blob: 6fbade99577dcc1fb4e16c648dd68bcb3f482a9a [file] [log] [blame]
/*
* CPU-agnostic ARM page table allocator.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Copyright (C) 2014 ARM Limited
*
* Author: Will Deacon <will.deacon@arm.com>
*/
#define pr_fmt(fmt) "arm-lpae io-pgtable: " fmt
#include <linux/iommu.h>
#include <linux/kernel.h>
#include <linux/scatterlist.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <asm/barrier.h>
#include "io-pgtable.h"
#define ARM_LPAE_MAX_ADDR_BITS 48
#define ARM_LPAE_S2_MAX_CONCAT_PAGES 16
#define ARM_LPAE_MAX_LEVELS 4
/* Struct accessors */
#define io_pgtable_to_data(x) \
container_of((x), struct arm_lpae_io_pgtable, iop)
#define io_pgtable_ops_to_data(x) \
io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
/*
* For consistency with the architecture, we always consider
* ARM_LPAE_MAX_LEVELS levels, with the walk starting at level n >=0
*/
#define ARM_LPAE_START_LVL(d) (ARM_LPAE_MAX_LEVELS - (d)->levels)
/*
* Calculate the right shift amount to get to the portion describing level l
* in a virtual address mapped by the pagetable in d.
*/
#define ARM_LPAE_LVL_SHIFT(l,d) \
((((d)->levels - ((l) - ARM_LPAE_START_LVL(d) + 1)) \
* (d)->bits_per_level) + (d)->pg_shift)
#define ARM_LPAE_GRANULE(d) (1UL << (d)->pg_shift)
#define ARM_LPAE_PAGES_PER_PGD(d) \
DIV_ROUND_UP((d)->pgd_size, ARM_LPAE_GRANULE(d))
/*
* Calculate the index at level l used to map virtual address a using the
* pagetable in d.
*/
#define ARM_LPAE_PGD_IDX(l,d) \
((l) == ARM_LPAE_START_LVL(d) ? ilog2(ARM_LPAE_PAGES_PER_PGD(d)) : 0)
#define ARM_LPAE_LVL_MASK(l, d) \
((l) == ARM_LPAE_START_LVL(d) ? (1 << (d)->pgd_bits) - 1 : \
(1 << (d)->bits_per_level) - 1)
#define ARM_LPAE_LVL_IDX(a,l,d) \
(((u64)(a) >> ARM_LPAE_LVL_SHIFT(l,d)) & \
ARM_LPAE_LVL_MASK(l, d))
/* Calculate the block/page mapping size at level l for pagetable in d. */
#define ARM_LPAE_BLOCK_SIZE(l,d) \
(1ULL << (ilog2(sizeof(arm_lpae_iopte)) + \
((ARM_LPAE_MAX_LEVELS - (l)) * (d)->bits_per_level)))
/* Page table bits */
#define ARM_LPAE_PTE_TYPE_SHIFT 0
#define ARM_LPAE_PTE_TYPE_MASK 0x3
#define ARM_LPAE_PTE_TYPE_BLOCK 1
#define ARM_LPAE_PTE_TYPE_TABLE 3
#define ARM_LPAE_PTE_TYPE_PAGE 3
#define ARM_LPAE_PTE_SH_MASK (((arm_lpae_iopte)0x3) << 8)
#define ARM_LPAE_PTE_NSTABLE (((arm_lpae_iopte)1) << 63)
#define ARM_LPAE_PTE_XN (((arm_lpae_iopte)3) << 53)
#define ARM_LPAE_PTE_AF (((arm_lpae_iopte)1) << 10)
#define ARM_LPAE_PTE_SH_NS (((arm_lpae_iopte)0) << 8)
#define ARM_LPAE_PTE_SH_OS (((arm_lpae_iopte)2) << 8)
#define ARM_LPAE_PTE_SH_IS (((arm_lpae_iopte)3) << 8)
#define ARM_LPAE_PTE_NS (((arm_lpae_iopte)1) << 5)
#define ARM_LPAE_PTE_VALID (((arm_lpae_iopte)1) << 0)
#define ARM_LPAE_PTE_ATTR_LO_MASK (((arm_lpae_iopte)0x3ff) << 2)
/* Ignore the contiguous bit for block splitting */
#define ARM_LPAE_PTE_ATTR_HI_MASK (((arm_lpae_iopte)6) << 52)
#define ARM_LPAE_PTE_ATTR_MASK (ARM_LPAE_PTE_ATTR_LO_MASK | \
ARM_LPAE_PTE_ATTR_HI_MASK)
/* Stage-1 PTE */
#define ARM_LPAE_PTE_AP_PRIV_RW (((arm_lpae_iopte)0) << 6)
#define ARM_LPAE_PTE_AP_RW (((arm_lpae_iopte)1) << 6)
#define ARM_LPAE_PTE_AP_PRIV_RO (((arm_lpae_iopte)2) << 6)
#define ARM_LPAE_PTE_AP_RO (((arm_lpae_iopte)3) << 6)
#define ARM_LPAE_PTE_ATTRINDX_MASK 0x7
#define ARM_LPAE_PTE_ATTRINDX_SHIFT 2
#define ARM_LPAE_PTE_nG (((arm_lpae_iopte)1) << 11)
/* Stage-2 PTE */
#define ARM_LPAE_PTE_HAP_FAULT (((arm_lpae_iopte)0) << 6)
#define ARM_LPAE_PTE_HAP_READ (((arm_lpae_iopte)1) << 6)
#define ARM_LPAE_PTE_HAP_WRITE (((arm_lpae_iopte)2) << 6)
#define ARM_LPAE_PTE_MEMATTR_OIWB (((arm_lpae_iopte)0xf) << 2)
#define ARM_LPAE_PTE_MEMATTR_NC (((arm_lpae_iopte)0x5) << 2)
#define ARM_LPAE_PTE_MEMATTR_DEV (((arm_lpae_iopte)0x1) << 2)
/* Register bits */
#define ARM_32_LPAE_TCR_EAE (1 << 31)
#define ARM_64_LPAE_S2_TCR_RES1 (1 << 31)
#define ARM_LPAE_TCR_EPD1 (1 << 23)
#define ARM_LPAE_TCR_TG0_4K (0 << 14)
#define ARM_LPAE_TCR_TG0_64K (1 << 14)
#define ARM_LPAE_TCR_TG0_16K (2 << 14)
#define ARM_LPAE_TCR_SH0_SHIFT 12
#define ARM_LPAE_TCR_SH0_MASK 0x3
#define ARM_LPAE_TCR_SH_NS 0
#define ARM_LPAE_TCR_SH_OS 2
#define ARM_LPAE_TCR_SH_IS 3
#define ARM_LPAE_TCR_ORGN0_SHIFT 10
#define ARM_LPAE_TCR_IRGN0_SHIFT 8
#define ARM_LPAE_TCR_RGN_MASK 0x3
#define ARM_LPAE_TCR_RGN_NC 0
#define ARM_LPAE_TCR_RGN_WBWA 1
#define ARM_LPAE_TCR_RGN_WT 2
#define ARM_LPAE_TCR_RGN_WB 3
#define ARM_LPAE_TCR_SL0_SHIFT 6
#define ARM_LPAE_TCR_SL0_MASK 0x3
#define ARM_LPAE_TCR_T0SZ_SHIFT 0
#define ARM_LPAE_TCR_SZ_MASK 0xf
#define ARM_LPAE_TCR_PS_SHIFT 16
#define ARM_LPAE_TCR_PS_MASK 0x7
#define ARM_LPAE_TCR_IPS_SHIFT 32
#define ARM_LPAE_TCR_IPS_MASK 0x7
#define ARM_LPAE_TCR_PS_32_BIT 0x0ULL
#define ARM_LPAE_TCR_PS_36_BIT 0x1ULL
#define ARM_LPAE_TCR_PS_40_BIT 0x2ULL
#define ARM_LPAE_TCR_PS_42_BIT 0x3ULL
#define ARM_LPAE_TCR_PS_44_BIT 0x4ULL
#define ARM_LPAE_TCR_PS_48_BIT 0x5ULL
#define ARM_LPAE_MAIR_ATTR_SHIFT(n) ((n) << 3)
#define ARM_LPAE_MAIR_ATTR_MASK 0xff
#define ARM_LPAE_MAIR_ATTR_DEVICE 0x04
#define ARM_LPAE_MAIR_ATTR_NC 0x44
#define ARM_LPAE_MAIR_ATTR_WBRWA 0xff
#define ARM_LPAE_MAIR_ATTR_UPSTREAM 0xf4
#define ARM_LPAE_MAIR_ATTR_IDX_NC 0
#define ARM_LPAE_MAIR_ATTR_IDX_CACHE 1
#define ARM_LPAE_MAIR_ATTR_IDX_DEV 2
#define ARM_LPAE_MAIR_ATTR_IDX_UPSTREAM 3
/* IOPTE accessors */
#define iopte_deref(pte, d) \
(__va(iopte_val(pte) & ((1ULL << ARM_LPAE_MAX_ADDR_BITS) - 1) \
& ~(ARM_LPAE_GRANULE(d) - 1ULL)))
#define iopte_type(pte,l) \
(((pte) >> ARM_LPAE_PTE_TYPE_SHIFT) & ARM_LPAE_PTE_TYPE_MASK)
#define iopte_prot(pte) ((pte) & ARM_LPAE_PTE_ATTR_MASK)
#define iopte_leaf(pte,l) \
(l == (ARM_LPAE_MAX_LEVELS - 1) ? \
(iopte_type(pte,l) == ARM_LPAE_PTE_TYPE_PAGE) : \
(iopte_type(pte,l) == ARM_LPAE_PTE_TYPE_BLOCK))
#define iopte_to_pfn(pte,d) \
(((pte) & ((1ULL << ARM_LPAE_MAX_ADDR_BITS) - 1)) >> (d)->pg_shift)
#define pfn_to_iopte(pfn,d) \
(((pfn) << (d)->pg_shift) & ((1ULL << ARM_LPAE_MAX_ADDR_BITS) - 1))
struct arm_lpae_io_pgtable {
struct io_pgtable iop;
int levels;
unsigned int pgd_bits;
size_t pgd_size;
unsigned long pg_shift;
unsigned long bits_per_level;
void *pgd;
void *pgd_ttbr1;
};
typedef u64 arm_lpae_iopte;
/*
* We'll use some ignored bits in table entries to keep track of the number
* of page mappings beneath the table. The maximum number of entries
* beneath any table mapping in armv8 is 8192 (which is possible at the
* 2nd- and 3rd-level when using a 64K granule size). The bits at our
* disposal are:
*
* 4k granule: [58..52], [11..2]
* 64k granule: [58..52], [15..2]
*
* [58..52], [11..2] is enough bits for tracking table mappings at any
* level for any granule, so we'll use those.
*/
#define BOTTOM_IGNORED_MASK 0x3ff
#define BOTTOM_IGNORED_SHIFT 2
#define BOTTOM_IGNORED_NUM_BITS 10
#define TOP_IGNORED_MASK 0x7fULL
#define TOP_IGNORED_SHIFT 52
#define IOPTE_RESERVED_MASK ((BOTTOM_IGNORED_MASK << BOTTOM_IGNORED_SHIFT) | \
(TOP_IGNORED_MASK << TOP_IGNORED_SHIFT))
static arm_lpae_iopte iopte_val(arm_lpae_iopte table_pte)
{
return table_pte & ~IOPTE_RESERVED_MASK;
}
static arm_lpae_iopte _iopte_bottom_ignored_val(arm_lpae_iopte table_pte)
{
return (table_pte & (BOTTOM_IGNORED_MASK << BOTTOM_IGNORED_SHIFT))
>> BOTTOM_IGNORED_SHIFT;
}
static arm_lpae_iopte _iopte_top_ignored_val(arm_lpae_iopte table_pte)
{
return (table_pte & (TOP_IGNORED_MASK << TOP_IGNORED_SHIFT))
>> TOP_IGNORED_SHIFT;
}
static int iopte_tblcnt(arm_lpae_iopte table_pte)
{
return (_iopte_bottom_ignored_val(table_pte) |
(_iopte_top_ignored_val(table_pte) << BOTTOM_IGNORED_NUM_BITS));
}
static void iopte_tblcnt_set(arm_lpae_iopte *table_pte, int val)
{
arm_lpae_iopte pte = iopte_val(*table_pte);
pte |= ((val & BOTTOM_IGNORED_MASK) << BOTTOM_IGNORED_SHIFT) |
(((val & (TOP_IGNORED_MASK << BOTTOM_IGNORED_NUM_BITS))
>> BOTTOM_IGNORED_NUM_BITS) << TOP_IGNORED_SHIFT);
*table_pte = pte;
}
static void iopte_tblcnt_sub(arm_lpae_iopte *table_ptep, int cnt)
{
arm_lpae_iopte current_cnt = iopte_tblcnt(*table_ptep);
current_cnt -= cnt;
iopte_tblcnt_set(table_ptep, current_cnt);
}
static void iopte_tblcnt_add(arm_lpae_iopte *table_ptep, int cnt)
{
arm_lpae_iopte current_cnt = iopte_tblcnt(*table_ptep);
current_cnt += cnt;
iopte_tblcnt_set(table_ptep, current_cnt);
}
static bool selftest_running = false;
static bool suppress_map_failures;
static dma_addr_t __arm_lpae_dma_addr(void *pages)
{
return (dma_addr_t)virt_to_phys(pages);
}
static inline void pgtable_dma_sync_single_for_device(
struct io_pgtable_cfg *cfg,
dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
if (!(cfg->quirks & IO_PGTABLE_QUIRK_PAGE_TABLE_COHERENT))
dma_sync_single_for_device(cfg->iommu_dev, addr, size,
dir);
}
static void *__arm_lpae_alloc_pages(size_t size, gfp_t gfp,
struct io_pgtable_cfg *cfg, void *cookie)
{
struct device *dev = cfg->iommu_dev;
dma_addr_t dma;
void *pages = io_pgtable_alloc_pages_exact(cfg, cookie, size,
gfp | __GFP_ZERO);
if (!pages)
return NULL;
if (!selftest_running) {
dma = dma_map_single(dev, pages, size, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma))
goto out_free;
/*
* We depend on the IOMMU being able to work with any physical
* address directly, so if the DMA layer suggests otherwise by
* translating or truncating them, that bodes very badly...
*/
if (dma != virt_to_phys(pages))
goto out_unmap;
}
return pages;
out_unmap:
dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n");
dma_unmap_single(dev, dma, size, DMA_TO_DEVICE);
out_free:
io_pgtable_free_pages_exact(cfg, cookie, pages, size);
return NULL;
}
static void __arm_lpae_free_pages(void *pages, size_t size,
struct io_pgtable_cfg *cfg, void *cookie)
{
if (!selftest_running)
dma_unmap_single(cfg->iommu_dev, __arm_lpae_dma_addr(pages),
size, DMA_TO_DEVICE);
io_pgtable_free_pages_exact(cfg, cookie, pages, size);
}
static void __arm_lpae_set_pte(arm_lpae_iopte *ptep, arm_lpae_iopte pte,
struct io_pgtable_cfg *cfg)
{
*ptep = pte;
if (!selftest_running)
pgtable_dma_sync_single_for_device(cfg,
__arm_lpae_dma_addr(ptep),
sizeof(pte), DMA_TO_DEVICE);
}
static int arm_lpae_init_pte(struct arm_lpae_io_pgtable *data,
unsigned long iova, phys_addr_t paddr,
arm_lpae_iopte prot, int lvl,
arm_lpae_iopte *ptep, arm_lpae_iopte *prev_ptep,
bool flush)
{
arm_lpae_iopte pte = prot;
struct io_pgtable_cfg *cfg = &data->iop.cfg;
/* We require an unmap first */
if (*ptep & ARM_LPAE_PTE_VALID) {
BUG_ON(!suppress_map_failures);
return -EEXIST;
}
if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
pte |= ARM_LPAE_PTE_NS;
if (lvl == ARM_LPAE_MAX_LEVELS - 1)
pte |= ARM_LPAE_PTE_TYPE_PAGE;
else
pte |= ARM_LPAE_PTE_TYPE_BLOCK;
pte |= ARM_LPAE_PTE_AF | ARM_LPAE_PTE_SH_OS;
pte |= pfn_to_iopte(paddr >> data->pg_shift, data);
if (flush)
__arm_lpae_set_pte(ptep, pte, cfg);
else
*ptep = pte;
if (prev_ptep)
iopte_tblcnt_add(prev_ptep, 1);
return 0;
}
struct map_state {
unsigned long iova_end;
unsigned int pgsize;
arm_lpae_iopte *pgtable;
arm_lpae_iopte *prev_pgtable;
arm_lpae_iopte *pte_start;
unsigned int num_pte;
};
/* map state optimization works at level 3 (the 2nd-to-last level) */
#define MAP_STATE_LVL 3
static int __arm_lpae_map(struct arm_lpae_io_pgtable *data, unsigned long iova,
phys_addr_t paddr, size_t size, arm_lpae_iopte prot,
int lvl, arm_lpae_iopte *ptep,
arm_lpae_iopte *prev_ptep, struct map_state *ms)
{
arm_lpae_iopte *cptep, pte;
size_t block_size = ARM_LPAE_BLOCK_SIZE(lvl, data);
struct io_pgtable_cfg *cfg = &data->iop.cfg;
void *cookie = data->iop.cookie;
arm_lpae_iopte *pgtable = ptep;
/* Find our entry at the current level */
ptep += ARM_LPAE_LVL_IDX(iova, lvl, data);
/* If we can install a leaf entry at this level, then do so */
if (size == block_size && (size & cfg->pgsize_bitmap)) {
if (!ms)
return arm_lpae_init_pte(data, iova, paddr, prot, lvl,
ptep, prev_ptep, true);
if (lvl == MAP_STATE_LVL) {
if (ms->pgtable)
pgtable_dma_sync_single_for_device(cfg,
__arm_lpae_dma_addr(ms->pte_start),
ms->num_pte * sizeof(*ptep),
DMA_TO_DEVICE);
ms->iova_end = round_down(iova, SZ_2M) + SZ_2M;
ms->pgtable = pgtable;
ms->prev_pgtable = prev_ptep;
ms->pgsize = size;
ms->pte_start = ptep;
ms->num_pte = 1;
} else {
/*
* We have some map state from previous page
* mappings, but we're about to set up a block
* mapping. Flush out the previous page mappings.
*/
if (ms->pgtable)
pgtable_dma_sync_single_for_device(cfg,
__arm_lpae_dma_addr(ms->pte_start),
ms->num_pte * sizeof(*ptep),
DMA_TO_DEVICE);
memset(ms, 0, sizeof(*ms));
ms = NULL;
}
return arm_lpae_init_pte(data, iova, paddr, prot, lvl,
ptep, prev_ptep, ms == NULL);
}
/* We can't allocate tables at the final level */
if (WARN_ON(lvl >= ARM_LPAE_MAX_LEVELS - 1))
return -EINVAL;
/* Grab a pointer to the next level */
pte = *ptep;
if (!pte) {
cptep = __arm_lpae_alloc_pages(ARM_LPAE_GRANULE(data),
GFP_ATOMIC, cfg, cookie);
if (!cptep)
return -ENOMEM;
pte = __pa(cptep) | ARM_LPAE_PTE_TYPE_TABLE;
if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
pte |= ARM_LPAE_PTE_NSTABLE;
__arm_lpae_set_pte(ptep, pte, cfg);
} else if (!iopte_leaf(pte, lvl)) {
cptep = iopte_deref(pte, data);
} else {
/* We require an unmap first */
WARN_ON(!selftest_running);
return -EEXIST;
}
/* Rinse, repeat */
return __arm_lpae_map(data, iova, paddr, size, prot, lvl + 1, cptep,
ptep, ms);
}
static arm_lpae_iopte arm_lpae_prot_to_pte(struct arm_lpae_io_pgtable *data,
int prot)
{
arm_lpae_iopte pte;
if (data->iop.fmt == ARM_64_LPAE_S1 ||
data->iop.fmt == ARM_32_LPAE_S1) {
pte = ARM_LPAE_PTE_nG;
if (prot & IOMMU_WRITE)
pte |= (prot & IOMMU_PRIV) ? ARM_LPAE_PTE_AP_PRIV_RW
: ARM_LPAE_PTE_AP_RW;
else
pte |= (prot & IOMMU_PRIV) ? ARM_LPAE_PTE_AP_PRIV_RO
: ARM_LPAE_PTE_AP_RO;
if (prot & IOMMU_MMIO)
pte |= (ARM_LPAE_MAIR_ATTR_IDX_DEV
<< ARM_LPAE_PTE_ATTRINDX_SHIFT);
else if (prot & IOMMU_CACHE)
pte |= (ARM_LPAE_MAIR_ATTR_IDX_CACHE
<< ARM_LPAE_PTE_ATTRINDX_SHIFT);
else if (prot & IOMMU_USE_UPSTREAM_HINT)
pte |= (ARM_LPAE_MAIR_ATTR_IDX_UPSTREAM
<< ARM_LPAE_PTE_ATTRINDX_SHIFT);
} else {
pte = ARM_LPAE_PTE_HAP_FAULT;
if (prot & IOMMU_READ)
pte |= ARM_LPAE_PTE_HAP_READ;
if (prot & IOMMU_WRITE)
pte |= ARM_LPAE_PTE_HAP_WRITE;
if (prot & IOMMU_MMIO)
pte |= ARM_LPAE_PTE_MEMATTR_DEV;
else if (prot & IOMMU_CACHE)
pte |= ARM_LPAE_PTE_MEMATTR_OIWB;
else
pte |= ARM_LPAE_PTE_MEMATTR_NC;
}
if (prot & IOMMU_NOEXEC)
pte |= ARM_LPAE_PTE_XN;
return pte;
}
static int arm_lpae_map(struct io_pgtable_ops *ops, unsigned long iova,
phys_addr_t paddr, size_t size, int iommu_prot)
{
struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops);
arm_lpae_iopte *ptep = data->pgd;
int ret, lvl = ARM_LPAE_START_LVL(data);
arm_lpae_iopte prot;
/* If no access, then nothing to do */
if (!(iommu_prot & (IOMMU_READ | IOMMU_WRITE)))
return 0;
prot = arm_lpae_prot_to_pte(data, iommu_prot);
ret = __arm_lpae_map(data, iova, paddr, size, prot, lvl, ptep, NULL,
NULL);
/*
* Synchronise all PTE updates for the new mapping before there's
* a chance for anything to kick off a table walk for the new iova.
*/
wmb();
return ret;
}
static int arm_lpae_map_sg(struct io_pgtable_ops *ops, unsigned long iova,
struct scatterlist *sg, unsigned int nents,
int iommu_prot, size_t *size)
{
struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops);
arm_lpae_iopte *ptep = data->pgd;
int lvl = ARM_LPAE_START_LVL(data);
arm_lpae_iopte prot;
struct scatterlist *s;
size_t mapped = 0;
int i, ret;
unsigned int min_pagesz;
struct io_pgtable_cfg *cfg = &data->iop.cfg;
struct map_state ms;
/* If no access, then nothing to do */
if (!(iommu_prot & (IOMMU_READ | IOMMU_WRITE)))
goto out_err;
prot = arm_lpae_prot_to_pte(data, iommu_prot);
min_pagesz = 1 << __ffs(cfg->pgsize_bitmap);
memset(&ms, 0, sizeof(ms));
for_each_sg(sg, s, nents, i) {
phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset;
size_t size = s->length;
/*
* We are mapping on IOMMU page boundaries, so offset within
* the page must be 0. However, the IOMMU may support pages
* smaller than PAGE_SIZE, so s->offset may still represent
* an offset of that boundary within the CPU page.
*/
if (!IS_ALIGNED(s->offset, min_pagesz))
goto out_err;
while (size) {
size_t pgsize = iommu_pgsize(
cfg->pgsize_bitmap, iova | phys, size);
if (ms.pgtable && (iova < ms.iova_end)) {
arm_lpae_iopte *ptep = ms.pgtable +
ARM_LPAE_LVL_IDX(iova, MAP_STATE_LVL,
data);
arm_lpae_init_pte(
data, iova, phys, prot, MAP_STATE_LVL,
ptep, ms.prev_pgtable, false);
ms.num_pte++;
} else {
ret = __arm_lpae_map(data, iova, phys, pgsize,
prot, lvl, ptep, NULL, &ms);
if (ret)
goto out_err;
}
iova += pgsize;
mapped += pgsize;
phys += pgsize;
size -= pgsize;
}
}
if (ms.pgtable)
pgtable_dma_sync_single_for_device(cfg,
__arm_lpae_dma_addr(ms.pte_start),
ms.num_pte * sizeof(*ms.pte_start),
DMA_TO_DEVICE);
return mapped;
out_err:
/* Return the size of the partial mapping so that they can be undone */
*size = mapped;
return 0;
}
static void __arm_lpae_free_pgtable(struct arm_lpae_io_pgtable *data, int lvl,
arm_lpae_iopte *ptep)
{
arm_lpae_iopte *start, *end;
unsigned long table_size;
void *cookie = data->iop.cookie;
if (lvl == ARM_LPAE_START_LVL(data))
table_size = data->pgd_size;
else
table_size = ARM_LPAE_GRANULE(data);
start = ptep;
/* Only leaf entries at the last level */
if (lvl == ARM_LPAE_MAX_LEVELS - 1)
end = ptep;
else
end = (void *)ptep + table_size;
while (ptep != end) {
arm_lpae_iopte pte = *ptep++;
if (!pte || iopte_leaf(pte, lvl))
continue;
__arm_lpae_free_pgtable(data, lvl + 1, iopte_deref(pte, data));
}
__arm_lpae_free_pages(start, table_size, &data->iop.cfg, cookie);
}
static void arm_lpae_free_pgtable(struct io_pgtable *iop)
{
struct arm_lpae_io_pgtable *data = io_pgtable_to_data(iop);
__arm_lpae_free_pgtable(data, ARM_LPAE_START_LVL(data), data->pgd);
__arm_lpae_free_pgtable(data, ARM_LPAE_START_LVL(data),
data->pgd_ttbr1);
kfree(data);
}
static int arm_lpae_split_blk_unmap(struct arm_lpae_io_pgtable *data,
unsigned long iova, size_t size,
arm_lpae_iopte prot, int lvl,
arm_lpae_iopte *ptep,
arm_lpae_iopte *prev_ptep, size_t blk_size)
{
unsigned long blk_start, blk_end;
phys_addr_t blk_paddr;
arm_lpae_iopte table = 0;
blk_start = iova & ~(blk_size - 1);
blk_end = blk_start + blk_size;
blk_paddr = iopte_to_pfn(*ptep, data) << data->pg_shift;
size = iommu_pgsize(data->iop.cfg.pgsize_bitmap, iova, size);
for (; blk_start < blk_end; blk_start += size, blk_paddr += size) {
arm_lpae_iopte *tablep;
/* Unmap! */
if (blk_start == iova)
continue;
/* __arm_lpae_map expects a pointer to the start of the table */
tablep = &table - ARM_LPAE_LVL_IDX(blk_start, lvl, data);
if (__arm_lpae_map(data, blk_start, blk_paddr, size, prot, lvl,
tablep, prev_ptep, NULL) < 0) {
if (table) {
/* Free the table we allocated */
tablep = iopte_deref(table, data);
__arm_lpae_free_pgtable(data, lvl + 1, tablep);
}
return 0; /* Bytes unmapped */
}
}
__arm_lpae_set_pte(ptep, table, &data->iop.cfg);
return size;
}
static int __arm_lpae_unmap(struct arm_lpae_io_pgtable *data,
unsigned long iova, size_t size, int lvl,
arm_lpae_iopte *ptep, arm_lpae_iopte *prev_ptep)
{
arm_lpae_iopte pte;
struct io_pgtable *iop = &data->iop;
size_t blk_size = ARM_LPAE_BLOCK_SIZE(lvl, data);
/* Something went horribly wrong and we ran out of page table */
if (WARN_ON(lvl == ARM_LPAE_MAX_LEVELS))
return 0;
ptep += ARM_LPAE_LVL_IDX(iova, lvl, data);
pte = *ptep;
if (WARN_ON(!pte))
return 0;
/* If the size matches this level, we're in the right place */
if (size == blk_size) {
__arm_lpae_set_pte(ptep, 0, &iop->cfg);
if (!iopte_leaf(pte, lvl)) {
/* Also flush any partial walks */
ptep = iopte_deref(pte, data);
__arm_lpae_free_pgtable(data, lvl + 1, ptep);
}
return size;
} else if ((lvl == ARM_LPAE_MAX_LEVELS - 2) && !iopte_leaf(pte, lvl)) {
arm_lpae_iopte *table = iopte_deref(pte, data);
arm_lpae_iopte *table_base = table;
int tl_offset = ARM_LPAE_LVL_IDX(iova, lvl + 1, data);
int entry_size = ARM_LPAE_GRANULE(data);
int max_entries = ARM_LPAE_BLOCK_SIZE(lvl, data) >>
data->pg_shift;
int entries = min_t(int, size / entry_size,
max_entries - tl_offset);
int table_len = entries * sizeof(*table);
/*
* This isn't a block mapping so it must be a table mapping
* and since it's the 2nd-to-last level the next level has
* to be all page mappings. Zero them all out in one fell
* swoop.
*/
table += tl_offset;
memset(table, 0, table_len);
pgtable_dma_sync_single_for_device(&iop->cfg,
__arm_lpae_dma_addr(table),
table_len, DMA_TO_DEVICE);
iopte_tblcnt_sub(ptep, entries);
if (!iopte_tblcnt(*ptep)) {
/* no valid mappings left under this table. free it. */
__arm_lpae_set_pte(ptep, 0, &iop->cfg);
__arm_lpae_free_pgtable(data, lvl + 1, table_base);
}
return entries * entry_size;
} else if (iopte_leaf(pte, lvl)) {
/*
* Insert a table at the next level to map the old region,
* minus the part we want to unmap
*/
return arm_lpae_split_blk_unmap(data, iova, size,
iopte_prot(pte), lvl, ptep,
prev_ptep, blk_size);
}
/* Keep on walkin' */
prev_ptep = ptep;
ptep = iopte_deref(pte, data);
return __arm_lpae_unmap(data, iova, size, lvl + 1, ptep, prev_ptep);
}
static size_t arm_lpae_unmap(struct io_pgtable_ops *ops, unsigned long iova,
size_t size)
{
size_t unmapped = 0;
struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops);
arm_lpae_iopte *ptep = data->pgd;
int lvl = ARM_LPAE_START_LVL(data);
while (unmapped < size) {
size_t ret, size_to_unmap, remaining;
remaining = (size - unmapped);
size_to_unmap = iommu_pgsize(data->iop.cfg.pgsize_bitmap, iova,
remaining);
size_to_unmap = size_to_unmap >= SZ_2M ?
size_to_unmap :
min_t(unsigned long, remaining,
(ALIGN(iova + 1, SZ_2M) - iova));
ret = __arm_lpae_unmap(data, iova, size_to_unmap, lvl, ptep,
NULL);
if (ret == 0)
break;
unmapped += ret;
iova += ret;
}
if (unmapped)
io_pgtable_tlb_flush_all(&data->iop);
return unmapped;
}
static int arm_lpae_iova_to_pte(struct arm_lpae_io_pgtable *data,
unsigned long iova, int *plvl_ret,
arm_lpae_iopte *ptep_ret)
{
arm_lpae_iopte pte, *ptep = data->pgd;
*plvl_ret = ARM_LPAE_START_LVL(data);
*ptep_ret = 0;
do {
/* Valid IOPTE pointer? */
if (!ptep)
return -EINVAL;
/* Grab the IOPTE we're interested in */
pte = *(ptep + ARM_LPAE_LVL_IDX(iova, *plvl_ret, data));
/* Valid entry? */
if (!pte)
return -EINVAL;
/* Leaf entry? */
if (iopte_leaf(pte, *plvl_ret))
goto found_translation;
/* Take it to the next level */
ptep = iopte_deref(pte, data);
} while (++(*plvl_ret) < ARM_LPAE_MAX_LEVELS);
/* Ran out of page tables to walk */
return -EINVAL;
found_translation:
*ptep_ret = pte;
return 0;
}
static uint64_t arm_lpae_iova_get_pte(struct io_pgtable_ops *ops,
unsigned long iova)
{
struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops);
arm_lpae_iopte pte;
int lvl;
if (!arm_lpae_iova_to_pte(data, iova, &lvl, &pte))
return pte;
return 0;
}
static phys_addr_t arm_lpae_iova_to_phys(struct io_pgtable_ops *ops,
unsigned long iova)
{
struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops);
arm_lpae_iopte pte;
int lvl;
phys_addr_t phys = 0;
if (!arm_lpae_iova_to_pte(data, iova, &lvl, &pte)) {
iova &= ((1 << ARM_LPAE_LVL_SHIFT(lvl, data)) - 1);
phys = ((phys_addr_t)iopte_to_pfn(pte, data)
<< data->pg_shift) | iova;
}
return phys;
}
static bool __arm_lpae_is_iova_coherent(struct arm_lpae_io_pgtable *data,
arm_lpae_iopte *ptep)
{
if (data->iop.fmt == ARM_64_LPAE_S1 ||
data->iop.fmt == ARM_32_LPAE_S1) {
int attr_idx = (*ptep & (ARM_LPAE_PTE_ATTRINDX_MASK <<
ARM_LPAE_PTE_ATTRINDX_SHIFT)) >>
ARM_LPAE_PTE_ATTRINDX_SHIFT;
if ((attr_idx == ARM_LPAE_MAIR_ATTR_IDX_CACHE) &&
(((*ptep & ARM_LPAE_PTE_SH_MASK) == ARM_LPAE_PTE_SH_IS)
||
(*ptep & ARM_LPAE_PTE_SH_MASK) == ARM_LPAE_PTE_SH_OS))
return true;
} else {
if (*ptep & ARM_LPAE_PTE_MEMATTR_OIWB)
return true;
}
return false;
}
static bool arm_lpae_is_iova_coherent(struct io_pgtable_ops *ops,
unsigned long iova)
{
struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops);
arm_lpae_iopte pte;
int lvl;
bool ret = false;
if (!arm_lpae_iova_to_pte(data, iova, &lvl, &pte))
ret = __arm_lpae_is_iova_coherent(data, &pte);
return ret;
}
static void arm_lpae_restrict_pgsizes(struct io_pgtable_cfg *cfg)
{
unsigned long granule;
/*
* We need to restrict the supported page sizes to match the
* translation regime for a particular granule. Aim to match
* the CPU page size if possible, otherwise prefer smaller sizes.
* While we're at it, restrict the block sizes to match the
* chosen granule.
*/
if (cfg->pgsize_bitmap & PAGE_SIZE)
granule = PAGE_SIZE;
else if (cfg->pgsize_bitmap & ~PAGE_MASK)
granule = 1UL << __fls(cfg->pgsize_bitmap & ~PAGE_MASK);
else if (cfg->pgsize_bitmap & PAGE_MASK)
granule = 1UL << __ffs(cfg->pgsize_bitmap & PAGE_MASK);
else
granule = 0;
switch (granule) {
case SZ_4K:
cfg->pgsize_bitmap &= (SZ_4K | SZ_2M | SZ_1G);
break;
case SZ_16K:
cfg->pgsize_bitmap &= (SZ_16K | SZ_32M);
break;
case SZ_64K:
cfg->pgsize_bitmap &= (SZ_64K | SZ_512M);
break;
default:
cfg->pgsize_bitmap = 0;
}
}
static struct arm_lpae_io_pgtable *
arm_lpae_alloc_pgtable(struct io_pgtable_cfg *cfg)
{
unsigned long va_bits, pgd_bits;
struct arm_lpae_io_pgtable *data;
arm_lpae_restrict_pgsizes(cfg);
if (!(cfg->pgsize_bitmap & (SZ_4K | SZ_16K | SZ_64K)))
return NULL;
if (cfg->ias > ARM_LPAE_MAX_ADDR_BITS)
return NULL;
if (cfg->oas > ARM_LPAE_MAX_ADDR_BITS)
return NULL;
if (!selftest_running && cfg->iommu_dev->dma_pfn_offset) {
dev_err(cfg->iommu_dev, "Cannot accommodate DMA offset for IOMMU page tables\n");
return NULL;
}
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return NULL;
data->pg_shift = __ffs(cfg->pgsize_bitmap);
data->bits_per_level = data->pg_shift - ilog2(sizeof(arm_lpae_iopte));
va_bits = cfg->ias - data->pg_shift;
data->levels = DIV_ROUND_UP(va_bits, data->bits_per_level);
/* Calculate the actual size of our pgd (without concatenation) */
pgd_bits = va_bits - (data->bits_per_level * (data->levels - 1));
data->pgd_bits = pgd_bits;
data->pgd_size = 1UL << (pgd_bits + ilog2(sizeof(arm_lpae_iopte)));
data->iop.ops = (struct io_pgtable_ops) {
.map = arm_lpae_map,
.map_sg = arm_lpae_map_sg,
.unmap = arm_lpae_unmap,
.iova_to_phys = arm_lpae_iova_to_phys,
.is_iova_coherent = arm_lpae_is_iova_coherent,
.iova_to_pte = arm_lpae_iova_get_pte,
};
return data;
}
static struct io_pgtable *
arm_64_lpae_alloc_pgtable_s1(struct io_pgtable_cfg *cfg, void *cookie)
{
u64 reg;
struct arm_lpae_io_pgtable *data;
data = arm_lpae_alloc_pgtable(cfg);
if (!data)
return NULL;
/* TCR */
if (cfg->quirks & IO_PGTABLE_QUIRK_PAGE_TABLE_COHERENT)
reg = (ARM_LPAE_TCR_SH_OS << ARM_LPAE_TCR_SH0_SHIFT) |
(ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_IRGN0_SHIFT) |
(ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_ORGN0_SHIFT);
else if ((cfg->quirks & IO_PGTABLE_QUIRK_QCOM_USE_UPSTREAM_HINT) &&
(cfg->quirks & IO_PGTABLE_QUIRK_QSMMUV500_NON_SHAREABLE))
reg = (ARM_LPAE_TCR_SH_NS << ARM_LPAE_TCR_SH0_SHIFT) |
(ARM_LPAE_TCR_RGN_NC << ARM_LPAE_TCR_IRGN0_SHIFT) |
(ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_ORGN0_SHIFT);
else if (cfg->quirks & IO_PGTABLE_QUIRK_QCOM_USE_UPSTREAM_HINT)
reg = (ARM_LPAE_TCR_SH_OS << ARM_LPAE_TCR_SH0_SHIFT) |
(ARM_LPAE_TCR_RGN_NC << ARM_LPAE_TCR_IRGN0_SHIFT) |
(ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_ORGN0_SHIFT);
else
reg = (ARM_LPAE_TCR_SH_OS << ARM_LPAE_TCR_SH0_SHIFT) |
(ARM_LPAE_TCR_RGN_NC << ARM_LPAE_TCR_IRGN0_SHIFT) |
(ARM_LPAE_TCR_RGN_NC << ARM_LPAE_TCR_ORGN0_SHIFT);
switch (ARM_LPAE_GRANULE(data)) {
case SZ_4K:
reg |= ARM_LPAE_TCR_TG0_4K;
break;
case SZ_16K:
reg |= ARM_LPAE_TCR_TG0_16K;
break;
case SZ_64K:
reg |= ARM_LPAE_TCR_TG0_64K;
break;
}
switch (cfg->oas) {
case 32:
reg |= (ARM_LPAE_TCR_PS_32_BIT << ARM_LPAE_TCR_IPS_SHIFT);
break;
case 36:
reg |= (ARM_LPAE_TCR_PS_36_BIT << ARM_LPAE_TCR_IPS_SHIFT);
break;
case 40:
reg |= (ARM_LPAE_TCR_PS_40_BIT << ARM_LPAE_TCR_IPS_SHIFT);
break;
case 42:
reg |= (ARM_LPAE_TCR_PS_42_BIT << ARM_LPAE_TCR_IPS_SHIFT);
break;
case 44:
reg |= (ARM_LPAE_TCR_PS_44_BIT << ARM_LPAE_TCR_IPS_SHIFT);
break;
case 48:
reg |= (ARM_LPAE_TCR_PS_48_BIT << ARM_LPAE_TCR_IPS_SHIFT);
break;
default:
goto out_free_data;
}
reg |= (64ULL - cfg->ias) << ARM_LPAE_TCR_T0SZ_SHIFT;
/* Disable speculative walks through TTBR1 */
reg |= ARM_LPAE_TCR_EPD1;
cfg->arm_lpae_s1_cfg.tcr = reg;
/* MAIRs */
reg = (ARM_LPAE_MAIR_ATTR_NC
<< ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_NC)) |
(ARM_LPAE_MAIR_ATTR_WBRWA
<< ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_CACHE)) |
(ARM_LPAE_MAIR_ATTR_DEVICE
<< ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_DEV)) |
(ARM_LPAE_MAIR_ATTR_UPSTREAM
<< ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_UPSTREAM));
cfg->arm_lpae_s1_cfg.mair[0] = reg;
cfg->arm_lpae_s1_cfg.mair[1] = 0;
/* Looking good; allocate a pgd */
data->pgd = __arm_lpae_alloc_pages(data->pgd_size, GFP_KERNEL,
cfg, cookie);
if (!data->pgd)
goto out_free_data;
data->pgd_ttbr1 = __arm_lpae_alloc_pages(data->pgd_size, GFP_KERNEL,
cfg, cookie);
if (!data->pgd_ttbr1)
goto out_free_pgd;
/* Ensure the empty pgd is visible before any actual TTBR write */
wmb();
/* TTBRs */
cfg->arm_lpae_s1_cfg.ttbr[0] = virt_to_phys(data->pgd);
cfg->arm_lpae_s1_cfg.ttbr[1] = virt_to_phys(data->pgd_ttbr1);
return &data->iop;
out_free_pgd:
__arm_lpae_free_pages(data->pgd, data->pgd_size, cfg, cookie);
out_free_data:
kfree(data);
return NULL;
}
static struct io_pgtable *
arm_64_lpae_alloc_pgtable_s2(struct io_pgtable_cfg *cfg, void *cookie)
{
u64 reg, sl;
struct arm_lpae_io_pgtable *data;
/* The NS quirk doesn't apply at stage 2 */
if (cfg->quirks)
return NULL;
data = arm_lpae_alloc_pgtable(cfg);
if (!data)
return NULL;
/*
* Concatenate PGDs at level 1 if possible in order to reduce
* the depth of the stage-2 walk.
*/
if (data->levels == ARM_LPAE_MAX_LEVELS) {
unsigned long pgd_pages;
pgd_pages = data->pgd_size >> ilog2(sizeof(arm_lpae_iopte));
if (pgd_pages <= ARM_LPAE_S2_MAX_CONCAT_PAGES) {
data->pgd_size = pgd_pages << data->pg_shift;
data->levels--;
}
}
/* VTCR */
reg = ARM_64_LPAE_S2_TCR_RES1 |
(ARM_LPAE_TCR_SH_IS << ARM_LPAE_TCR_SH0_SHIFT) |
(ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_IRGN0_SHIFT) |
(ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_ORGN0_SHIFT);
sl = ARM_LPAE_START_LVL(data);
switch (ARM_LPAE_GRANULE(data)) {
case SZ_4K:
reg |= ARM_LPAE_TCR_TG0_4K;
sl++; /* SL0 format is different for 4K granule size */
break;
case SZ_16K:
reg |= ARM_LPAE_TCR_TG0_16K;
break;
case SZ_64K:
reg |= ARM_LPAE_TCR_TG0_64K;
break;
}
switch (cfg->oas) {
case 32:
reg |= (ARM_LPAE_TCR_PS_32_BIT << ARM_LPAE_TCR_PS_SHIFT);
break;
case 36:
reg |= (ARM_LPAE_TCR_PS_36_BIT << ARM_LPAE_TCR_PS_SHIFT);
break;
case 40:
reg |= (ARM_LPAE_TCR_PS_40_BIT << ARM_LPAE_TCR_PS_SHIFT);
break;
case 42:
reg |= (ARM_LPAE_TCR_PS_42_BIT << ARM_LPAE_TCR_PS_SHIFT);
break;
case 44:
reg |= (ARM_LPAE_TCR_PS_44_BIT << ARM_LPAE_TCR_PS_SHIFT);
break;
case 48:
reg |= (ARM_LPAE_TCR_PS_48_BIT << ARM_LPAE_TCR_PS_SHIFT);
break;
default:
goto out_free_data;
}
reg |= (64ULL - cfg->ias) << ARM_LPAE_TCR_T0SZ_SHIFT;
reg |= (~sl & ARM_LPAE_TCR_SL0_MASK) << ARM_LPAE_TCR_SL0_SHIFT;
cfg->arm_lpae_s2_cfg.vtcr = reg;
/* Allocate pgd pages */
data->pgd = __arm_lpae_alloc_pages(data->pgd_size, GFP_KERNEL,
cfg, cookie);
if (!data->pgd)
goto out_free_data;
/* Ensure the empty pgd is visible before any actual TTBR write */
wmb();
/* VTTBR */
cfg->arm_lpae_s2_cfg.vttbr = virt_to_phys(data->pgd);
return &data->iop;
out_free_data:
kfree(data);
return NULL;
}
static struct io_pgtable *
arm_32_lpae_alloc_pgtable_s1(struct io_pgtable_cfg *cfg, void *cookie)
{
struct io_pgtable *iop;
if (cfg->ias > 32 || cfg->oas > 40)
return NULL;
cfg->pgsize_bitmap &= (SZ_4K | SZ_2M | SZ_1G);
iop = arm_64_lpae_alloc_pgtable_s1(cfg, cookie);
if (iop) {
cfg->arm_lpae_s1_cfg.tcr |= ARM_32_LPAE_TCR_EAE;
cfg->arm_lpae_s1_cfg.tcr &= 0xffffffff;
}
return iop;
}
static struct io_pgtable *
arm_32_lpae_alloc_pgtable_s2(struct io_pgtable_cfg *cfg, void *cookie)
{
struct io_pgtable *iop;
if (cfg->ias > 40 || cfg->oas > 40)
return NULL;
cfg->pgsize_bitmap &= (SZ_4K | SZ_2M | SZ_1G);
iop = arm_64_lpae_alloc_pgtable_s2(cfg, cookie);
if (iop)
cfg->arm_lpae_s2_cfg.vtcr &= 0xffffffff;
return iop;
}
struct io_pgtable_init_fns io_pgtable_arm_64_lpae_s1_init_fns = {
.alloc = arm_64_lpae_alloc_pgtable_s1,
.free = arm_lpae_free_pgtable,
};
struct io_pgtable_init_fns io_pgtable_arm_64_lpae_s2_init_fns = {
.alloc = arm_64_lpae_alloc_pgtable_s2,
.free = arm_lpae_free_pgtable,
};
struct io_pgtable_init_fns io_pgtable_arm_32_lpae_s1_init_fns = {
.alloc = arm_32_lpae_alloc_pgtable_s1,
.free = arm_lpae_free_pgtable,
};
struct io_pgtable_init_fns io_pgtable_arm_32_lpae_s2_init_fns = {
.alloc = arm_32_lpae_alloc_pgtable_s2,
.free = arm_lpae_free_pgtable,
};
#ifdef CONFIG_IOMMU_IO_PGTABLE_LPAE_SELFTEST
static struct io_pgtable_cfg *cfg_cookie;
static void dummy_tlb_flush_all(void *cookie)
{
WARN_ON(cookie != cfg_cookie);
}
static void dummy_tlb_add_flush(unsigned long iova, size_t size,
size_t granule, bool leaf, void *cookie)
{
WARN_ON(cookie != cfg_cookie);
}
static void dummy_tlb_sync(void *cookie)
{
WARN_ON(cookie != cfg_cookie);
}
static struct iommu_gather_ops dummy_tlb_ops __initdata = {
.tlb_flush_all = dummy_tlb_flush_all,
.tlb_add_flush = dummy_tlb_add_flush,
.tlb_sync = dummy_tlb_sync,
};
static void __init arm_lpae_dump_ops(struct io_pgtable_ops *ops)
{
struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops);
struct io_pgtable_cfg *cfg = &data->iop.cfg;
pr_err("cfg: pgsize_bitmap 0x%lx, ias %u-bit\n",
cfg->pgsize_bitmap, cfg->ias);
pr_err("data: %d levels, 0x%zx pgd_size, %lu pg_shift, %lu bits_per_level, pgd @ %p\n",
data->levels, data->pgd_size, data->pg_shift,
data->bits_per_level, data->pgd);
}
#define __FAIL(ops, i) ({ \
WARN(1, "selftest: test failed for fmt idx %d\n", (i)); \
arm_lpae_dump_ops(ops); \
suppress_map_failures = false; \
selftest_running = false; \
-EFAULT; \
})
/*
* Returns true if there's any mapping in the given iova range in ops.
*/
static bool arm_lpae_range_has_mapping(struct io_pgtable_ops *ops,
unsigned long iova_start, size_t size)
{
unsigned long iova = iova_start;
while (iova < (iova_start + size)) {
if (ops->iova_to_phys(ops, iova + 42))
return true;
iova += SZ_4K;
}
return false;
}
/*
* Returns true if the iova range is successfully mapped to the contiguous
* phys range in ops.
*/
static bool arm_lpae_range_has_specific_mapping(struct io_pgtable_ops *ops,
const unsigned long iova_start,
const phys_addr_t phys_start,
const size_t size)
{
unsigned long iova = iova_start;
phys_addr_t phys = phys_start;
while (iova < (iova_start + size)) {
if (ops->iova_to_phys(ops, iova + 42) != (phys + 42))
return false;
iova += SZ_4K;
phys += SZ_4K;
}
return true;
}
static int __init arm_lpae_run_tests(struct io_pgtable_cfg *cfg)
{
static const enum io_pgtable_fmt fmts[] = {
ARM_64_LPAE_S1,
ARM_64_LPAE_S2,
};
int i, j, k;
unsigned long iova;
size_t size;
struct io_pgtable_ops *ops;
selftest_running = true;
for (i = 0; i < ARRAY_SIZE(fmts); ++i) {
unsigned long test_sg_sizes[] = { SZ_4K, SZ_64K, SZ_2M,
SZ_1M * 12, SZ_1M * 20 };
cfg_cookie = cfg;
ops = alloc_io_pgtable_ops(fmts[i], cfg, cfg);
if (!ops) {
pr_err("selftest: failed to allocate io pgtable ops\n");
return -ENOMEM;
}
/*
* Initial sanity checks. Empty page tables shouldn't
* provide any translations. TODO: check entire supported
* range for these ops rather than first 2G
*/
if (arm_lpae_range_has_mapping(ops, 0, SZ_2G))
return __FAIL(ops, i);
/*
* Distinct mappings of different granule sizes.
*/
iova = 0;
j = find_first_bit(&cfg->pgsize_bitmap, BITS_PER_LONG);
while (j != BITS_PER_LONG) {
size = 1UL << j;
if (ops->map(ops, iova, iova, size, IOMMU_READ |
IOMMU_WRITE |
IOMMU_NOEXEC |
IOMMU_CACHE))
return __FAIL(ops, i);
suppress_map_failures = true;
/* Overlapping mappings */
if (!ops->map(ops, iova, iova + size, size,
IOMMU_READ | IOMMU_NOEXEC))
return __FAIL(ops, i);
suppress_map_failures = false;
if (!arm_lpae_range_has_specific_mapping(ops, iova,
iova, size))
return __FAIL(ops, i);
iova += SZ_1G;
j++;
j = find_next_bit(&cfg->pgsize_bitmap, BITS_PER_LONG, j);
}
/* Partial unmap */
size = 1UL << __ffs(cfg->pgsize_bitmap);
if (ops->unmap(ops, SZ_1G + size, size) != size)
return __FAIL(ops, i);
if (arm_lpae_range_has_mapping(ops, SZ_1G + size, size))
return __FAIL(ops, i);
/* Remap of partial unmap */
if (ops->map(ops, SZ_1G + size, size, size, IOMMU_READ))
return __FAIL(ops, i);
if (!arm_lpae_range_has_specific_mapping(ops, SZ_1G + size,
size, size))
return __FAIL(ops, i);
/* Full unmap */
iova = 0;
j = find_first_bit(&cfg->pgsize_bitmap, BITS_PER_LONG);
while (j != BITS_PER_LONG) {
size = 1UL << j;
if (ops->unmap(ops, iova, size) != size)
return __FAIL(ops, i);
if (ops->iova_to_phys(ops, iova + 42))
return __FAIL(ops, i);
/* Remap full block */
if (ops->map(ops, iova, iova, size, IOMMU_WRITE))
return __FAIL(ops, i);
if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
return __FAIL(ops, i);
if (ops->unmap(ops, iova, size) != size)
return __FAIL(ops, i);
iova += SZ_1G;
j++;
j = find_next_bit(&cfg->pgsize_bitmap, BITS_PER_LONG, j);
}
if (arm_lpae_range_has_mapping(ops, 0, SZ_2G))
return __FAIL(ops, i);
if ((cfg->pgsize_bitmap & SZ_2M) &&
(cfg->pgsize_bitmap & SZ_4K)) {
/* mixed block + page mappings */
iova = 0;
if (ops->map(ops, iova, iova, SZ_2M, IOMMU_READ))
return __FAIL(ops, i);
if (ops->map(ops, iova + SZ_2M, iova + SZ_2M, SZ_4K,
IOMMU_READ))
return __FAIL(ops, i);
if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
return __FAIL(ops, i);
if (ops->iova_to_phys(ops, iova + SZ_2M + 42) !=
(iova + SZ_2M + 42))
return __FAIL(ops, i);
/* unmap both mappings at once */
if (ops->unmap(ops, iova, SZ_2M + SZ_4K) !=
(SZ_2M + SZ_4K))
return __FAIL(ops, i);
if (arm_lpae_range_has_mapping(ops, 0, SZ_2G))
return __FAIL(ops, i);
}
/* map_sg */
for (j = 0; j < ARRAY_SIZE(test_sg_sizes); ++j) {
size_t mapped;
size_t unused;
struct page *page;
phys_addr_t page_phys;
struct sg_table table;
struct scatterlist *sg;
unsigned long total_size = test_sg_sizes[j];
int chunk_size = 1UL << find_first_bit(
&cfg->pgsize_bitmap, BITS_PER_LONG);
int nents = total_size / chunk_size;
if (total_size < chunk_size)
continue;
page = alloc_pages(GFP_KERNEL, get_order(chunk_size));
page_phys = page_to_phys(page);
iova = 0;
BUG_ON(sg_alloc_table(&table, nents, GFP_KERNEL));
BUG_ON(!page);
for_each_sg(table.sgl, sg, table.nents, k)
sg_set_page(sg, page, chunk_size, 0);
mapped = ops->map_sg(ops, iova, table.sgl, table.nents,
IOMMU_READ | IOMMU_WRITE, &unused);
if (mapped != total_size)
return __FAIL(ops, i);
if (!arm_lpae_range_has_mapping(ops, iova, total_size))
return __FAIL(ops, i);
if (arm_lpae_range_has_mapping(ops, iova + total_size,
SZ_2G - (iova + total_size)))
return __FAIL(ops, i);
for_each_sg(table.sgl, sg, table.nents, k) {
dma_addr_t newphys =
ops->iova_to_phys(ops, iova + 42);
if (newphys != (page_phys + 42))
return __FAIL(ops, i);
iova += chunk_size;
}
if (ops->unmap(ops, 0, total_size) != total_size)
return __FAIL(ops, i);
if (arm_lpae_range_has_mapping(ops, 0, SZ_2G))
return __FAIL(ops, i);
sg_free_table(&table);
__free_pages(page, get_order(chunk_size));
}
if (arm_lpae_range_has_mapping(ops, 0, SZ_2G))
return __FAIL(ops, i);
free_io_pgtable_ops(ops);
}
selftest_running = false;
suppress_map_failures = false;
return 0;
}
static int __init arm_lpae_do_selftests(void)
{
static const unsigned long pgsize[] = {
SZ_4K | SZ_2M | SZ_1G,
};
static const unsigned int ias[] = {
32, 36, 40, 42, 44, 48,
};
int i, j, pass = 0, fail = 0;
struct io_pgtable_cfg cfg = {
.tlb = &dummy_tlb_ops,
.oas = 48,
};
for (i = 0; i < ARRAY_SIZE(pgsize); ++i) {
for (j = 0; j < ARRAY_SIZE(ias); ++j) {
cfg.pgsize_bitmap = pgsize[i];
cfg.ias = ias[j];
pr_info("selftest: pgsize_bitmap 0x%08lx, IAS %u\n",
pgsize[i], ias[j]);
if (arm_lpae_run_tests(&cfg))
fail++;
else
pass++;
}
}
pr_info("selftest: completed with %d PASS %d FAIL\n", pass, fail);
return fail ? -EFAULT : 0;
}
subsys_initcall(arm_lpae_do_selftests);
#endif