| /* |
| * drivers/usb/driver.c - most of the driver model stuff for usb |
| * |
| * (C) Copyright 2005 Greg Kroah-Hartman <gregkh@suse.de> |
| * |
| * based on drivers/usb/usb.c which had the following copyrights: |
| * (C) Copyright Linus Torvalds 1999 |
| * (C) Copyright Johannes Erdfelt 1999-2001 |
| * (C) Copyright Andreas Gal 1999 |
| * (C) Copyright Gregory P. Smith 1999 |
| * (C) Copyright Deti Fliegl 1999 (new USB architecture) |
| * (C) Copyright Randy Dunlap 2000 |
| * (C) Copyright David Brownell 2000-2004 |
| * (C) Copyright Yggdrasil Computing, Inc. 2000 |
| * (usb_device_id matching changes by Adam J. Richter) |
| * (C) Copyright Greg Kroah-Hartman 2002-2003 |
| * |
| * NOTE! This is not actually a driver at all, rather this is |
| * just a collection of helper routines that implement the |
| * generic USB things that the real drivers can use.. |
| * |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/device.h> |
| #include <linux/usb.h> |
| #include "hcd.h" |
| #include "usb.h" |
| |
| static int usb_match_one_id(struct usb_interface *interface, |
| const struct usb_device_id *id); |
| |
| struct usb_dynid { |
| struct list_head node; |
| struct usb_device_id id; |
| }; |
| |
| |
| static int generic_probe(struct device *dev) |
| { |
| return 0; |
| } |
| static int generic_remove(struct device *dev) |
| { |
| struct usb_device *udev = to_usb_device(dev); |
| |
| /* if this is only an unbind, not a physical disconnect, then |
| * unconfigure the device */ |
| if (udev->state == USB_STATE_CONFIGURED) |
| usb_set_configuration(udev, 0); |
| |
| /* in case the call failed or the device was suspended */ |
| if (udev->state >= USB_STATE_CONFIGURED) |
| usb_disable_device(udev, 0); |
| return 0; |
| } |
| |
| struct device_driver usb_generic_driver = { |
| .owner = THIS_MODULE, |
| .name = "usb", |
| .bus = &usb_bus_type, |
| .probe = generic_probe, |
| .remove = generic_remove, |
| }; |
| |
| /* Fun hack to determine if the struct device is a |
| * usb device or a usb interface. */ |
| int usb_generic_driver_data; |
| |
| #ifdef CONFIG_HOTPLUG |
| |
| /* |
| * Adds a new dynamic USBdevice ID to this driver, |
| * and cause the driver to probe for all devices again. |
| */ |
| static ssize_t store_new_id(struct device_driver *driver, |
| const char *buf, size_t count) |
| { |
| struct usb_driver *usb_drv = to_usb_driver(driver); |
| struct usb_dynid *dynid; |
| u32 idVendor = 0; |
| u32 idProduct = 0; |
| int fields = 0; |
| |
| fields = sscanf(buf, "%x %x", &idVendor, &idProduct); |
| if (fields < 2) |
| return -EINVAL; |
| |
| dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); |
| if (!dynid) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&dynid->node); |
| dynid->id.idVendor = idVendor; |
| dynid->id.idProduct = idProduct; |
| dynid->id.match_flags = USB_DEVICE_ID_MATCH_DEVICE; |
| |
| spin_lock(&usb_drv->dynids.lock); |
| list_add_tail(&usb_drv->dynids.list, &dynid->node); |
| spin_unlock(&usb_drv->dynids.lock); |
| |
| if (get_driver(driver)) { |
| driver_attach(driver); |
| put_driver(driver); |
| } |
| |
| return count; |
| } |
| static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id); |
| |
| static int usb_create_newid_file(struct usb_driver *usb_drv) |
| { |
| int error = 0; |
| |
| if (usb_drv->no_dynamic_id) |
| goto exit; |
| |
| if (usb_drv->probe != NULL) |
| error = sysfs_create_file(&usb_drv->driver.kobj, |
| &driver_attr_new_id.attr); |
| exit: |
| return error; |
| } |
| |
| static void usb_remove_newid_file(struct usb_driver *usb_drv) |
| { |
| if (usb_drv->no_dynamic_id) |
| return; |
| |
| if (usb_drv->probe != NULL) |
| sysfs_remove_file(&usb_drv->driver.kobj, |
| &driver_attr_new_id.attr); |
| } |
| |
| static void usb_free_dynids(struct usb_driver *usb_drv) |
| { |
| struct usb_dynid *dynid, *n; |
| |
| spin_lock(&usb_drv->dynids.lock); |
| list_for_each_entry_safe(dynid, n, &usb_drv->dynids.list, node) { |
| list_del(&dynid->node); |
| kfree(dynid); |
| } |
| spin_unlock(&usb_drv->dynids.lock); |
| } |
| #else |
| static inline int usb_create_newid_file(struct usb_driver *usb_drv) |
| { |
| return 0; |
| } |
| |
| static void usb_remove_newid_file(struct usb_driver *usb_drv) |
| { |
| } |
| |
| static inline void usb_free_dynids(struct usb_driver *usb_drv) |
| { |
| } |
| #endif |
| |
| static const struct usb_device_id *usb_match_dynamic_id(struct usb_interface *intf, |
| struct usb_driver *drv) |
| { |
| struct usb_dynid *dynid; |
| |
| spin_lock(&drv->dynids.lock); |
| list_for_each_entry(dynid, &drv->dynids.list, node) { |
| if (usb_match_one_id(intf, &dynid->id)) { |
| spin_unlock(&drv->dynids.lock); |
| return &dynid->id; |
| } |
| } |
| spin_unlock(&drv->dynids.lock); |
| return NULL; |
| } |
| |
| |
| /* called from driver core with usb_bus_type.subsys writelock */ |
| static int usb_probe_interface(struct device *dev) |
| { |
| struct usb_interface * intf = to_usb_interface(dev); |
| struct usb_driver * driver = to_usb_driver(dev->driver); |
| const struct usb_device_id *id; |
| int error = -ENODEV; |
| |
| dev_dbg(dev, "%s\n", __FUNCTION__); |
| |
| if (!driver->probe) |
| return error; |
| /* FIXME we'd much prefer to just resume it ... */ |
| if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED) |
| return -EHOSTUNREACH; |
| |
| id = usb_match_id(intf, driver->id_table); |
| if (!id) |
| id = usb_match_dynamic_id(intf, driver); |
| if (id) { |
| dev_dbg(dev, "%s - got id\n", __FUNCTION__); |
| |
| /* Interface "power state" doesn't correspond to any hardware |
| * state whatsoever. We use it to record when it's bound to |
| * a driver that may start I/0: it's not frozen/quiesced. |
| */ |
| mark_active(intf); |
| intf->condition = USB_INTERFACE_BINDING; |
| error = driver->probe(intf, id); |
| if (error) { |
| mark_quiesced(intf); |
| intf->condition = USB_INTERFACE_UNBOUND; |
| } else |
| intf->condition = USB_INTERFACE_BOUND; |
| } |
| |
| return error; |
| } |
| |
| /* called from driver core with usb_bus_type.subsys writelock */ |
| static int usb_unbind_interface(struct device *dev) |
| { |
| struct usb_interface *intf = to_usb_interface(dev); |
| struct usb_driver *driver = to_usb_driver(intf->dev.driver); |
| |
| intf->condition = USB_INTERFACE_UNBINDING; |
| |
| /* release all urbs for this interface */ |
| usb_disable_interface(interface_to_usbdev(intf), intf); |
| |
| if (driver && driver->disconnect) |
| driver->disconnect(intf); |
| |
| /* reset other interface state */ |
| usb_set_interface(interface_to_usbdev(intf), |
| intf->altsetting[0].desc.bInterfaceNumber, |
| 0); |
| usb_set_intfdata(intf, NULL); |
| intf->condition = USB_INTERFACE_UNBOUND; |
| mark_quiesced(intf); |
| |
| return 0; |
| } |
| |
| /* returns 0 if no match, 1 if match */ |
| static int usb_match_one_id(struct usb_interface *interface, |
| const struct usb_device_id *id) |
| { |
| struct usb_host_interface *intf; |
| struct usb_device *dev; |
| |
| /* proc_connectinfo in devio.c may call us with id == NULL. */ |
| if (id == NULL) |
| return 0; |
| |
| intf = interface->cur_altsetting; |
| dev = interface_to_usbdev(interface); |
| |
| if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) && |
| id->idVendor != le16_to_cpu(dev->descriptor.idVendor)) |
| return 0; |
| |
| if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) && |
| id->idProduct != le16_to_cpu(dev->descriptor.idProduct)) |
| return 0; |
| |
| /* No need to test id->bcdDevice_lo != 0, since 0 is never |
| greater than any unsigned number. */ |
| if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) && |
| (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice))) |
| return 0; |
| |
| if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) && |
| (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice))) |
| return 0; |
| |
| if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) && |
| (id->bDeviceClass != dev->descriptor.bDeviceClass)) |
| return 0; |
| |
| if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) && |
| (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass)) |
| return 0; |
| |
| if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) && |
| (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol)) |
| return 0; |
| |
| if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) && |
| (id->bInterfaceClass != intf->desc.bInterfaceClass)) |
| return 0; |
| |
| if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) && |
| (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass)) |
| return 0; |
| |
| if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) && |
| (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol)) |
| return 0; |
| |
| return 1; |
| } |
| /** |
| * usb_match_id - find first usb_device_id matching device or interface |
| * @interface: the interface of interest |
| * @id: array of usb_device_id structures, terminated by zero entry |
| * |
| * usb_match_id searches an array of usb_device_id's and returns |
| * the first one matching the device or interface, or null. |
| * This is used when binding (or rebinding) a driver to an interface. |
| * Most USB device drivers will use this indirectly, through the usb core, |
| * but some layered driver frameworks use it directly. |
| * These device tables are exported with MODULE_DEVICE_TABLE, through |
| * modutils, to support the driver loading functionality of USB hotplugging. |
| * |
| * What Matches: |
| * |
| * The "match_flags" element in a usb_device_id controls which |
| * members are used. If the corresponding bit is set, the |
| * value in the device_id must match its corresponding member |
| * in the device or interface descriptor, or else the device_id |
| * does not match. |
| * |
| * "driver_info" is normally used only by device drivers, |
| * but you can create a wildcard "matches anything" usb_device_id |
| * as a driver's "modules.usbmap" entry if you provide an id with |
| * only a nonzero "driver_info" field. If you do this, the USB device |
| * driver's probe() routine should use additional intelligence to |
| * decide whether to bind to the specified interface. |
| * |
| * What Makes Good usb_device_id Tables: |
| * |
| * The match algorithm is very simple, so that intelligence in |
| * driver selection must come from smart driver id records. |
| * Unless you have good reasons to use another selection policy, |
| * provide match elements only in related groups, and order match |
| * specifiers from specific to general. Use the macros provided |
| * for that purpose if you can. |
| * |
| * The most specific match specifiers use device descriptor |
| * data. These are commonly used with product-specific matches; |
| * the USB_DEVICE macro lets you provide vendor and product IDs, |
| * and you can also match against ranges of product revisions. |
| * These are widely used for devices with application or vendor |
| * specific bDeviceClass values. |
| * |
| * Matches based on device class/subclass/protocol specifications |
| * are slightly more general; use the USB_DEVICE_INFO macro, or |
| * its siblings. These are used with single-function devices |
| * where bDeviceClass doesn't specify that each interface has |
| * its own class. |
| * |
| * Matches based on interface class/subclass/protocol are the |
| * most general; they let drivers bind to any interface on a |
| * multiple-function device. Use the USB_INTERFACE_INFO |
| * macro, or its siblings, to match class-per-interface style |
| * devices (as recorded in bDeviceClass). |
| * |
| * Within those groups, remember that not all combinations are |
| * meaningful. For example, don't give a product version range |
| * without vendor and product IDs; or specify a protocol without |
| * its associated class and subclass. |
| */ |
| const struct usb_device_id *usb_match_id(struct usb_interface *interface, |
| const struct usb_device_id *id) |
| { |
| /* proc_connectinfo in devio.c may call us with id == NULL. */ |
| if (id == NULL) |
| return NULL; |
| |
| /* It is important to check that id->driver_info is nonzero, |
| since an entry that is all zeroes except for a nonzero |
| id->driver_info is the way to create an entry that |
| indicates that the driver want to examine every |
| device and interface. */ |
| for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass || |
| id->driver_info; id++) { |
| if (usb_match_one_id(interface, id)) |
| return id; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(usb_match_id); |
| |
| int usb_device_match(struct device *dev, struct device_driver *drv) |
| { |
| struct usb_interface *intf; |
| struct usb_driver *usb_drv; |
| const struct usb_device_id *id; |
| |
| /* check for generic driver, which we don't match any device with */ |
| if (drv == &usb_generic_driver) |
| return 0; |
| |
| intf = to_usb_interface(dev); |
| usb_drv = to_usb_driver(drv); |
| |
| id = usb_match_id(intf, usb_drv->id_table); |
| if (id) |
| return 1; |
| |
| id = usb_match_dynamic_id(intf, usb_drv); |
| if (id) |
| return 1; |
| return 0; |
| } |
| |
| /** |
| * usb_register_driver - register a USB driver |
| * @new_driver: USB operations for the driver |
| * @owner: module owner of this driver. |
| * |
| * Registers a USB driver with the USB core. The list of unattached |
| * interfaces will be rescanned whenever a new driver is added, allowing |
| * the new driver to attach to any recognized devices. |
| * Returns a negative error code on failure and 0 on success. |
| * |
| * NOTE: if you want your driver to use the USB major number, you must call |
| * usb_register_dev() to enable that functionality. This function no longer |
| * takes care of that. |
| */ |
| int usb_register_driver(struct usb_driver *new_driver, struct module *owner) |
| { |
| int retval = 0; |
| |
| if (usb_disabled()) |
| return -ENODEV; |
| |
| new_driver->driver.name = (char *)new_driver->name; |
| new_driver->driver.bus = &usb_bus_type; |
| new_driver->driver.probe = usb_probe_interface; |
| new_driver->driver.remove = usb_unbind_interface; |
| new_driver->driver.owner = owner; |
| spin_lock_init(&new_driver->dynids.lock); |
| INIT_LIST_HEAD(&new_driver->dynids.list); |
| |
| usb_lock_all_devices(); |
| retval = driver_register(&new_driver->driver); |
| usb_unlock_all_devices(); |
| |
| if (!retval) { |
| pr_info("%s: registered new driver %s\n", |
| usbcore_name, new_driver->name); |
| usbfs_update_special(); |
| usb_create_newid_file(new_driver); |
| } else { |
| printk(KERN_ERR "%s: error %d registering driver %s\n", |
| usbcore_name, retval, new_driver->name); |
| } |
| |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(usb_register_driver); |
| |
| /** |
| * usb_deregister - unregister a USB driver |
| * @driver: USB operations of the driver to unregister |
| * Context: must be able to sleep |
| * |
| * Unlinks the specified driver from the internal USB driver list. |
| * |
| * NOTE: If you called usb_register_dev(), you still need to call |
| * usb_deregister_dev() to clean up your driver's allocated minor numbers, |
| * this * call will no longer do it for you. |
| */ |
| void usb_deregister(struct usb_driver *driver) |
| { |
| pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name); |
| |
| usb_lock_all_devices(); |
| usb_remove_newid_file(driver); |
| usb_free_dynids(driver); |
| driver_unregister(&driver->driver); |
| usb_unlock_all_devices(); |
| |
| usbfs_update_special(); |
| } |
| EXPORT_SYMBOL_GPL(usb_deregister); |