struct dev_pm_ops cpr4_apss_regulator_pm_ops = {
.suspend = cpr4_apss_regulator_suspend,
.resume = cpr4_apss_regulator_resume,
};
/* Data corresponds to the SoC revision */
static const struct of_device_id cpr4_regulator_match_table[] = {
{
.compatible = "qcom,cpr4-msm8953-apss-regulator",
.data = (void *)(uintptr_t)MSM8953_SOC_ID,
},
{
.compatible = "qcom,cpr4-sdm632-apss-regulator",
.data = (void *)(uintptr_t)SDM632_SOC_ID,
},
{}
};
static int cpr4_apss_regulator_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct cpr3_controller *ctrl;
struct cpr3_regulator *vreg;
const struct of_device_id *match;
int i, j, rc, max_thread_id;
if (!dev->of_node) {
dev_err(dev, "Device tree node is missing\n");
return -EINVAL;
}
ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return -ENOMEM;
ctrl->dev = dev;
/* Set to false later if anything precludes CPR operation. */
ctrl->cpr_allowed_hw = true;
match = of_match_node(cpr4_regulator_match_table, dev->of_node);
if (match)
ctrl->soc_revision = (uintptr_t)match->data;
else
cpr3_err(ctrl, "could not find compatible string match\n");
rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
&ctrl->name);
if (rc) {
cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
rc);
return rc;
}
rc = cpr3_map_fuse_base(ctrl, pdev);
if (rc) {
cpr3_err(ctrl, "could not map fuse base address\n");
return rc;
}
max_thread_id = 0;
/* SDM632 uses 2 CPR HW threads */
if (ctrl->soc_revision == SDM632_SOC_ID)
max_thread_id = 1;
rc = cpr3_allocate_threads(ctrl, 0, max_thread_id);
if (rc) {
cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
rc);
return rc;
}
if (ctrl->thread_count < 1) {
cpr3_err(ctrl, "thread nodes are missing\n");
return -EINVAL;
}
rc = cpr4_apss_init_controller(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
rc);
return rc;
}
for (i = 0; i < ctrl->thread_count; i++) {
rc = cpr4_apss_init_thread(&ctrl->thread[i]);
if (rc) {
cpr3_err(ctrl, "thread %u initialization failed, rc=%d\n",
ctrl->thread[i].thread_id, rc);
return rc;
}
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
vreg = &ctrl->thread[i].vreg[j];
rc = cpr4_apss_init_regulator(vreg);
if (rc) {
cpr3_err(vreg, "regulator initialization failed, rc=%d\n",
rc);
return rc;
}
}
}
rc = cpr4_apss_init_aging(ctrl);
if (rc) {
cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n",
rc);
return rc;
}
platform_set_drvdata(pdev, ctrl);
return cpr3_regulator_register(pdev, ctrl);
}
static int cpr4_apss_regulator_remove(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_unregister(ctrl);
}
static struct platform_driver cpr4_apss_regulator_driver = {
.driver = {
.name = "qcom,cpr4-apss-regulator",
.of_match_table = cpr4_regulator_match_table,
.owner = THIS_MODULE,
.pm = &cpr4_apss_regulator_pm_ops,
},
.probe = cpr4_apss_regulator_probe,
.remove = cpr4_apss_regulator_remove,
};
static int cpr4_regulator_init(void)
{
return platform_driver_register(&cpr4_apss_regulator_driver);
}
static void cpr4_regulator_exit(void)
{
platform_driver_unregister(&cpr4_apss_regulator_driver);
}
MODULE_DESCRIPTION("CPR4 APSS regulator driver");
MODULE_LICENSE("GPL v2");
arch_initcall(cpr4_regulator_init);
module_exit(cpr4_regulator_exit);