| /* |
| BlueZ - Bluetooth protocol stack for Linux |
| Copyright (C) 2000-2001 Qualcomm Incorporated |
| Copyright (C) 2011 ProFUSION Embedded Systems |
| |
| Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License version 2 as |
| published by the Free Software Foundation; |
| |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. |
| IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY |
| CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES |
| WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| |
| ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, |
| COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS |
| SOFTWARE IS DISCLAIMED. |
| */ |
| |
| /* Bluetooth HCI core. */ |
| |
| #include <linux/export.h> |
| #include <linux/idr.h> |
| #include <linux/rfkill.h> |
| #include <linux/debugfs.h> |
| #include <linux/crypto.h> |
| #include <asm/unaligned.h> |
| |
| #include <net/bluetooth/bluetooth.h> |
| #include <net/bluetooth/hci_core.h> |
| #include <net/bluetooth/l2cap.h> |
| #include <net/bluetooth/mgmt.h> |
| |
| #include "smp.h" |
| |
| static void hci_rx_work(struct work_struct *work); |
| static void hci_cmd_work(struct work_struct *work); |
| static void hci_tx_work(struct work_struct *work); |
| |
| /* HCI device list */ |
| LIST_HEAD(hci_dev_list); |
| DEFINE_RWLOCK(hci_dev_list_lock); |
| |
| /* HCI callback list */ |
| LIST_HEAD(hci_cb_list); |
| DEFINE_RWLOCK(hci_cb_list_lock); |
| |
| /* HCI ID Numbering */ |
| static DEFINE_IDA(hci_index_ida); |
| |
| /* ----- HCI requests ----- */ |
| |
| #define HCI_REQ_DONE 0 |
| #define HCI_REQ_PEND 1 |
| #define HCI_REQ_CANCELED 2 |
| |
| #define hci_req_lock(d) mutex_lock(&d->req_lock) |
| #define hci_req_unlock(d) mutex_unlock(&d->req_lock) |
| |
| /* ---- HCI notifications ---- */ |
| |
| static void hci_notify(struct hci_dev *hdev, int event) |
| { |
| hci_sock_dev_event(hdev, event); |
| } |
| |
| /* ---- HCI debugfs entries ---- */ |
| |
| static ssize_t dut_mode_read(struct file *file, char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct hci_dev *hdev = file->private_data; |
| char buf[3]; |
| |
| buf[0] = test_bit(HCI_DUT_MODE, &hdev->dbg_flags) ? 'Y': 'N'; |
| buf[1] = '\n'; |
| buf[2] = '\0'; |
| return simple_read_from_buffer(user_buf, count, ppos, buf, 2); |
| } |
| |
| static ssize_t dut_mode_write(struct file *file, const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct hci_dev *hdev = file->private_data; |
| struct sk_buff *skb; |
| char buf[32]; |
| size_t buf_size = min(count, (sizeof(buf)-1)); |
| bool enable; |
| int err; |
| |
| if (!test_bit(HCI_UP, &hdev->flags)) |
| return -ENETDOWN; |
| |
| if (copy_from_user(buf, user_buf, buf_size)) |
| return -EFAULT; |
| |
| buf[buf_size] = '\0'; |
| if (strtobool(buf, &enable)) |
| return -EINVAL; |
| |
| if (enable == test_bit(HCI_DUT_MODE, &hdev->dbg_flags)) |
| return -EALREADY; |
| |
| hci_req_lock(hdev); |
| if (enable) |
| skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL, |
| HCI_CMD_TIMEOUT); |
| else |
| skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, |
| HCI_CMD_TIMEOUT); |
| hci_req_unlock(hdev); |
| |
| if (IS_ERR(skb)) |
| return PTR_ERR(skb); |
| |
| err = -bt_to_errno(skb->data[0]); |
| kfree_skb(skb); |
| |
| if (err < 0) |
| return err; |
| |
| change_bit(HCI_DUT_MODE, &hdev->dbg_flags); |
| |
| return count; |
| } |
| |
| static const struct file_operations dut_mode_fops = { |
| .open = simple_open, |
| .read = dut_mode_read, |
| .write = dut_mode_write, |
| .llseek = default_llseek, |
| }; |
| |
| static int features_show(struct seq_file *f, void *ptr) |
| { |
| struct hci_dev *hdev = f->private; |
| u8 p; |
| |
| hci_dev_lock(hdev); |
| for (p = 0; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { |
| seq_printf(f, "%2u: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x " |
| "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n", p, |
| hdev->features[p][0], hdev->features[p][1], |
| hdev->features[p][2], hdev->features[p][3], |
| hdev->features[p][4], hdev->features[p][5], |
| hdev->features[p][6], hdev->features[p][7]); |
| } |
| if (lmp_le_capable(hdev)) |
| seq_printf(f, "LE: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x " |
| "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n", |
| hdev->le_features[0], hdev->le_features[1], |
| hdev->le_features[2], hdev->le_features[3], |
| hdev->le_features[4], hdev->le_features[5], |
| hdev->le_features[6], hdev->le_features[7]); |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int features_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, features_show, inode->i_private); |
| } |
| |
| static const struct file_operations features_fops = { |
| .open = features_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int blacklist_show(struct seq_file *f, void *p) |
| { |
| struct hci_dev *hdev = f->private; |
| struct bdaddr_list *b; |
| |
| hci_dev_lock(hdev); |
| list_for_each_entry(b, &hdev->blacklist, list) |
| seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type); |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int blacklist_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, blacklist_show, inode->i_private); |
| } |
| |
| static const struct file_operations blacklist_fops = { |
| .open = blacklist_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int whitelist_show(struct seq_file *f, void *p) |
| { |
| struct hci_dev *hdev = f->private; |
| struct bdaddr_list *b; |
| |
| hci_dev_lock(hdev); |
| list_for_each_entry(b, &hdev->whitelist, list) |
| seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type); |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int whitelist_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, whitelist_show, inode->i_private); |
| } |
| |
| static const struct file_operations whitelist_fops = { |
| .open = whitelist_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int uuids_show(struct seq_file *f, void *p) |
| { |
| struct hci_dev *hdev = f->private; |
| struct bt_uuid *uuid; |
| |
| hci_dev_lock(hdev); |
| list_for_each_entry(uuid, &hdev->uuids, list) { |
| u8 i, val[16]; |
| |
| /* The Bluetooth UUID values are stored in big endian, |
| * but with reversed byte order. So convert them into |
| * the right order for the %pUb modifier. |
| */ |
| for (i = 0; i < 16; i++) |
| val[i] = uuid->uuid[15 - i]; |
| |
| seq_printf(f, "%pUb\n", val); |
| } |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int uuids_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, uuids_show, inode->i_private); |
| } |
| |
| static const struct file_operations uuids_fops = { |
| .open = uuids_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int inquiry_cache_show(struct seq_file *f, void *p) |
| { |
| struct hci_dev *hdev = f->private; |
| struct discovery_state *cache = &hdev->discovery; |
| struct inquiry_entry *e; |
| |
| hci_dev_lock(hdev); |
| |
| list_for_each_entry(e, &cache->all, all) { |
| struct inquiry_data *data = &e->data; |
| seq_printf(f, "%pMR %d %d %d 0x%.2x%.2x%.2x 0x%.4x %d %d %u\n", |
| &data->bdaddr, |
| data->pscan_rep_mode, data->pscan_period_mode, |
| data->pscan_mode, data->dev_class[2], |
| data->dev_class[1], data->dev_class[0], |
| __le16_to_cpu(data->clock_offset), |
| data->rssi, data->ssp_mode, e->timestamp); |
| } |
| |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int inquiry_cache_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, inquiry_cache_show, inode->i_private); |
| } |
| |
| static const struct file_operations inquiry_cache_fops = { |
| .open = inquiry_cache_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int link_keys_show(struct seq_file *f, void *ptr) |
| { |
| struct hci_dev *hdev = f->private; |
| struct list_head *p, *n; |
| |
| hci_dev_lock(hdev); |
| list_for_each_safe(p, n, &hdev->link_keys) { |
| struct link_key *key = list_entry(p, struct link_key, list); |
| seq_printf(f, "%pMR %u %*phN %u\n", &key->bdaddr, key->type, |
| HCI_LINK_KEY_SIZE, key->val, key->pin_len); |
| } |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int link_keys_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, link_keys_show, inode->i_private); |
| } |
| |
| static const struct file_operations link_keys_fops = { |
| .open = link_keys_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int dev_class_show(struct seq_file *f, void *ptr) |
| { |
| struct hci_dev *hdev = f->private; |
| |
| hci_dev_lock(hdev); |
| seq_printf(f, "0x%.2x%.2x%.2x\n", hdev->dev_class[2], |
| hdev->dev_class[1], hdev->dev_class[0]); |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int dev_class_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, dev_class_show, inode->i_private); |
| } |
| |
| static const struct file_operations dev_class_fops = { |
| .open = dev_class_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int voice_setting_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->voice_setting; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(voice_setting_fops, voice_setting_get, |
| NULL, "0x%4.4llx\n"); |
| |
| static int auto_accept_delay_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| hdev->auto_accept_delay = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int auto_accept_delay_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->auto_accept_delay; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(auto_accept_delay_fops, auto_accept_delay_get, |
| auto_accept_delay_set, "%llu\n"); |
| |
| static ssize_t force_sc_support_read(struct file *file, char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct hci_dev *hdev = file->private_data; |
| char buf[3]; |
| |
| buf[0] = test_bit(HCI_FORCE_SC, &hdev->dbg_flags) ? 'Y': 'N'; |
| buf[1] = '\n'; |
| buf[2] = '\0'; |
| return simple_read_from_buffer(user_buf, count, ppos, buf, 2); |
| } |
| |
| static ssize_t force_sc_support_write(struct file *file, |
| const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct hci_dev *hdev = file->private_data; |
| char buf[32]; |
| size_t buf_size = min(count, (sizeof(buf)-1)); |
| bool enable; |
| |
| if (test_bit(HCI_UP, &hdev->flags)) |
| return -EBUSY; |
| |
| if (copy_from_user(buf, user_buf, buf_size)) |
| return -EFAULT; |
| |
| buf[buf_size] = '\0'; |
| if (strtobool(buf, &enable)) |
| return -EINVAL; |
| |
| if (enable == test_bit(HCI_FORCE_SC, &hdev->dbg_flags)) |
| return -EALREADY; |
| |
| change_bit(HCI_FORCE_SC, &hdev->dbg_flags); |
| |
| return count; |
| } |
| |
| static const struct file_operations force_sc_support_fops = { |
| .open = simple_open, |
| .read = force_sc_support_read, |
| .write = force_sc_support_write, |
| .llseek = default_llseek, |
| }; |
| |
| static ssize_t sc_only_mode_read(struct file *file, char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct hci_dev *hdev = file->private_data; |
| char buf[3]; |
| |
| buf[0] = test_bit(HCI_SC_ONLY, &hdev->dev_flags) ? 'Y': 'N'; |
| buf[1] = '\n'; |
| buf[2] = '\0'; |
| return simple_read_from_buffer(user_buf, count, ppos, buf, 2); |
| } |
| |
| static const struct file_operations sc_only_mode_fops = { |
| .open = simple_open, |
| .read = sc_only_mode_read, |
| .llseek = default_llseek, |
| }; |
| |
| static int idle_timeout_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| if (val != 0 && (val < 500 || val > 3600000)) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->idle_timeout = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int idle_timeout_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->idle_timeout; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(idle_timeout_fops, idle_timeout_get, |
| idle_timeout_set, "%llu\n"); |
| |
| static int rpa_timeout_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| /* Require the RPA timeout to be at least 30 seconds and at most |
| * 24 hours. |
| */ |
| if (val < 30 || val > (60 * 60 * 24)) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->rpa_timeout = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int rpa_timeout_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->rpa_timeout; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(rpa_timeout_fops, rpa_timeout_get, |
| rpa_timeout_set, "%llu\n"); |
| |
| static int sniff_min_interval_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| if (val == 0 || val % 2 || val > hdev->sniff_max_interval) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->sniff_min_interval = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int sniff_min_interval_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->sniff_min_interval; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(sniff_min_interval_fops, sniff_min_interval_get, |
| sniff_min_interval_set, "%llu\n"); |
| |
| static int sniff_max_interval_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| if (val == 0 || val % 2 || val < hdev->sniff_min_interval) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->sniff_max_interval = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int sniff_max_interval_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->sniff_max_interval; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(sniff_max_interval_fops, sniff_max_interval_get, |
| sniff_max_interval_set, "%llu\n"); |
| |
| static int conn_info_min_age_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| if (val == 0 || val > hdev->conn_info_max_age) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->conn_info_min_age = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int conn_info_min_age_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->conn_info_min_age; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(conn_info_min_age_fops, conn_info_min_age_get, |
| conn_info_min_age_set, "%llu\n"); |
| |
| static int conn_info_max_age_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| if (val == 0 || val < hdev->conn_info_min_age) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->conn_info_max_age = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int conn_info_max_age_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->conn_info_max_age; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(conn_info_max_age_fops, conn_info_max_age_get, |
| conn_info_max_age_set, "%llu\n"); |
| |
| static int identity_show(struct seq_file *f, void *p) |
| { |
| struct hci_dev *hdev = f->private; |
| bdaddr_t addr; |
| u8 addr_type; |
| |
| hci_dev_lock(hdev); |
| |
| hci_copy_identity_address(hdev, &addr, &addr_type); |
| |
| seq_printf(f, "%pMR (type %u) %*phN %pMR\n", &addr, addr_type, |
| 16, hdev->irk, &hdev->rpa); |
| |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int identity_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, identity_show, inode->i_private); |
| } |
| |
| static const struct file_operations identity_fops = { |
| .open = identity_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int random_address_show(struct seq_file *f, void *p) |
| { |
| struct hci_dev *hdev = f->private; |
| |
| hci_dev_lock(hdev); |
| seq_printf(f, "%pMR\n", &hdev->random_addr); |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int random_address_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, random_address_show, inode->i_private); |
| } |
| |
| static const struct file_operations random_address_fops = { |
| .open = random_address_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int static_address_show(struct seq_file *f, void *p) |
| { |
| struct hci_dev *hdev = f->private; |
| |
| hci_dev_lock(hdev); |
| seq_printf(f, "%pMR\n", &hdev->static_addr); |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int static_address_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, static_address_show, inode->i_private); |
| } |
| |
| static const struct file_operations static_address_fops = { |
| .open = static_address_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static ssize_t force_static_address_read(struct file *file, |
| char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct hci_dev *hdev = file->private_data; |
| char buf[3]; |
| |
| buf[0] = test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) ? 'Y': 'N'; |
| buf[1] = '\n'; |
| buf[2] = '\0'; |
| return simple_read_from_buffer(user_buf, count, ppos, buf, 2); |
| } |
| |
| static ssize_t force_static_address_write(struct file *file, |
| const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct hci_dev *hdev = file->private_data; |
| char buf[32]; |
| size_t buf_size = min(count, (sizeof(buf)-1)); |
| bool enable; |
| |
| if (test_bit(HCI_UP, &hdev->flags)) |
| return -EBUSY; |
| |
| if (copy_from_user(buf, user_buf, buf_size)) |
| return -EFAULT; |
| |
| buf[buf_size] = '\0'; |
| if (strtobool(buf, &enable)) |
| return -EINVAL; |
| |
| if (enable == test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags)) |
| return -EALREADY; |
| |
| change_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags); |
| |
| return count; |
| } |
| |
| static const struct file_operations force_static_address_fops = { |
| .open = simple_open, |
| .read = force_static_address_read, |
| .write = force_static_address_write, |
| .llseek = default_llseek, |
| }; |
| |
| static int white_list_show(struct seq_file *f, void *ptr) |
| { |
| struct hci_dev *hdev = f->private; |
| struct bdaddr_list *b; |
| |
| hci_dev_lock(hdev); |
| list_for_each_entry(b, &hdev->le_white_list, list) |
| seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type); |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int white_list_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, white_list_show, inode->i_private); |
| } |
| |
| static const struct file_operations white_list_fops = { |
| .open = white_list_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int identity_resolving_keys_show(struct seq_file *f, void *ptr) |
| { |
| struct hci_dev *hdev = f->private; |
| struct list_head *p, *n; |
| |
| hci_dev_lock(hdev); |
| list_for_each_safe(p, n, &hdev->identity_resolving_keys) { |
| struct smp_irk *irk = list_entry(p, struct smp_irk, list); |
| seq_printf(f, "%pMR (type %u) %*phN %pMR\n", |
| &irk->bdaddr, irk->addr_type, |
| 16, irk->val, &irk->rpa); |
| } |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int identity_resolving_keys_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, identity_resolving_keys_show, |
| inode->i_private); |
| } |
| |
| static const struct file_operations identity_resolving_keys_fops = { |
| .open = identity_resolving_keys_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int long_term_keys_show(struct seq_file *f, void *ptr) |
| { |
| struct hci_dev *hdev = f->private; |
| struct list_head *p, *n; |
| |
| hci_dev_lock(hdev); |
| list_for_each_safe(p, n, &hdev->long_term_keys) { |
| struct smp_ltk *ltk = list_entry(p, struct smp_ltk, list); |
| seq_printf(f, "%pMR (type %u) %u 0x%02x %u %.4x %.16llx %*phN\n", |
| <k->bdaddr, ltk->bdaddr_type, ltk->authenticated, |
| ltk->type, ltk->enc_size, __le16_to_cpu(ltk->ediv), |
| __le64_to_cpu(ltk->rand), 16, ltk->val); |
| } |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int long_term_keys_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, long_term_keys_show, inode->i_private); |
| } |
| |
| static const struct file_operations long_term_keys_fops = { |
| .open = long_term_keys_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int conn_min_interval_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| if (val < 0x0006 || val > 0x0c80 || val > hdev->le_conn_max_interval) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->le_conn_min_interval = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int conn_min_interval_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->le_conn_min_interval; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(conn_min_interval_fops, conn_min_interval_get, |
| conn_min_interval_set, "%llu\n"); |
| |
| static int conn_max_interval_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| if (val < 0x0006 || val > 0x0c80 || val < hdev->le_conn_min_interval) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->le_conn_max_interval = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int conn_max_interval_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->le_conn_max_interval; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(conn_max_interval_fops, conn_max_interval_get, |
| conn_max_interval_set, "%llu\n"); |
| |
| static int conn_latency_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| if (val > 0x01f3) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->le_conn_latency = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int conn_latency_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->le_conn_latency; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(conn_latency_fops, conn_latency_get, |
| conn_latency_set, "%llu\n"); |
| |
| static int supervision_timeout_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| if (val < 0x000a || val > 0x0c80) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->le_supv_timeout = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int supervision_timeout_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->le_supv_timeout; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(supervision_timeout_fops, supervision_timeout_get, |
| supervision_timeout_set, "%llu\n"); |
| |
| static int adv_channel_map_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| if (val < 0x01 || val > 0x07) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->le_adv_channel_map = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int adv_channel_map_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->le_adv_channel_map; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(adv_channel_map_fops, adv_channel_map_get, |
| adv_channel_map_set, "%llu\n"); |
| |
| static int adv_min_interval_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| if (val < 0x0020 || val > 0x4000 || val > hdev->le_adv_max_interval) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->le_adv_min_interval = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int adv_min_interval_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->le_adv_min_interval; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(adv_min_interval_fops, adv_min_interval_get, |
| adv_min_interval_set, "%llu\n"); |
| |
| static int adv_max_interval_set(void *data, u64 val) |
| { |
| struct hci_dev *hdev = data; |
| |
| if (val < 0x0020 || val > 0x4000 || val < hdev->le_adv_min_interval) |
| return -EINVAL; |
| |
| hci_dev_lock(hdev); |
| hdev->le_adv_max_interval = val; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int adv_max_interval_get(void *data, u64 *val) |
| { |
| struct hci_dev *hdev = data; |
| |
| hci_dev_lock(hdev); |
| *val = hdev->le_adv_max_interval; |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(adv_max_interval_fops, adv_max_interval_get, |
| adv_max_interval_set, "%llu\n"); |
| |
| static int device_list_show(struct seq_file *f, void *ptr) |
| { |
| struct hci_dev *hdev = f->private; |
| struct hci_conn_params *p; |
| |
| hci_dev_lock(hdev); |
| list_for_each_entry(p, &hdev->le_conn_params, list) { |
| seq_printf(f, "%pMR %u %u\n", &p->addr, p->addr_type, |
| p->auto_connect); |
| } |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int device_list_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, device_list_show, inode->i_private); |
| } |
| |
| static const struct file_operations device_list_fops = { |
| .open = device_list_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| /* ---- HCI requests ---- */ |
| |
| static void hci_req_sync_complete(struct hci_dev *hdev, u8 result) |
| { |
| BT_DBG("%s result 0x%2.2x", hdev->name, result); |
| |
| if (hdev->req_status == HCI_REQ_PEND) { |
| hdev->req_result = result; |
| hdev->req_status = HCI_REQ_DONE; |
| wake_up_interruptible(&hdev->req_wait_q); |
| } |
| } |
| |
| static void hci_req_cancel(struct hci_dev *hdev, int err) |
| { |
| BT_DBG("%s err 0x%2.2x", hdev->name, err); |
| |
| if (hdev->req_status == HCI_REQ_PEND) { |
| hdev->req_result = err; |
| hdev->req_status = HCI_REQ_CANCELED; |
| wake_up_interruptible(&hdev->req_wait_q); |
| } |
| } |
| |
| static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode, |
| u8 event) |
| { |
| struct hci_ev_cmd_complete *ev; |
| struct hci_event_hdr *hdr; |
| struct sk_buff *skb; |
| |
| hci_dev_lock(hdev); |
| |
| skb = hdev->recv_evt; |
| hdev->recv_evt = NULL; |
| |
| hci_dev_unlock(hdev); |
| |
| if (!skb) |
| return ERR_PTR(-ENODATA); |
| |
| if (skb->len < sizeof(*hdr)) { |
| BT_ERR("Too short HCI event"); |
| goto failed; |
| } |
| |
| hdr = (void *) skb->data; |
| skb_pull(skb, HCI_EVENT_HDR_SIZE); |
| |
| if (event) { |
| if (hdr->evt != event) |
| goto failed; |
| return skb; |
| } |
| |
| if (hdr->evt != HCI_EV_CMD_COMPLETE) { |
| BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt); |
| goto failed; |
| } |
| |
| if (skb->len < sizeof(*ev)) { |
| BT_ERR("Too short cmd_complete event"); |
| goto failed; |
| } |
| |
| ev = (void *) skb->data; |
| skb_pull(skb, sizeof(*ev)); |
| |
| if (opcode == __le16_to_cpu(ev->opcode)) |
| return skb; |
| |
| BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode, |
| __le16_to_cpu(ev->opcode)); |
| |
| failed: |
| kfree_skb(skb); |
| return ERR_PTR(-ENODATA); |
| } |
| |
| struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, |
| const void *param, u8 event, u32 timeout) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| struct hci_request req; |
| int err = 0; |
| |
| BT_DBG("%s", hdev->name); |
| |
| hci_req_init(&req, hdev); |
| |
| hci_req_add_ev(&req, opcode, plen, param, event); |
| |
| hdev->req_status = HCI_REQ_PEND; |
| |
| err = hci_req_run(&req, hci_req_sync_complete); |
| if (err < 0) |
| return ERR_PTR(err); |
| |
| add_wait_queue(&hdev->req_wait_q, &wait); |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| schedule_timeout(timeout); |
| |
| remove_wait_queue(&hdev->req_wait_q, &wait); |
| |
| if (signal_pending(current)) |
| return ERR_PTR(-EINTR); |
| |
| switch (hdev->req_status) { |
| case HCI_REQ_DONE: |
| err = -bt_to_errno(hdev->req_result); |
| break; |
| |
| case HCI_REQ_CANCELED: |
| err = -hdev->req_result; |
| break; |
| |
| default: |
| err = -ETIMEDOUT; |
| break; |
| } |
| |
| hdev->req_status = hdev->req_result = 0; |
| |
| BT_DBG("%s end: err %d", hdev->name, err); |
| |
| if (err < 0) |
| return ERR_PTR(err); |
| |
| return hci_get_cmd_complete(hdev, opcode, event); |
| } |
| EXPORT_SYMBOL(__hci_cmd_sync_ev); |
| |
| struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, |
| const void *param, u32 timeout) |
| { |
| return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout); |
| } |
| EXPORT_SYMBOL(__hci_cmd_sync); |
| |
| /* Execute request and wait for completion. */ |
| static int __hci_req_sync(struct hci_dev *hdev, |
| void (*func)(struct hci_request *req, |
| unsigned long opt), |
| unsigned long opt, __u32 timeout) |
| { |
| struct hci_request req; |
| DECLARE_WAITQUEUE(wait, current); |
| int err = 0; |
| |
| BT_DBG("%s start", hdev->name); |
| |
| hci_req_init(&req, hdev); |
| |
| hdev->req_status = HCI_REQ_PEND; |
| |
| func(&req, opt); |
| |
| err = hci_req_run(&req, hci_req_sync_complete); |
| if (err < 0) { |
| hdev->req_status = 0; |
| |
| /* ENODATA means the HCI request command queue is empty. |
| * This can happen when a request with conditionals doesn't |
| * trigger any commands to be sent. This is normal behavior |
| * and should not trigger an error return. |
| */ |
| if (err == -ENODATA) |
| return 0; |
| |
| return err; |
| } |
| |
| add_wait_queue(&hdev->req_wait_q, &wait); |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| schedule_timeout(timeout); |
| |
| remove_wait_queue(&hdev->req_wait_q, &wait); |
| |
| if (signal_pending(current)) |
| return -EINTR; |
| |
| switch (hdev->req_status) { |
| case HCI_REQ_DONE: |
| err = -bt_to_errno(hdev->req_result); |
| break; |
| |
| case HCI_REQ_CANCELED: |
| err = -hdev->req_result; |
| break; |
| |
| default: |
| err = -ETIMEDOUT; |
| break; |
| } |
| |
| hdev->req_status = hdev->req_result = 0; |
| |
| BT_DBG("%s end: err %d", hdev->name, err); |
| |
| return err; |
| } |
| |
| static int hci_req_sync(struct hci_dev *hdev, |
| void (*req)(struct hci_request *req, |
| unsigned long opt), |
| unsigned long opt, __u32 timeout) |
| { |
| int ret; |
| |
| if (!test_bit(HCI_UP, &hdev->flags)) |
| return -ENETDOWN; |
| |
| /* Serialize all requests */ |
| hci_req_lock(hdev); |
| ret = __hci_req_sync(hdev, req, opt, timeout); |
| hci_req_unlock(hdev); |
| |
| return ret; |
| } |
| |
| static void hci_reset_req(struct hci_request *req, unsigned long opt) |
| { |
| BT_DBG("%s %ld", req->hdev->name, opt); |
| |
| /* Reset device */ |
| set_bit(HCI_RESET, &req->hdev->flags); |
| hci_req_add(req, HCI_OP_RESET, 0, NULL); |
| } |
| |
| static void bredr_init(struct hci_request *req) |
| { |
| req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; |
| |
| /* Read Local Supported Features */ |
| hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); |
| |
| /* Read Local Version */ |
| hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); |
| |
| /* Read BD Address */ |
| hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); |
| } |
| |
| static void amp_init(struct hci_request *req) |
| { |
| req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; |
| |
| /* Read Local Version */ |
| hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); |
| |
| /* Read Local Supported Commands */ |
| hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); |
| |
| /* Read Local Supported Features */ |
| hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); |
| |
| /* Read Local AMP Info */ |
| hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL); |
| |
| /* Read Data Blk size */ |
| hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL); |
| |
| /* Read Flow Control Mode */ |
| hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL); |
| |
| /* Read Location Data */ |
| hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL); |
| } |
| |
| static void hci_init1_req(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| BT_DBG("%s %ld", hdev->name, opt); |
| |
| /* Reset */ |
| if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) |
| hci_reset_req(req, 0); |
| |
| switch (hdev->dev_type) { |
| case HCI_BREDR: |
| bredr_init(req); |
| break; |
| |
| case HCI_AMP: |
| amp_init(req); |
| break; |
| |
| default: |
| BT_ERR("Unknown device type %d", hdev->dev_type); |
| break; |
| } |
| } |
| |
| static void bredr_setup(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| __le16 param; |
| __u8 flt_type; |
| |
| /* Read Buffer Size (ACL mtu, max pkt, etc.) */ |
| hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL); |
| |
| /* Read Class of Device */ |
| hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL); |
| |
| /* Read Local Name */ |
| hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL); |
| |
| /* Read Voice Setting */ |
| hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL); |
| |
| /* Read Number of Supported IAC */ |
| hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL); |
| |
| /* Read Current IAC LAP */ |
| hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL); |
| |
| /* Clear Event Filters */ |
| flt_type = HCI_FLT_CLEAR_ALL; |
| hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type); |
| |
| /* Connection accept timeout ~20 secs */ |
| param = cpu_to_le16(0x7d00); |
| hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m); |
| |
| /* AVM Berlin (31), aka "BlueFRITZ!", reports version 1.2, |
| * but it does not support page scan related HCI commands. |
| */ |
| if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1) { |
| hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL); |
| hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL); |
| } |
| } |
| |
| static void le_setup(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| /* Read LE Buffer Size */ |
| hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL); |
| |
| /* Read LE Local Supported Features */ |
| hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL); |
| |
| /* Read LE Supported States */ |
| hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL); |
| |
| /* Read LE White List Size */ |
| hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL); |
| |
| /* Clear LE White List */ |
| hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL); |
| |
| /* LE-only controllers have LE implicitly enabled */ |
| if (!lmp_bredr_capable(hdev)) |
| set_bit(HCI_LE_ENABLED, &hdev->dev_flags); |
| } |
| |
| static u8 hci_get_inquiry_mode(struct hci_dev *hdev) |
| { |
| if (lmp_ext_inq_capable(hdev)) |
| return 0x02; |
| |
| if (lmp_inq_rssi_capable(hdev)) |
| return 0x01; |
| |
| if (hdev->manufacturer == 11 && hdev->hci_rev == 0x00 && |
| hdev->lmp_subver == 0x0757) |
| return 0x01; |
| |
| if (hdev->manufacturer == 15) { |
| if (hdev->hci_rev == 0x03 && hdev->lmp_subver == 0x6963) |
| return 0x01; |
| if (hdev->hci_rev == 0x09 && hdev->lmp_subver == 0x6963) |
| return 0x01; |
| if (hdev->hci_rev == 0x00 && hdev->lmp_subver == 0x6965) |
| return 0x01; |
| } |
| |
| if (hdev->manufacturer == 31 && hdev->hci_rev == 0x2005 && |
| hdev->lmp_subver == 0x1805) |
| return 0x01; |
| |
| return 0x00; |
| } |
| |
| static void hci_setup_inquiry_mode(struct hci_request *req) |
| { |
| u8 mode; |
| |
| mode = hci_get_inquiry_mode(req->hdev); |
| |
| hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode); |
| } |
| |
| static void hci_setup_event_mask(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| /* The second byte is 0xff instead of 0x9f (two reserved bits |
| * disabled) since a Broadcom 1.2 dongle doesn't respond to the |
| * command otherwise. |
| */ |
| u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; |
| |
| /* CSR 1.1 dongles does not accept any bitfield so don't try to set |
| * any event mask for pre 1.2 devices. |
| */ |
| if (hdev->hci_ver < BLUETOOTH_VER_1_2) |
| return; |
| |
| if (lmp_bredr_capable(hdev)) { |
| events[4] |= 0x01; /* Flow Specification Complete */ |
| events[4] |= 0x02; /* Inquiry Result with RSSI */ |
| events[4] |= 0x04; /* Read Remote Extended Features Complete */ |
| events[5] |= 0x08; /* Synchronous Connection Complete */ |
| events[5] |= 0x10; /* Synchronous Connection Changed */ |
| } else { |
| /* Use a different default for LE-only devices */ |
| memset(events, 0, sizeof(events)); |
| events[0] |= 0x10; /* Disconnection Complete */ |
| events[1] |= 0x08; /* Read Remote Version Information Complete */ |
| events[1] |= 0x20; /* Command Complete */ |
| events[1] |= 0x40; /* Command Status */ |
| events[1] |= 0x80; /* Hardware Error */ |
| events[2] |= 0x04; /* Number of Completed Packets */ |
| events[3] |= 0x02; /* Data Buffer Overflow */ |
| |
| if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { |
| events[0] |= 0x80; /* Encryption Change */ |
| events[5] |= 0x80; /* Encryption Key Refresh Complete */ |
| } |
| } |
| |
| if (lmp_inq_rssi_capable(hdev)) |
| events[4] |= 0x02; /* Inquiry Result with RSSI */ |
| |
| if (lmp_sniffsubr_capable(hdev)) |
| events[5] |= 0x20; /* Sniff Subrating */ |
| |
| if (lmp_pause_enc_capable(hdev)) |
| events[5] |= 0x80; /* Encryption Key Refresh Complete */ |
| |
| if (lmp_ext_inq_capable(hdev)) |
| events[5] |= 0x40; /* Extended Inquiry Result */ |
| |
| if (lmp_no_flush_capable(hdev)) |
| events[7] |= 0x01; /* Enhanced Flush Complete */ |
| |
| if (lmp_lsto_capable(hdev)) |
| events[6] |= 0x80; /* Link Supervision Timeout Changed */ |
| |
| if (lmp_ssp_capable(hdev)) { |
| events[6] |= 0x01; /* IO Capability Request */ |
| events[6] |= 0x02; /* IO Capability Response */ |
| events[6] |= 0x04; /* User Confirmation Request */ |
| events[6] |= 0x08; /* User Passkey Request */ |
| events[6] |= 0x10; /* Remote OOB Data Request */ |
| events[6] |= 0x20; /* Simple Pairing Complete */ |
| events[7] |= 0x04; /* User Passkey Notification */ |
| events[7] |= 0x08; /* Keypress Notification */ |
| events[7] |= 0x10; /* Remote Host Supported |
| * Features Notification |
| */ |
| } |
| |
| if (lmp_le_capable(hdev)) |
| events[7] |= 0x20; /* LE Meta-Event */ |
| |
| hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events); |
| } |
| |
| static void hci_init2_req(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| if (lmp_bredr_capable(hdev)) |
| bredr_setup(req); |
| else |
| clear_bit(HCI_BREDR_ENABLED, &hdev->dev_flags); |
| |
| if (lmp_le_capable(hdev)) |
| le_setup(req); |
| |
| /* AVM Berlin (31), aka "BlueFRITZ!", doesn't support the read |
| * local supported commands HCI command. |
| */ |
| if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1) |
| hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); |
| |
| if (lmp_ssp_capable(hdev)) { |
| /* When SSP is available, then the host features page |
| * should also be available as well. However some |
| * controllers list the max_page as 0 as long as SSP |
| * has not been enabled. To achieve proper debugging |
| * output, force the minimum max_page to 1 at least. |
| */ |
| hdev->max_page = 0x01; |
| |
| if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) { |
| u8 mode = 0x01; |
| hci_req_add(req, HCI_OP_WRITE_SSP_MODE, |
| sizeof(mode), &mode); |
| } else { |
| struct hci_cp_write_eir cp; |
| |
| memset(hdev->eir, 0, sizeof(hdev->eir)); |
| memset(&cp, 0, sizeof(cp)); |
| |
| hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); |
| } |
| } |
| |
| if (lmp_inq_rssi_capable(hdev)) |
| hci_setup_inquiry_mode(req); |
| |
| if (lmp_inq_tx_pwr_capable(hdev)) |
| hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL); |
| |
| if (lmp_ext_feat_capable(hdev)) { |
| struct hci_cp_read_local_ext_features cp; |
| |
| cp.page = 0x01; |
| hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, |
| sizeof(cp), &cp); |
| } |
| |
| if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) { |
| u8 enable = 1; |
| hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable), |
| &enable); |
| } |
| } |
| |
| static void hci_setup_link_policy(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_write_def_link_policy cp; |
| u16 link_policy = 0; |
| |
| if (lmp_rswitch_capable(hdev)) |
| link_policy |= HCI_LP_RSWITCH; |
| if (lmp_hold_capable(hdev)) |
| link_policy |= HCI_LP_HOLD; |
| if (lmp_sniff_capable(hdev)) |
| link_policy |= HCI_LP_SNIFF; |
| if (lmp_park_capable(hdev)) |
| link_policy |= HCI_LP_PARK; |
| |
| cp.policy = cpu_to_le16(link_policy); |
| hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp); |
| } |
| |
| static void hci_set_le_support(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_write_le_host_supported cp; |
| |
| /* LE-only devices do not support explicit enablement */ |
| if (!lmp_bredr_capable(hdev)) |
| return; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) { |
| cp.le = 0x01; |
| cp.simul = 0x00; |
| } |
| |
| if (cp.le != lmp_host_le_capable(hdev)) |
| hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp), |
| &cp); |
| } |
| |
| static void hci_set_event_mask_page_2(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
| |
| /* If Connectionless Slave Broadcast master role is supported |
| * enable all necessary events for it. |
| */ |
| if (lmp_csb_master_capable(hdev)) { |
| events[1] |= 0x40; /* Triggered Clock Capture */ |
| events[1] |= 0x80; /* Synchronization Train Complete */ |
| events[2] |= 0x10; /* Slave Page Response Timeout */ |
| events[2] |= 0x20; /* CSB Channel Map Change */ |
| } |
| |
| /* If Connectionless Slave Broadcast slave role is supported |
| * enable all necessary events for it. |
| */ |
| if (lmp_csb_slave_capable(hdev)) { |
| events[2] |= 0x01; /* Synchronization Train Received */ |
| events[2] |= 0x02; /* CSB Receive */ |
| events[2] |= 0x04; /* CSB Timeout */ |
| events[2] |= 0x08; /* Truncated Page Complete */ |
| } |
| |
| /* Enable Authenticated Payload Timeout Expired event if supported */ |
| if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) |
| events[2] |= 0x80; |
| |
| hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events); |
| } |
| |
| static void hci_init3_req(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| u8 p; |
| |
| hci_setup_event_mask(req); |
| |
| /* Some Broadcom based Bluetooth controllers do not support the |
| * Delete Stored Link Key command. They are clearly indicating its |
| * absence in the bit mask of supported commands. |
| * |
| * Check the supported commands and only if the the command is marked |
| * as supported send it. If not supported assume that the controller |
| * does not have actual support for stored link keys which makes this |
| * command redundant anyway. |
| * |
| * Some controllers indicate that they support handling deleting |
| * stored link keys, but they don't. The quirk lets a driver |
| * just disable this command. |
| */ |
| if (hdev->commands[6] & 0x80 && |
| !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { |
| struct hci_cp_delete_stored_link_key cp; |
| |
| bacpy(&cp.bdaddr, BDADDR_ANY); |
| cp.delete_all = 0x01; |
| hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, |
| sizeof(cp), &cp); |
| } |
| |
| if (hdev->commands[5] & 0x10) |
| hci_setup_link_policy(req); |
| |
| if (lmp_le_capable(hdev)) { |
| u8 events[8]; |
| |
| memset(events, 0, sizeof(events)); |
| events[0] = 0x0f; |
| |
| if (hdev->le_features[0] & HCI_LE_ENCRYPTION) |
| events[0] |= 0x10; /* LE Long Term Key Request */ |
| |
| /* If controller supports the Connection Parameters Request |
| * Link Layer Procedure, enable the corresponding event. |
| */ |
| if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) |
| events[0] |= 0x20; /* LE Remote Connection |
| * Parameter Request |
| */ |
| |
| hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events), |
| events); |
| |
| if (hdev->commands[25] & 0x40) { |
| /* Read LE Advertising Channel TX Power */ |
| hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL); |
| } |
| |
| hci_set_le_support(req); |
| } |
| |
| /* Read features beyond page 1 if available */ |
| for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { |
| struct hci_cp_read_local_ext_features cp; |
| |
| cp.page = p; |
| hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, |
| sizeof(cp), &cp); |
| } |
| } |
| |
| static void hci_init4_req(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| /* Set event mask page 2 if the HCI command for it is supported */ |
| if (hdev->commands[22] & 0x04) |
| hci_set_event_mask_page_2(req); |
| |
| /* Read local codec list if the HCI command is supported */ |
| if (hdev->commands[29] & 0x20) |
| hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL); |
| |
| /* Get MWS transport configuration if the HCI command is supported */ |
| if (hdev->commands[30] & 0x08) |
| hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL); |
| |
| /* Check for Synchronization Train support */ |
| if (lmp_sync_train_capable(hdev)) |
| hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL); |
| |
| /* Enable Secure Connections if supported and configured */ |
| if ((lmp_sc_capable(hdev) || |
| test_bit(HCI_FORCE_SC, &hdev->dbg_flags)) && |
| test_bit(HCI_SC_ENABLED, &hdev->dev_flags)) { |
| u8 support = 0x01; |
| hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, |
| sizeof(support), &support); |
| } |
| } |
| |
| static int hci_register_smp(struct hci_dev *hdev) |
| { |
| int err; |
| |
| BT_DBG("%s", hdev->name); |
| |
| hdev->tfm_aes = crypto_alloc_blkcipher("ecb(aes)", 0, |
| CRYPTO_ALG_ASYNC); |
| if (IS_ERR(hdev->tfm_aes)) { |
| BT_ERR("Unable to create crypto context"); |
| err = PTR_ERR(hdev->tfm_aes); |
| hdev->tfm_aes = NULL; |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static void hci_unregister_smp(struct hci_dev *hdev) |
| { |
| BT_DBG("%s", hdev->name); |
| |
| if (hdev->tfm_aes) { |
| crypto_free_blkcipher(hdev->tfm_aes); |
| hdev->tfm_aes = NULL; |
| } |
| } |
| |
| static int __hci_init(struct hci_dev *hdev) |
| { |
| int err; |
| |
| err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT); |
| if (err < 0) |
| return err; |
| |
| /* The Device Under Test (DUT) mode is special and available for |
| * all controller types. So just create it early on. |
| */ |
| if (test_bit(HCI_SETUP, &hdev->dev_flags)) { |
| debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev, |
| &dut_mode_fops); |
| } |
| |
| /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode |
| * BR/EDR/LE type controllers. AMP controllers only need the |
| * first stage init. |
| */ |
| if (hdev->dev_type != HCI_BREDR) |
| return 0; |
| |
| err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT); |
| if (err < 0) |
| return err; |
| |
| err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT); |
| if (err < 0) |
| return err; |
| |
| err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT); |
| if (err < 0) |
| return err; |
| |
| /* Only create debugfs entries during the initial setup |
| * phase and not every time the controller gets powered on. |
| */ |
| if (!test_bit(HCI_SETUP, &hdev->dev_flags)) |
| return 0; |
| |
| debugfs_create_file("features", 0444, hdev->debugfs, hdev, |
| &features_fops); |
| debugfs_create_u16("manufacturer", 0444, hdev->debugfs, |
| &hdev->manufacturer); |
| debugfs_create_u8("hci_version", 0444, hdev->debugfs, &hdev->hci_ver); |
| debugfs_create_u16("hci_revision", 0444, hdev->debugfs, &hdev->hci_rev); |
| debugfs_create_file("blacklist", 0444, hdev->debugfs, hdev, |
| &blacklist_fops); |
| debugfs_create_file("whitelist", 0444, hdev->debugfs, hdev, |
| &whitelist_fops); |
| debugfs_create_file("uuids", 0444, hdev->debugfs, hdev, &uuids_fops); |
| |
| debugfs_create_file("conn_info_min_age", 0644, hdev->debugfs, hdev, |
| &conn_info_min_age_fops); |
| debugfs_create_file("conn_info_max_age", 0644, hdev->debugfs, hdev, |
| &conn_info_max_age_fops); |
| |
| if (lmp_bredr_capable(hdev)) { |
| debugfs_create_file("inquiry_cache", 0444, hdev->debugfs, |
| hdev, &inquiry_cache_fops); |
| debugfs_create_file("link_keys", 0400, hdev->debugfs, |
| hdev, &link_keys_fops); |
| debugfs_create_file("dev_class", 0444, hdev->debugfs, |
| hdev, &dev_class_fops); |
| debugfs_create_file("voice_setting", 0444, hdev->debugfs, |
| hdev, &voice_setting_fops); |
| } |
| |
| if (lmp_ssp_capable(hdev)) { |
| debugfs_create_file("auto_accept_delay", 0644, hdev->debugfs, |
| hdev, &auto_accept_delay_fops); |
| debugfs_create_file("force_sc_support", 0644, hdev->debugfs, |
| hdev, &force_sc_support_fops); |
| debugfs_create_file("sc_only_mode", 0444, hdev->debugfs, |
| hdev, &sc_only_mode_fops); |
| } |
| |
| if (lmp_sniff_capable(hdev)) { |
| debugfs_create_file("idle_timeout", 0644, hdev->debugfs, |
| hdev, &idle_timeout_fops); |
| debugfs_create_file("sniff_min_interval", 0644, hdev->debugfs, |
| hdev, &sniff_min_interval_fops); |
| debugfs_create_file("sniff_max_interval", 0644, hdev->debugfs, |
| hdev, &sniff_max_interval_fops); |
| } |
| |
| if (lmp_le_capable(hdev)) { |
| debugfs_create_file("identity", 0400, hdev->debugfs, |
| hdev, &identity_fops); |
| debugfs_create_file("rpa_timeout", 0644, hdev->debugfs, |
| hdev, &rpa_timeout_fops); |
| debugfs_create_file("random_address", 0444, hdev->debugfs, |
| hdev, &random_address_fops); |
| debugfs_create_file("static_address", 0444, hdev->debugfs, |
| hdev, &static_address_fops); |
| |
| /* For controllers with a public address, provide a debug |
| * option to force the usage of the configured static |
| * address. By default the public address is used. |
| */ |
| if (bacmp(&hdev->bdaddr, BDADDR_ANY)) |
| debugfs_create_file("force_static_address", 0644, |
| hdev->debugfs, hdev, |
| &force_static_address_fops); |
| |
| debugfs_create_u8("white_list_size", 0444, hdev->debugfs, |
| &hdev->le_white_list_size); |
| debugfs_create_file("white_list", 0444, hdev->debugfs, hdev, |
| &white_list_fops); |
| debugfs_create_file("identity_resolving_keys", 0400, |
| hdev->debugfs, hdev, |
| &identity_resolving_keys_fops); |
| debugfs_create_file("long_term_keys", 0400, hdev->debugfs, |
| hdev, &long_term_keys_fops); |
| debugfs_create_file("conn_min_interval", 0644, hdev->debugfs, |
| hdev, &conn_min_interval_fops); |
| debugfs_create_file("conn_max_interval", 0644, hdev->debugfs, |
| hdev, &conn_max_interval_fops); |
| debugfs_create_file("conn_latency", 0644, hdev->debugfs, |
| hdev, &conn_latency_fops); |
| debugfs_create_file("supervision_timeout", 0644, hdev->debugfs, |
| hdev, &supervision_timeout_fops); |
| debugfs_create_file("adv_channel_map", 0644, hdev->debugfs, |
| hdev, &adv_channel_map_fops); |
| debugfs_create_file("adv_min_interval", 0644, hdev->debugfs, |
| hdev, &adv_min_interval_fops); |
| debugfs_create_file("adv_max_interval", 0644, hdev->debugfs, |
| hdev, &adv_max_interval_fops); |
| debugfs_create_file("device_list", 0444, hdev->debugfs, hdev, |
| &device_list_fops); |
| debugfs_create_u16("discov_interleaved_timeout", 0644, |
| hdev->debugfs, |
| &hdev->discov_interleaved_timeout); |
| } |
| |
| return 0; |
| } |
| |
| static void hci_init0_req(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| BT_DBG("%s %ld", hdev->name, opt); |
| |
| /* Reset */ |
| if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) |
| hci_reset_req(req, 0); |
| |
| /* Read Local Version */ |
| hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); |
| |
| /* Read BD Address */ |
| if (hdev->set_bdaddr) |
| hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); |
| } |
| |
| static int __hci_unconf_init(struct hci_dev *hdev) |
| { |
| int err; |
| |
| if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) |
| return 0; |
| |
| err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT); |
| if (err < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| static void hci_scan_req(struct hci_request *req, unsigned long opt) |
| { |
| __u8 scan = opt; |
| |
| BT_DBG("%s %x", req->hdev->name, scan); |
| |
| /* Inquiry and Page scans */ |
| hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); |
| } |
| |
| static void hci_auth_req(struct hci_request *req, unsigned long opt) |
| { |
| __u8 auth = opt; |
| |
| BT_DBG("%s %x", req->hdev->name, auth); |
| |
| /* Authentication */ |
| hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); |
| } |
| |
| static void hci_encrypt_req(struct hci_request *req, unsigned long opt) |
| { |
| __u8 encrypt = opt; |
| |
| BT_DBG("%s %x", req->hdev->name, encrypt); |
| |
| /* Encryption */ |
| hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); |
| } |
| |
| static void hci_linkpol_req(struct hci_request *req, unsigned long opt) |
| { |
| __le16 policy = cpu_to_le16(opt); |
| |
| BT_DBG("%s %x", req->hdev->name, policy); |
| |
| /* Default link policy */ |
| hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); |
| } |
| |
| /* Get HCI device by index. |
| * Device is held on return. */ |
| struct hci_dev *hci_dev_get(int index) |
| { |
| struct hci_dev *hdev = NULL, *d; |
| |
| BT_DBG("%d", index); |
| |
| if (index < 0) |
| return NULL; |
| |
| read_lock(&hci_dev_list_lock); |
| list_for_each_entry(d, &hci_dev_list, list) { |
| if (d->id == index) { |
| hdev = hci_dev_hold(d); |
| break; |
| } |
| } |
| read_unlock(&hci_dev_list_lock); |
| return hdev; |
| } |
| |
| /* ---- Inquiry support ---- */ |
| |
| bool hci_discovery_active(struct hci_dev *hdev) |
| { |
| struct discovery_state *discov = &hdev->discovery; |
| |
| switch (discov->state) { |
| case DISCOVERY_FINDING: |
| case DISCOVERY_RESOLVING: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| void hci_discovery_set_state(struct hci_dev *hdev, int state) |
| { |
| int old_state = hdev->discovery.state; |
| |
| BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); |
| |
| if (old_state == state) |
| return; |
| |
| hdev->discovery.state = state; |
| |
| switch (state) { |
| case DISCOVERY_STOPPED: |
| hci_update_background_scan(hdev); |
| |
| if (old_state != DISCOVERY_STARTING) |
| mgmt_discovering(hdev, 0); |
| break; |
| case DISCOVERY_STARTING: |
| break; |
| case DISCOVERY_FINDING: |
| mgmt_discovering(hdev, 1); |
| break; |
| case DISCOVERY_RESOLVING: |
| break; |
| case DISCOVERY_STOPPING: |
| break; |
| } |
| } |
| |
| void hci_inquiry_cache_flush(struct hci_dev *hdev) |
| { |
| struct discovery_state *cache = &hdev->discovery; |
| struct inquiry_entry *p, *n; |
| |
| list_for_each_entry_safe(p, n, &cache->all, all) { |
| list_del(&p->all); |
| kfree(p); |
| } |
| |
| INIT_LIST_HEAD(&cache->unknown); |
| INIT_LIST_HEAD(&cache->resolve); |
| } |
| |
| struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, |
| bdaddr_t *bdaddr) |
| { |
| struct discovery_state *cache = &hdev->discovery; |
| struct inquiry_entry *e; |
| |
| BT_DBG("cache %p, %pMR", cache, bdaddr); |
| |
| list_for_each_entry(e, &cache->all, all) { |
| if (!bacmp(&e->data.bdaddr, bdaddr)) |
| return e; |
| } |
| |
| return NULL; |
| } |
| |
| struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, |
| bdaddr_t *bdaddr) |
| { |
| struct discovery_state *cache = &hdev->discovery; |
| struct inquiry_entry *e; |
| |
| BT_DBG("cache %p, %pMR", cache, bdaddr); |
| |
| list_for_each_entry(e, &cache->unknown, list) { |
| if (!bacmp(&e->data.bdaddr, bdaddr)) |
| return e; |
| } |
| |
| return NULL; |
| } |
| |
| struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, |
| bdaddr_t *bdaddr, |
| int state) |
| { |
| struct discovery_state *cache = &hdev->discovery; |
| struct inquiry_entry *e; |
| |
| BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); |
| |
| list_for_each_entry(e, &cache->resolve, list) { |
| if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) |
| return e; |
| if (!bacmp(&e->data.bdaddr, bdaddr)) |
| return e; |
| } |
| |
| return NULL; |
| } |
| |
| void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, |
| struct inquiry_entry *ie) |
| { |
| struct discovery_state *cache = &hdev->discovery; |
| struct list_head *pos = &cache->resolve; |
| struct inquiry_entry *p; |
| |
| list_del(&ie->list); |
| |
| list_for_each_entry(p, &cache->resolve, list) { |
| if (p->name_state != NAME_PENDING && |
| abs(p->data.rssi) >= abs(ie->data.rssi)) |
| break; |
| pos = &p->list; |
| } |
| |
| list_add(&ie->list, pos); |
| } |
| |
| u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, |
| bool name_known) |
| { |
| struct discovery_state *cache = &hdev->discovery; |
| struct inquiry_entry *ie; |
| u32 flags = 0; |
| |
| BT_DBG("cache %p, %pMR", cache, &data->bdaddr); |
| |
| hci_remove_remote_oob_data(hdev, &data->bdaddr); |
| |
| if (!data->ssp_mode) |
| flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; |
| |
| ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); |
| if (ie) { |
| if (!ie->data.ssp_mode) |
| flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; |
| |
| if (ie->name_state == NAME_NEEDED && |
| data->rssi != ie->data.rssi) { |
| ie->data.rssi = data->rssi; |
| hci_inquiry_cache_update_resolve(hdev, ie); |
| } |
| |
| goto update; |
| } |
| |
| /* Entry not in the cache. Add new one. */ |
| ie = kzalloc(sizeof(*ie), GFP_KERNEL); |
| if (!ie) { |
| flags |= MGMT_DEV_FOUND_CONFIRM_NAME; |
| goto done; |
| } |
| |
| list_add(&ie->all, &cache->all); |
| |
| if (name_known) { |
| ie->name_state = NAME_KNOWN; |
| } else { |
| ie->name_state = NAME_NOT_KNOWN; |
| list_add(&ie->list, &cache->unknown); |
| } |
| |
| update: |
| if (name_known && ie->name_state != NAME_KNOWN && |
| ie->name_state != NAME_PENDING) { |
| ie->name_state = NAME_KNOWN; |
| list_del(&ie->list); |
| } |
| |
| memcpy(&ie->data, data, sizeof(*data)); |
| ie->timestamp = jiffies; |
| cache->timestamp = jiffies; |
| |
| if (ie->name_state == NAME_NOT_KNOWN) |
| flags |= MGMT_DEV_FOUND_CONFIRM_NAME; |
| |
| done: |
| return flags; |
| } |
| |
| static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) |
| { |
| struct discovery_state *cache = &hdev->discovery; |
| struct inquiry_info *info = (struct inquiry_info *) buf; |
| struct inquiry_entry *e; |
| int copied = 0; |
| |
| list_for_each_entry(e, &cache->all, all) { |
| struct inquiry_data *data = &e->data; |
| |
| if (copied >= num) |
| break; |
| |
| bacpy(&info->bdaddr, &data->bdaddr); |
| info->pscan_rep_mode = data->pscan_rep_mode; |
| info->pscan_period_mode = data->pscan_period_mode; |
| info->pscan_mode = data->pscan_mode; |
| memcpy(info->dev_class, data->dev_class, 3); |
| info->clock_offset = data->clock_offset; |
| |
| info++; |
| copied++; |
| } |
| |
| BT_DBG("cache %p, copied %d", cache, copied); |
| return copied; |
| } |
| |
| static void hci_inq_req(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_inquiry cp; |
| |
| BT_DBG("%s", hdev->name); |
| |
| if (test_bit(HCI_INQUIRY, &hdev->flags)) |
| return; |
| |
| /* Start Inquiry */ |
| memcpy(&cp.lap, &ir->lap, 3); |
| cp.length = ir->length; |
| cp.num_rsp = ir->num_rsp; |
| hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); |
| } |
| |
| int hci_inquiry(void __user *arg) |
| { |
| __u8 __user *ptr = arg; |
| struct hci_inquiry_req ir; |
| struct hci_dev *hdev; |
| int err = 0, do_inquiry = 0, max_rsp; |
| long timeo; |
| __u8 *buf; |
| |
| if (copy_from_user(&ir, ptr, sizeof(ir))) |
| return -EFAULT; |
| |
| hdev = hci_dev_get(ir.dev_id); |
| if (!hdev) |
| return -ENODEV; |
| |
| if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { |
| err = -EBUSY; |
| goto done; |
| } |
| |
| if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) { |
| err = -EOPNOTSUPP; |
| goto done; |
| } |
| |
| if (hdev->dev_type != HCI_BREDR) { |
| err = -EOPNOTSUPP; |
| goto done; |
| } |
| |
| if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) { |
| err = -EOPNOTSUPP; |
| goto done; |
| } |
| |
| hci_dev_lock(hdev); |
| if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || |
| inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { |
| hci_inquiry_cache_flush(hdev); |
| do_inquiry = 1; |
| } |
| hci_dev_unlock(hdev); |
| |
| timeo = ir.length * msecs_to_jiffies(2000); |
| |
| if (do_inquiry) { |
| err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, |
| timeo); |
| if (err < 0) |
| goto done; |
| |
| /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is |
| * cleared). If it is interrupted by a signal, return -EINTR. |
| */ |
| if (wait_on_bit(&hdev->flags, HCI_INQUIRY, |
| TASK_INTERRUPTIBLE)) |
| return -EINTR; |
| } |
| |
| /* for unlimited number of responses we will use buffer with |
| * 255 entries |
| */ |
| max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; |
| |
| /* cache_dump can't sleep. Therefore we allocate temp buffer and then |
| * copy it to the user space. |
| */ |
| buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL); |
| if (!buf) { |
| err = -ENOMEM; |
| goto done; |
| } |
| |
| hci_dev_lock(hdev); |
| ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); |
| hci_dev_unlock(hdev); |
| |
| BT_DBG("num_rsp %d", ir.num_rsp); |
| |
| if (!copy_to_user(ptr, &ir, sizeof(ir))) { |
| ptr += sizeof(ir); |
| if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * |
| ir.num_rsp)) |
| err = -EFAULT; |
| } else |
| err = -EFAULT; |
| |
| kfree(buf); |
| |
| done: |
| hci_dev_put(hdev); |
| return err; |
| } |
| |
| static int hci_dev_do_open(struct hci_dev *hdev) |
| { |
| int ret = 0; |
| |
| BT_DBG("%s %p", hdev->name, hdev); |
| |
| hci_req_lock(hdev); |
| |
| if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) { |
| ret = -ENODEV; |
| goto done; |
| } |
| |
| if (!test_bit(HCI_SETUP, &hdev->dev_flags) && |
| !test_bit(HCI_CONFIG, &hdev->dev_flags)) { |
| /* Check for rfkill but allow the HCI setup stage to |
| * proceed (which in itself doesn't cause any RF activity). |
| */ |
| if (test_bit(HCI_RFKILLED, &hdev->dev_flags)) { |
| ret = -ERFKILL; |
| goto done; |
| } |
| |
| /* Check for valid public address or a configured static |
| * random adddress, but let the HCI setup proceed to |
| * be able to determine if there is a public address |
| * or not. |
| * |
| * In case of user channel usage, it is not important |
| * if a public address or static random address is |
| * available. |
| * |
| * This check is only valid for BR/EDR controllers |
| * since AMP controllers do not have an address. |
| */ |
| if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) && |
| hdev->dev_type == HCI_BREDR && |
| !bacmp(&hdev->bdaddr, BDADDR_ANY) && |
| !bacmp(&hdev->static_addr, BDADDR_ANY)) { |
| ret = -EADDRNOTAVAIL; |
| goto done; |
| } |
| } |
| |
| if (test_bit(HCI_UP, &hdev->flags)) { |
| ret = -EALREADY; |
| goto done; |
| } |
| |
| if (hdev->open(hdev)) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| atomic_set(&hdev->cmd_cnt, 1); |
| set_bit(HCI_INIT, &hdev->flags); |
| |
| if (test_bit(HCI_SETUP, &hdev->dev_flags)) { |
| if (hdev->setup) |
| ret = hdev->setup(hdev); |
| |
| /* The transport driver can set these quirks before |
| * creating the HCI device or in its setup callback. |
| * |
| * In case any of them is set, the controller has to |
| * start up as unconfigured. |
| */ |
| if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || |
| test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks)) |
| set_bit(HCI_UNCONFIGURED, &hdev->dev_flags); |
| |
| /* For an unconfigured controller it is required to |
| * read at least the version information provided by |
| * the Read Local Version Information command. |
| * |
| * If the set_bdaddr driver callback is provided, then |
| * also the original Bluetooth public device address |
| * will be read using the Read BD Address command. |
| */ |
| if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) |
| ret = __hci_unconf_init(hdev); |
| } |
| |
| if (test_bit(HCI_CONFIG, &hdev->dev_flags)) { |
| /* If public address change is configured, ensure that |
| * the address gets programmed. If the driver does not |
| * support changing the public address, fail the power |
| * on procedure. |
| */ |
| if (bacmp(&hdev->public_addr, BDADDR_ANY) && |
| hdev->set_bdaddr) |
| ret = hdev->set_bdaddr(hdev, &hdev->public_addr); |
| else |
| ret = -EADDRNOTAVAIL; |
| } |
| |
| if (!ret) { |
| if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) && |
| !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) |
| ret = __hci_init(hdev); |
| } |
| |
| clear_bit(HCI_INIT, &hdev->flags); |
| |
| if (!ret) { |
| hci_dev_hold(hdev); |
| set_bit(HCI_RPA_EXPIRED, &hdev->dev_flags); |
| set_bit(HCI_UP, &hdev->flags); |
| hci_notify(hdev, HCI_DEV_UP); |
| if (!test_bit(HCI_SETUP, &hdev->dev_flags) && |
| !test_bit(HCI_CONFIG, &hdev->dev_flags) && |
| !test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) && |
| !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) && |
| hdev->dev_type == HCI_BREDR) { |
| hci_dev_lock(hdev); |
| mgmt_powered(hdev, 1); |
| hci_dev_unlock(hdev); |
| } |
| } else { |
| /* Init failed, cleanup */ |
| flush_work(&hdev->tx_work); |
| flush_work(&hdev->cmd_work); |
| flush_work(&hdev->rx_work); |
| |
| skb_queue_purge(&hdev->cmd_q); |
| skb_queue_purge(&hdev->rx_q); |
| |
| if (hdev->flush) |
| hdev->flush(hdev); |
| |
| if (hdev->sent_cmd) { |
| kfree_skb(hdev->sent_cmd); |
| hdev->sent_cmd = NULL; |
| } |
| |
| hdev->close(hdev); |
| hdev->flags &= BIT(HCI_RAW); |
| } |
| |
| done: |
| hci_req_unlock(hdev); |
| return ret; |
| } |
| |
| /* ---- HCI ioctl helpers ---- */ |
| |
| int hci_dev_open(__u16 dev) |
| { |
| struct hci_dev *hdev; |
| int err; |
| |
| hdev = hci_dev_get(dev); |
| if (!hdev) |
| return -ENODEV; |
| |
| /* Devices that are marked as unconfigured can only be powered |
| * up as user channel. Trying to bring them up as normal devices |
| * will result into a failure. Only user channel operation is |
| * possible. |
| * |
| * When this function is called for a user channel, the flag |
| * HCI_USER_CHANNEL will be set first before attempting to |
| * open the device. |
| */ |
| if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) && |
| !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { |
| err = -EOPNOTSUPP; |
| goto done; |
| } |
| |
| /* We need to ensure that no other power on/off work is pending |
| * before proceeding to call hci_dev_do_open. This is |
| * particularly important if the setup procedure has not yet |
| * completed. |
| */ |
| if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) |
| cancel_delayed_work(&hdev->power_off); |
| |
| /* After this call it is guaranteed that the setup procedure |
| * has finished. This means that error conditions like RFKILL |
| * or no valid public or static random address apply. |
| */ |
| flush_workqueue(hdev->req_workqueue); |
| |
| /* For controllers not using the management interface and that |
| * are brought up using legacy ioctl, set the HCI_BONDABLE bit |
| * so that pairing works for them. Once the management interface |
| * is in use this bit will be cleared again and userspace has |
| * to explicitly enable it. |
| */ |
| if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) && |
| !test_bit(HCI_MGMT, &hdev->dev_flags)) |
| set_bit(HCI_BONDABLE, &hdev->dev_flags); |
| |
| err = hci_dev_do_open(hdev); |
| |
| done: |
| hci_dev_put(hdev); |
| return err; |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| static void hci_pend_le_actions_clear(struct hci_dev *hdev) |
| { |
| struct hci_conn_params *p; |
| |
| list_for_each_entry(p, &hdev->le_conn_params, list) |
| list_del_init(&p->action); |
| |
| BT_DBG("All LE pending actions cleared"); |
| } |
| |
| static int hci_dev_do_close(struct hci_dev *hdev) |
| { |
| BT_DBG("%s %p", hdev->name, hdev); |
| |
| cancel_delayed_work(&hdev->power_off); |
| |
| hci_req_cancel(hdev, ENODEV); |
| hci_req_lock(hdev); |
| |
| if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { |
| cancel_delayed_work_sync(&hdev->cmd_timer); |
| hci_req_unlock(hdev); |
| return 0; |
| } |
| |
| /* Flush RX and TX works */ |
| flush_work(&hdev->tx_work); |
| flush_work(&hdev->rx_work); |
| |
| if (hdev->discov_timeout > 0) { |
| cancel_delayed_work(&hdev->discov_off); |
| hdev->discov_timeout = 0; |
| clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags); |
| clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags); |
| } |
| |
| if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags)) |
| cancel_delayed_work(&hdev->service_cache); |
| |
| cancel_delayed_work_sync(&hdev->le_scan_disable); |
| |
| if (test_bit(HCI_MGMT, &hdev->dev_flags)) |
| cancel_delayed_work_sync(&hdev->rpa_expired); |
| |
| hci_dev_lock(hdev); |
| hci_inquiry_cache_flush(hdev); |
| hci_conn_hash_flush(hdev); |
| hci_pend_le_actions_clear(hdev); |
| hci_dev_unlock(hdev); |
| |
| hci_notify(hdev, HCI_DEV_DOWN); |
| |
| if (hdev->flush) |
| hdev->flush(hdev); |
| |
| /* Reset device */ |
| skb_queue_purge(&hdev->cmd_q); |
| atomic_set(&hdev->cmd_cnt, 1); |
| if (!test_bit(HCI_AUTO_OFF, &hdev->dev_flags) && |
| !test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) && |
| test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { |
| set_bit(HCI_INIT, &hdev->flags); |
| __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT); |
| clear_bit(HCI_INIT, &hdev->flags); |
| } |
| |
| /* flush cmd work */ |
| flush_work(&hdev->cmd_work); |
| |
| /* Drop queues */ |
| skb_queue_purge(&hdev->rx_q); |
| skb_queue_purge(&hdev->cmd_q); |
| skb_queue_purge(&hdev->raw_q); |
| |
| /* Drop last sent command */ |
| if (hdev->sent_cmd) { |
| cancel_delayed_work_sync(&hdev->cmd_timer); |
| kfree_skb(hdev->sent_cmd); |
| hdev->sent_cmd = NULL; |
| } |
| |
| kfree_skb(hdev->recv_evt); |
| hdev->recv_evt = NULL; |
| |
| /* After this point our queues are empty |
| * and no tasks are scheduled. */ |
| hdev->close(hdev); |
| |
| /* Clear flags */ |
| hdev->flags &= BIT(HCI_RAW); |
| hdev->dev_flags &= ~HCI_PERSISTENT_MASK; |
| |
| if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) { |
| if (hdev->dev_type == HCI_BREDR) { |
| hci_dev_lock(hdev); |
| mgmt_powered(hdev, 0); |
| hci_dev_unlock(hdev); |
| } |
| } |
| |
| /* Controller radio is available but is currently powered down */ |
| hdev->amp_status = AMP_STATUS_POWERED_DOWN; |
| |
| memset(hdev->eir, 0, sizeof(hdev->eir)); |
| memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); |
| bacpy(&hdev->random_addr, BDADDR_ANY); |
| |
| hci_req_unlock(hdev); |
| |
| hci_dev_put(hdev); |
| return 0; |
| } |
| |
| int hci_dev_close(__u16 dev) |
| { |
| struct hci_dev *hdev; |
| int err; |
| |
| hdev = hci_dev_get(dev); |
| if (!hdev) |
| return -ENODEV; |
| |
| if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { |
| err = -EBUSY; |
| goto done; |
| } |
| |
| if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) |
| cancel_delayed_work(&hdev->power_off); |
| |
| err = hci_dev_do_close(hdev); |
| |
| done: |
| hci_dev_put(hdev); |
| return err; |
| } |
| |
| int hci_dev_reset(__u16 dev) |
| { |
| struct hci_dev *hdev; |
| int ret = 0; |
| |
| hdev = hci_dev_get(dev); |
| if (!hdev) |
| return -ENODEV; |
| |
| hci_req_lock(hdev); |
| |
| if (!test_bit(HCI_UP, &hdev->flags)) { |
| ret = -ENETDOWN; |
| goto done; |
| } |
| |
| if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { |
| ret = -EBUSY; |
| goto done; |
| } |
| |
| if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) { |
| ret = -EOPNOTSUPP; |
| goto done; |
| } |
| |
| /* Drop queues */ |
| skb_queue_purge(&hdev->rx_q); |
| skb_queue_purge(&hdev->cmd_q); |
| |
| hci_dev_lock(hdev); |
| hci_inquiry_cache_flush(hdev); |
| hci_conn_hash_flush(hdev); |
| hci_dev_unlock(hdev); |
| |
| if (hdev->flush) |
| hdev->flush(hdev); |
| |
| atomic_set(&hdev->cmd_cnt, 1); |
| hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0; |
| |
| ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT); |
| |
| done: |
| hci_req_unlock(hdev); |
| hci_dev_put(hdev); |
| return ret; |
| } |
| |
| int hci_dev_reset_stat(__u16 dev) |
| { |
| struct hci_dev *hdev; |
| int ret = 0; |
| |
| hdev = hci_dev_get(dev); |
| if (!hdev) |
| return -ENODEV; |
| |
| if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { |
| ret = -EBUSY; |
| goto done; |
| } |
| |
| if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) { |
| ret = -EOPNOTSUPP; |
| goto done; |
| } |
| |
| memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); |
| |
| done: |
| hci_dev_put(hdev); |
| return ret; |
| } |
| |
| static void hci_update_scan_state(struct hci_dev *hdev, u8 scan) |
| { |
| bool conn_changed, discov_changed; |
| |
| BT_DBG("%s scan 0x%02x", hdev->name, scan); |
| |
| if ((scan & SCAN_PAGE)) |
| conn_changed = !test_and_set_bit(HCI_CONNECTABLE, |
| &hdev->dev_flags); |
| else |
| conn_changed = test_and_clear_bit(HCI_CONNECTABLE, |
| &hdev->dev_flags); |
| |
| if ((scan & SCAN_INQUIRY)) { |
| discov_changed = !test_and_set_bit(HCI_DISCOVERABLE, |
| &hdev->dev_flags); |
| } else { |
| clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags); |
| discov_changed = test_and_clear_bit(HCI_DISCOVERABLE, |
| &hdev->dev_flags); |
| } |
| |
| if (!test_bit(HCI_MGMT, &hdev->dev_flags)) |
| return; |
| |
| if (conn_changed || discov_changed) { |
| /* In case this was disabled through mgmt */ |
| set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags); |
| |
| if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) |
| mgmt_update_adv_data(hdev); |
| |
| mgmt_new_settings(hdev); |
| } |
| } |
| |
| int hci_dev_cmd(unsigned int cmd, void __user *arg) |
| { |
| struct hci_dev *hdev; |
| struct hci_dev_req dr; |
| int err = 0; |
| |
| if (copy_from_user(&dr, arg, sizeof(dr))) |
| return -EFAULT; |
| |
| hdev = hci_dev_get(dr.dev_id); |
| if (!hdev) |
| return -ENODEV; |
| |
| if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { |
| err = -EBUSY; |
| goto done; |
| } |
| |
| if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) { |
| err = -EOPNOTSUPP; |
| goto done; |
| } |
| |
| if (hdev->dev_type != HCI_BREDR) { |
| err = -EOPNOTSUPP; |
| goto done; |
| } |
| |
| if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) { |
| err = -EOPNOTSUPP; |
| goto done; |
| } |
| |
| switch (cmd) { |
| case HCISETAUTH: |
| err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, |
| HCI_INIT_TIMEOUT); |
| break; |
| |
| case HCISETENCRYPT: |
| if (!lmp_encrypt_capable(hdev)) { |
| err = -EOPNOTSUPP; |
| break; |
| } |
| |
| if (!test_bit(HCI_AUTH, &hdev->flags)) { |
| /* Auth must be enabled first */ |
| err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, |
| HCI_INIT_TIMEOUT); |
| if (err) |
| break; |
| } |
| |
| err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, |
| HCI_INIT_TIMEOUT); |
| break; |
| |
| case HCISETSCAN: |
| err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, |
| HCI_INIT_TIMEOUT); |
| |
| /* Ensure that the connectable and discoverable states |
| * get correctly modified as this was a non-mgmt change. |
| */ |
| if (!err) |
| hci_update_scan_state(hdev, dr.dev_opt); |
| break; |
| |
| case HCISETLINKPOL: |
| err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, |
| HCI_INIT_TIMEOUT); |
| break; |
| |
| case HCISETLINKMODE: |
| hdev->link_mode = ((__u16) dr.dev_opt) & |
| (HCI_LM_MASTER | HCI_LM_ACCEPT); |
| break; |
| |
| case HCISETPTYPE: |
| hdev->pkt_type = (__u16) dr.dev_opt; |
| break; |
| |
| case HCISETACLMTU: |
| hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); |
| hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); |
| break; |
| |
| case HCISETSCOMTU: |
| hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); |
| hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); |
| break; |
| |
| default: |
| err = -EINVAL; |
| break; |
| } |
| |
| done: |
| hci_dev_put(hdev); |
| return err; |
| } |
| |
| int hci_get_dev_list(void __user *arg) |
| { |
| struct hci_dev *hdev; |
| struct hci_dev_list_req *dl; |
| struct hci_dev_req *dr; |
| int n = 0, size, err; |
| __u16 dev_num; |
| |
| if (get_user(dev_num, (__u16 __user *) arg)) |
| return -EFAULT; |
| |
| if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) |
| return -EINVAL; |
| |
| size = sizeof(*dl) + dev_num * sizeof(*dr); |
| |
| dl = kzalloc(size, GFP_KERNEL); |
| if (!dl) |
| return -ENOMEM; |
| |
| dr = dl->dev_req; |
| |
| read_lock(&hci_dev_list_lock); |
| list_for_each_entry(hdev, &hci_dev_list, list) { |
| unsigned long flags = hdev->flags; |
| |
| /* When the auto-off is configured it means the transport |
| * is running, but in that case still indicate that the |
| * device is actually down. |
| */ |
| if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags)) |
| flags &= ~BIT(HCI_UP); |
| |
| (dr + n)->dev_id = hdev->id; |
| (dr + n)->dev_opt = flags; |
| |
| if (++n >= dev_num) |
| break; |
| } |
| read_unlock(&hci_dev_list_lock); |
| |
| dl->dev_num = n; |
| size = sizeof(*dl) + n * sizeof(*dr); |
| |
| err = copy_to_user(arg, dl, size); |
| kfree(dl); |
| |
| return err ? -EFAULT : 0; |
| } |
| |
| int hci_get_dev_info(void __user *arg) |
| { |
| struct hci_dev *hdev; |
| struct hci_dev_info di; |
| unsigned long flags; |
| int err = 0; |
| |
| if (copy_from_user(&di, arg, sizeof(di))) |
| return -EFAULT; |
| |
| hdev = hci_dev_get(di.dev_id); |
| if (!hdev) |
| return -ENODEV; |
| |
| /* When the auto-off is configured it means the transport |
| * is running, but in that case still indicate that the |
| * device is actually down. |
| */ |
| if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags)) |
| flags = hdev->flags & ~BIT(HCI_UP); |
| else |
| flags = hdev->flags; |
| |
| strcpy(di.name, hdev->name); |
| di.bdaddr = hdev->bdaddr; |
| di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); |
| di.flags = flags; |
| di.pkt_type = hdev->pkt_type; |
| if (lmp_bredr_capable(hdev)) { |
| di.acl_mtu = hdev->acl_mtu; |
| di.acl_pkts = hdev->acl_pkts; |
| di.sco_mtu = hdev->sco_mtu; |
| di.sco_pkts = hdev->sco_pkts; |
| } else { |
| di.acl_mtu = hdev->le_mtu; |
| di.acl_pkts = hdev->le_pkts; |
| di.sco_mtu = 0; |
| di.sco_pkts = 0; |
| } |
| di.link_policy = hdev->link_policy; |
| di.link_mode = hdev->link_mode; |
| |
| memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); |
| memcpy(&di.features, &hdev->features, sizeof(di.features)); |
| |
| if (copy_to_user(arg, &di, sizeof(di))) |
| err = -EFAULT; |
| |
| hci_dev_put(hdev); |
| |
| return err; |
| } |
| |
| /* ---- Interface to HCI drivers ---- */ |
| |
| static int hci_rfkill_set_block(void *data, bool blocked) |
| { |
| struct hci_dev *hdev = data; |
| |
| BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); |
| |
| if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) |
| return -EBUSY; |
| |
| if (blocked) { |
| set_bit(HCI_RFKILLED, &hdev->dev_flags); |
| if (!test_bit(HCI_SETUP, &hdev->dev_flags) && |
| !test_bit(HCI_CONFIG, &hdev->dev_flags)) |
| hci_dev_do_close(hdev); |
| } else { |
| clear_bit(HCI_RFKILLED, &hdev->dev_flags); |
| } |
| |
| return 0; |
| } |
| |
| static const struct rfkill_ops hci_rfkill_ops = { |
| .set_block = hci_rfkill_set_block, |
| }; |
| |
| static void hci_power_on(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); |
| int err; |
| |
| BT_DBG("%s", hdev->name); |
| |
| err = hci_dev_do_open(hdev); |
| if (err < 0) { |
| mgmt_set_powered_failed(hdev, err); |
| return; |
| } |
| |
| /* During the HCI setup phase, a few error conditions are |
| * ignored and they need to be checked now. If they are still |
| * valid, it is important to turn the device back off. |
| */ |
| if (test_bit(HCI_RFKILLED, &hdev->dev_flags) || |
| test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) || |
| (hdev->dev_type == HCI_BREDR && |
| !bacmp(&hdev->bdaddr, BDADDR_ANY) && |
| !bacmp(&hdev->static_addr, BDADDR_ANY))) { |
| clear_bit(HCI_AUTO_OFF, &hdev->dev_flags); |
| hci_dev_do_close(hdev); |
| } else if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags)) { |
| queue_delayed_work(hdev->req_workqueue, &hdev->power_off, |
| HCI_AUTO_OFF_TIMEOUT); |
| } |
| |
| if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags)) { |
| /* For unconfigured devices, set the HCI_RAW flag |
| * so that userspace can easily identify them. |
| */ |
| if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) |
| set_bit(HCI_RAW, &hdev->flags); |
| |
| /* For fully configured devices, this will send |
| * the Index Added event. For unconfigured devices, |
| * it will send Unconfigued Index Added event. |
| * |
| * Devices with HCI_QUIRK_RAW_DEVICE are ignored |
| * and no event will be send. |
| */ |
| mgmt_index_added(hdev); |
| } else if (test_and_clear_bit(HCI_CONFIG, &hdev->dev_flags)) { |
| /* When the controller is now configured, then it |
| * is important to clear the HCI_RAW flag. |
| */ |
| if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) |
| clear_bit(HCI_RAW, &hdev->flags); |
| |
| /* Powering on the controller with HCI_CONFIG set only |
| * happens with the transition from unconfigured to |
| * configured. This will send the Index Added event. |
| */ |
| mgmt_index_added(hdev); |
| } |
| } |
| |
| static void hci_power_off(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| power_off.work); |
| |
| BT_DBG("%s", hdev->name); |
| |
| hci_dev_do_close(hdev); |
| } |
| |
| static void hci_discov_off(struct work_struct *work) |
| { |
| struct hci_dev *hdev; |
| |
| hdev = container_of(work, struct hci_dev, discov_off.work); |
| |
| BT_DBG("%s", hdev->name); |
| |
| mgmt_discoverable_timeout(hdev); |
| } |
| |
| void hci_uuids_clear(struct hci_dev *hdev) |
| { |
| struct bt_uuid *uuid, *tmp; |
| |
| list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { |
| list_del(&uuid->list); |
| kfree(uuid); |
| } |
| } |
| |
| void hci_link_keys_clear(struct hci_dev *hdev) |
| { |
| struct list_head *p, *n; |
| |
| list_for_each_safe(p, n, &hdev->link_keys) { |
| struct link_key *key; |
| |
| key = list_entry(p, struct link_key, list); |
| |
| list_del(p); |
| kfree(key); |
| } |
| } |
| |
| void hci_smp_ltks_clear(struct hci_dev *hdev) |
| { |
| struct smp_ltk *k, *tmp; |
| |
| list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { |
| list_del(&k->list); |
| kfree(k); |
| } |
| } |
| |
| void hci_smp_irks_clear(struct hci_dev *hdev) |
| { |
| struct smp_irk *k, *tmp; |
| |
| list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { |
| list_del(&k->list); |
| kfree(k); |
| } |
| } |
| |
| struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) |
| { |
| struct link_key *k; |
| |
| list_for_each_entry(k, &hdev->link_keys, list) |
| if (bacmp(bdaddr, &k->bdaddr) == 0) |
| return k; |
| |
| return NULL; |
| } |
| |
| static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, |
| u8 key_type, u8 old_key_type) |
| { |
| /* Legacy key */ |
| if (key_type < 0x03) |
| return true; |
| |
| /* Debug keys are insecure so don't store them persistently */ |
| if (key_type == HCI_LK_DEBUG_COMBINATION) |
| return false; |
| |
| /* Changed combination key and there's no previous one */ |
| if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) |
| return false; |
| |
| /* Security mode 3 case */ |
| if (!conn) |
| return true; |
| |
| /* Neither local nor remote side had no-bonding as requirement */ |
| if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) |
| return true; |
| |
| /* Local side had dedicated bonding as requirement */ |
| if (conn->auth_type == 0x02 || conn->auth_type == 0x03) |
| return true; |
| |
| /* Remote side had dedicated bonding as requirement */ |
| if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) |
| return true; |
| |
| /* If none of the above criteria match, then don't store the key |
| * persistently */ |
| return false; |
| } |
| |
| static u8 ltk_role(u8 type) |
| { |
| if (type == SMP_LTK) |
| return HCI_ROLE_MASTER; |
| |
| return HCI_ROLE_SLAVE; |
| } |
| |
| struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, __le64 rand, |
| u8 role) |
| { |
| struct smp_ltk *k; |
| |
| list_for_each_entry(k, &hdev->long_term_keys, list) { |
| if (k->ediv != ediv || k->rand != rand) |
| continue; |
| |
| if (ltk_role(k->type) != role) |
| continue; |
| |
| return k; |
| } |
| |
| return NULL; |
| } |
| |
| struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, |
| u8 addr_type, u8 role) |
| { |
| struct smp_ltk *k; |
| |
| list_for_each_entry(k, &hdev->long_term_keys, list) |
| if (addr_type == k->bdaddr_type && |
| bacmp(bdaddr, &k->bdaddr) == 0 && |
| ltk_role(k->type) == role) |
| return k; |
| |
| return NULL; |
| } |
| |
| struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) |
| { |
| struct smp_irk *irk; |
| |
| list_for_each_entry(irk, &hdev->identity_resolving_keys, list) { |
| if (!bacmp(&irk->rpa, rpa)) |
| return irk; |
| } |
| |
| if (!hdev->tfm_aes) |
| return NULL; |
| |
| list_for_each_entry(irk, &hdev->identity_resolving_keys, list) { |
| if (smp_irk_matches(hdev->tfm_aes, irk->val, rpa)) { |
| bacpy(&irk->rpa, rpa); |
| return irk; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, |
| u8 addr_type) |
| { |
| struct smp_irk *irk; |
| |
| /* Identity Address must be public or static random */ |
| if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) |
| return NULL; |
| |
| list_for_each_entry(irk, &hdev->identity_resolving_keys, list) { |
| if (addr_type == irk->addr_type && |
| bacmp(bdaddr, &irk->bdaddr) == 0) |
| return irk; |
| } |
| |
| return NULL; |
| } |
| |
| struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, |
| bdaddr_t *bdaddr, u8 *val, u8 type, |
| u8 pin_len, bool *persistent) |
| { |
| struct link_key *key, *old_key; |
| u8 old_key_type; |
| |
| old_key = hci_find_link_key(hdev, bdaddr); |
| if (old_key) { |
| old_key_type = old_key->type; |
| key = old_key; |
| } else { |
| old_key_type = conn ? conn->key_type : 0xff; |
| key = kzalloc(sizeof(*key), GFP_KERNEL); |
| if (!key) |
| return NULL; |
| list_add(&key->list, &hdev->link_keys); |
| } |
| |
| BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); |
| |
| /* Some buggy controller combinations generate a changed |
| * combination key for legacy pairing even when there's no |
| * previous key */ |
| if (type == HCI_LK_CHANGED_COMBINATION && |
| (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { |
| type = HCI_LK_COMBINATION; |
| if (conn) |
| conn->key_type = type; |
| } |
| |
| bacpy(&key->bdaddr, bdaddr); |
| memcpy(key->val, val, HCI_LINK_KEY_SIZE); |
| key->pin_len = pin_len; |
| |
| if (type == HCI_LK_CHANGED_COMBINATION) |
| key->type = old_key_type; |
| else |
| key->type = type; |
| |
| if (persistent) |
| *persistent = hci_persistent_key(hdev, conn, type, |
| old_key_type); |
| |
| return key; |
| } |
| |
| struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, |
| u8 addr_type, u8 type, u8 authenticated, |
| u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) |
| { |
| struct smp_ltk *key, *old_key; |
| u8 role = ltk_role(type); |
| |
| old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type, role); |
| if (old_key) |
| key = old_key; |
| else { |
| key = kzalloc(sizeof(*key), GFP_KERNEL); |
| if (!key) |
| return NULL; |
| list_add(&key->list, &hdev->long_term_keys); |
| } |
| |
| bacpy(&key->bdaddr, bdaddr); |
| key->bdaddr_type = addr_type; |
| memcpy(key->val, tk, sizeof(key->val)); |
| key->authenticated = authenticated; |
| key->ediv = ediv; |
| key->rand = rand; |
| key->enc_size = enc_size; |
| key->type = type; |
| |
| return key; |
| } |
| |
| struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, |
| u8 addr_type, u8 val[16], bdaddr_t *rpa) |
| { |
| struct smp_irk *irk; |
| |
| irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); |
| if (!irk) { |
| irk = kzalloc(sizeof(*irk), GFP_KERNEL); |
| if (!irk) |
| return NULL; |
| |
| bacpy(&irk->bdaddr, bdaddr); |
| irk->addr_type = addr_type; |
| |
| list_add(&irk->list, &hdev->identity_resolving_keys); |
| } |
| |
| memcpy(irk->val, val, 16); |
| bacpy(&irk->rpa, rpa); |
| |
| return irk; |
| } |
| |
| int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) |
| { |
| struct link_key *key; |
| |
| key = hci_find_link_key(hdev, bdaddr); |
| if (!key) |
| return -ENOENT; |
| |
| BT_DBG("%s removing %pMR", hdev->name, bdaddr); |
| |
| list_del(&key->list); |
| kfree(key); |
| |
| return 0; |
| } |
| |
| int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) |
| { |
| struct smp_ltk *k, *tmp; |
| int removed = 0; |
| |
| list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { |
| if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) |
| continue; |
| |
| BT_DBG("%s removing %pMR", hdev->name, bdaddr); |
| |
| list_del(&k->list); |
| kfree(k); |
| removed++; |
| } |
| |
| return removed ? 0 : -ENOENT; |
| } |
| |
| void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) |
| { |
| struct smp_irk *k, *tmp; |
| |
| list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { |
| if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) |
| continue; |
| |
| BT_DBG("%s removing %pMR", hdev->name, bdaddr); |
| |
| list_del(&k->list); |
| kfree(k); |
| } |
| } |
| |
| /* HCI command timer function */ |
| static void hci_cmd_timeout(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| cmd_timer.work); |
| |
| if (hdev->sent_cmd) { |
| struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; |
| u16 opcode = __le16_to_cpu(sent->opcode); |
| |
| BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode); |
| } else { |
| BT_ERR("%s command tx timeout", hdev->name); |
| } |
| |
| atomic_set(&hdev->cmd_cnt, 1); |
| queue_work(hdev->workqueue, &hdev->cmd_work); |
| } |
| |
| struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, |
| bdaddr_t *bdaddr) |
| { |
| struct oob_data *data; |
| |
| list_for_each_entry(data, &hdev->remote_oob_data, list) |
| if (bacmp(bdaddr, &data->bdaddr) == 0) |
| return data; |
| |
| return NULL; |
| } |
| |
| int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr) |
| { |
| struct oob_data *data; |
| |
| data = hci_find_remote_oob_data(hdev, bdaddr); |
| if (!data) |
| return -ENOENT; |
| |
| BT_DBG("%s removing %pMR", hdev->name, bdaddr); |
| |
| list_del(&data->list); |
| kfree(data); |
| |
| return 0; |
| } |
| |
| void hci_remote_oob_data_clear(struct hci_dev *hdev) |
| { |
| struct oob_data *data, *n; |
| |
| list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { |
| list_del(&data->list); |
| kfree(data); |
| } |
| } |
| |
| int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, |
| u8 *hash, u8 *randomizer) |
| { |
| struct oob_data *data; |
| |
| data = hci_find_remote_oob_data(hdev, bdaddr); |
| if (!data) { |
| data = kmalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| bacpy(&data->bdaddr, bdaddr); |
| list_add(&data->list, &hdev->remote_oob_data); |
| } |
| |
| memcpy(data->hash192, hash, sizeof(data->hash192)); |
| memcpy(data->randomizer192, randomizer, sizeof(data->randomizer192)); |
| |
| memset(data->hash256, 0, sizeof(data->hash256)); |
| memset(data->randomizer256, 0, sizeof(data->randomizer256)); |
| |
| BT_DBG("%s for %pMR", hdev->name, bdaddr); |
| |
| return 0; |
| } |
| |
| int hci_add_remote_oob_ext_data(struct hci_dev *hdev, bdaddr_t *bdaddr, |
| u8 *hash192, u8 *randomizer192, |
| u8 *hash256, u8 *randomizer256) |
| { |
| struct oob_data *data; |
| |
| data = hci_find_remote_oob_data(hdev, bdaddr); |
| if (!data) { |
| data = kmalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| bacpy(&data->bdaddr, bdaddr); |
| list_add(&data->list, &hdev->remote_oob_data); |
| } |
| |
| memcpy(data->hash192, hash192, sizeof(data->hash192)); |
| memcpy(data->randomizer192, randomizer192, sizeof(data->randomizer192)); |
| |
| memcpy(data->hash256, hash256, sizeof(data->hash256)); |
| memcpy(data->randomizer256, randomizer256, sizeof(data->randomizer256)); |
| |
| BT_DBG("%s for %pMR", hdev->name, bdaddr); |
| |
| return 0; |
| } |
| |
| struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, |
| bdaddr_t *bdaddr, u8 type) |
| { |
| struct bdaddr_list *b; |
| |
| list_for_each_entry(b, bdaddr_list, list) { |
| if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) |
| return b; |
| } |
| |
| return NULL; |
| } |
| |
| void hci_bdaddr_list_clear(struct list_head *bdaddr_list) |
| { |
| struct list_head *p, *n; |
| |
| list_for_each_safe(p, n, bdaddr_list) { |
| struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list); |
| |
| list_del(p); |
| kfree(b); |
| } |
| } |
| |
| int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) |
| { |
| struct bdaddr_list *entry; |
| |
| if (!bacmp(bdaddr, BDADDR_ANY)) |
| return -EBADF; |
| |
| if (hci_bdaddr_list_lookup(list, bdaddr, type)) |
| return -EEXIST; |
| |
| entry = kzalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) |
| return -ENOMEM; |
| |
| bacpy(&entry->bdaddr, bdaddr); |
| entry->bdaddr_type = type; |
| |
| list_add(&entry->list, list); |
| |
| return 0; |
| } |
| |
| int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) |
| { |
| struct bdaddr_list *entry; |
| |
| if (!bacmp(bdaddr, BDADDR_ANY)) { |
| hci_bdaddr_list_clear(list); |
| return 0; |
| } |
| |
| entry = hci_bdaddr_list_lookup(list, bdaddr, type); |
| if (!entry) |
| return -ENOENT; |
| |
| list_del(&entry->list); |
| kfree(entry); |
| |
| return 0; |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, |
| bdaddr_t *addr, u8 addr_type) |
| { |
| struct hci_conn_params *params; |
| |
| /* The conn params list only contains identity addresses */ |
| if (!hci_is_identity_address(addr, addr_type)) |
| return NULL; |
| |
| list_for_each_entry(params, &hdev->le_conn_params, list) { |
| if (bacmp(¶ms->addr, addr) == 0 && |
| params->addr_type == addr_type) { |
| return params; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) |
| { |
| struct hci_conn *conn; |
| |
| conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, addr); |
| if (!conn) |
| return false; |
| |
| if (conn->dst_type != type) |
| return false; |
| |
| if (conn->state != BT_CONNECTED) |
| return false; |
| |
| return true; |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, |
| bdaddr_t *addr, u8 addr_type) |
| { |
| struct hci_conn_params *param; |
| |
| /* The list only contains identity addresses */ |
| if (!hci_is_identity_address(addr, addr_type)) |
| return NULL; |
| |
| list_for_each_entry(param, list, action) { |
| if (bacmp(¶m->addr, addr) == 0 && |
| param->addr_type == addr_type) |
| return param; |
| } |
| |
| return NULL; |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, |
| bdaddr_t *addr, u8 addr_type) |
| { |
| struct hci_conn_params *params; |
| |
| if (!hci_is_identity_address(addr, addr_type)) |
| return NULL; |
| |
| params = hci_conn_params_lookup(hdev, addr, addr_type); |
| if (params) |
| return params; |
| |
| params = kzalloc(sizeof(*params), GFP_KERNEL); |
| if (!params) { |
| BT_ERR("Out of memory"); |
| return NULL; |
| } |
| |
| bacpy(¶ms->addr, addr); |
| params->addr_type = addr_type; |
| |
| list_add(¶ms->list, &hdev->le_conn_params); |
| INIT_LIST_HEAD(¶ms->action); |
| |
| params->conn_min_interval = hdev->le_conn_min_interval; |
| params->conn_max_interval = hdev->le_conn_max_interval; |
| params->conn_latency = hdev->le_conn_latency; |
| params->supervision_timeout = hdev->le_supv_timeout; |
| params->auto_connect = HCI_AUTO_CONN_DISABLED; |
| |
| BT_DBG("addr %pMR (type %u)", addr, addr_type); |
| |
| return params; |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| int hci_conn_params_set(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type, |
| u8 auto_connect) |
| { |
| struct hci_conn_params *params; |
| |
| params = hci_conn_params_add(hdev, addr, addr_type); |
| if (!params) |
| return -EIO; |
| |
| if (params->auto_connect == auto_connect) |
| return 0; |
| |
| list_del_init(¶ms->action); |
| |
| switch (auto_connect) { |
| case HCI_AUTO_CONN_DISABLED: |
| case HCI_AUTO_CONN_LINK_LOSS: |
| hci_update_background_scan(hdev); |
| break; |
| case HCI_AUTO_CONN_REPORT: |
| list_add(¶ms->action, &hdev->pend_le_reports); |
| hci_update_background_scan(hdev); |
| break; |
| case HCI_AUTO_CONN_DIRECT: |
| case HCI_AUTO_CONN_ALWAYS: |
| if (!is_connected(hdev, addr, addr_type)) { |
| list_add(¶ms->action, &hdev->pend_le_conns); |
| hci_update_background_scan(hdev); |
| } |
| break; |
| } |
| |
| params->auto_connect = auto_connect; |
| |
| BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, |
| auto_connect); |
| |
| return 0; |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) |
| { |
| struct hci_conn_params *params; |
| |
| params = hci_conn_params_lookup(hdev, addr, addr_type); |
| if (!params) |
| return; |
| |
| list_del(¶ms->action); |
| list_del(¶ms->list); |
| kfree(params); |
| |
| hci_update_background_scan(hdev); |
| |
| BT_DBG("addr %pMR (type %u)", addr, addr_type); |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| void hci_conn_params_clear_disabled(struct hci_dev *hdev) |
| { |
| struct hci_conn_params *params, *tmp; |
| |
| list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { |
| if (params->auto_connect != HCI_AUTO_CONN_DISABLED) |
| continue; |
| list_del(¶ms->list); |
| kfree(params); |
| } |
| |
| BT_DBG("All LE disabled connection parameters were removed"); |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| void hci_conn_params_clear_all(struct hci_dev *hdev) |
| { |
| struct hci_conn_params *params, *tmp; |
| |
| list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { |
| list_del(¶ms->action); |
| list_del(¶ms->list); |
| kfree(params); |
| } |
| |
| hci_update_background_scan(hdev); |
| |
| BT_DBG("All LE connection parameters were removed"); |
| } |
| |
| static void inquiry_complete(struct hci_dev *hdev, u8 status) |
| { |
| if (status) { |
| BT_ERR("Failed to start inquiry: status %d", status); |
| |
| hci_dev_lock(hdev); |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| hci_dev_unlock(hdev); |
| return; |
| } |
| } |
| |
| static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status) |
| { |
| /* General inquiry access code (GIAC) */ |
| u8 lap[3] = { 0x33, 0x8b, 0x9e }; |
| struct hci_request req; |
| struct hci_cp_inquiry cp; |
| int err; |
| |
| if (status) { |
| BT_ERR("Failed to disable LE scanning: status %d", status); |
| return; |
| } |
| |
| switch (hdev->discovery.type) { |
| case DISCOV_TYPE_LE: |
| hci_dev_lock(hdev); |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| hci_dev_unlock(hdev); |
| break; |
| |
| case DISCOV_TYPE_INTERLEAVED: |
| hci_req_init(&req, hdev); |
| |
| memset(&cp, 0, sizeof(cp)); |
| memcpy(&cp.lap, lap, sizeof(cp.lap)); |
| cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN; |
| hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp); |
| |
| hci_dev_lock(hdev); |
| |
| hci_inquiry_cache_flush(hdev); |
| |
| err = hci_req_run(&req, inquiry_complete); |
| if (err) { |
| BT_ERR("Inquiry request failed: err %d", err); |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| } |
| |
| hci_dev_unlock(hdev); |
| break; |
| } |
| } |
| |
| static void le_scan_disable_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| le_scan_disable.work); |
| struct hci_request req; |
| int err; |
| |
| BT_DBG("%s", hdev->name); |
| |
| hci_req_init(&req, hdev); |
| |
| hci_req_add_le_scan_disable(&req); |
| |
| err = hci_req_run(&req, le_scan_disable_work_complete); |
| if (err) |
| BT_ERR("Disable LE scanning request failed: err %d", err); |
| } |
| |
| static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| /* If we're advertising or initiating an LE connection we can't |
| * go ahead and change the random address at this time. This is |
| * because the eventual initiator address used for the |
| * subsequently created connection will be undefined (some |
| * controllers use the new address and others the one we had |
| * when the operation started). |
| * |
| * In this kind of scenario skip the update and let the random |
| * address be updated at the next cycle. |
| */ |
| if (test_bit(HCI_LE_ADV, &hdev->dev_flags) || |
| hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT)) { |
| BT_DBG("Deferring random address update"); |
| return; |
| } |
| |
| hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); |
| } |
| |
| int hci_update_random_address(struct hci_request *req, bool require_privacy, |
| u8 *own_addr_type) |
| { |
| struct hci_dev *hdev = req->hdev; |
| int err; |
| |
| /* If privacy is enabled use a resolvable private address. If |
| * current RPA has expired or there is something else than |
| * the current RPA in use, then generate a new one. |
| */ |
| if (test_bit(HCI_PRIVACY, &hdev->dev_flags)) { |
| int to; |
| |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| |
| if (!test_and_clear_bit(HCI_RPA_EXPIRED, &hdev->dev_flags) && |
| !bacmp(&hdev->random_addr, &hdev->rpa)) |
| return 0; |
| |
| if (!hdev->tfm_aes) { |
| BT_ERR("%s crypto not available to generate RPA", |
| hdev->name); |
| return -EOPNOTSUPP; |
| } |
| |
| err = smp_generate_rpa(hdev->tfm_aes, hdev->irk, &hdev->rpa); |
| if (err < 0) { |
| BT_ERR("%s failed to generate new RPA", hdev->name); |
| return err; |
| } |
| |
| set_random_addr(req, &hdev->rpa); |
| |
| to = msecs_to_jiffies(hdev->rpa_timeout * 1000); |
| queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to); |
| |
| return 0; |
| } |
| |
| /* In case of required privacy without resolvable private address, |
| * use an unresolvable private address. This is useful for active |
| * scanning and non-connectable advertising. |
| */ |
| if (require_privacy) { |
| bdaddr_t urpa; |
| |
| get_random_bytes(&urpa, 6); |
| urpa.b[5] &= 0x3f; /* Clear two most significant bits */ |
| |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| set_random_addr(req, &urpa); |
| return 0; |
| } |
| |
| /* If forcing static address is in use or there is no public |
| * address use the static address as random address (but skip |
| * the HCI command if the current random address is already the |
| * static one. |
| */ |
| if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) || |
| !bacmp(&hdev->bdaddr, BDADDR_ANY)) { |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| if (bacmp(&hdev->static_addr, &hdev->random_addr)) |
| hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, |
| &hdev->static_addr); |
| return 0; |
| } |
| |
| /* Neither privacy nor static address is being used so use a |
| * public address. |
| */ |
| *own_addr_type = ADDR_LE_DEV_PUBLIC; |
| |
| return 0; |
| } |
| |
| /* Copy the Identity Address of the controller. |
| * |
| * If the controller has a public BD_ADDR, then by default use that one. |
| * If this is a LE only controller without a public address, default to |
| * the static random address. |
| * |
| * For debugging purposes it is possible to force controllers with a |
| * public address to use the static random address instead. |
| */ |
| void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, |
| u8 *bdaddr_type) |
| { |
| if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) || |
| !bacmp(&hdev->bdaddr, BDADDR_ANY)) { |
| bacpy(bdaddr, &hdev->static_addr); |
| *bdaddr_type = ADDR_LE_DEV_RANDOM; |
| } else { |
| bacpy(bdaddr, &hdev->bdaddr); |
| *bdaddr_type = ADDR_LE_DEV_PUBLIC; |
| } |
| } |
| |
| /* Alloc HCI device */ |
| struct hci_dev *hci_alloc_dev(void) |
| { |
| struct hci_dev *hdev; |
| |
| hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); |
| if (!hdev) |
| return NULL; |
| |
| hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); |
| hdev->esco_type = (ESCO_HV1); |
| hdev->link_mode = (HCI_LM_ACCEPT); |
| hdev->num_iac = 0x01; /* One IAC support is mandatory */ |
| hdev->io_capability = 0x03; /* No Input No Output */ |
| hdev->manufacturer = 0xffff; /* Default to internal use */ |
| hdev->inq_tx_power = HCI_TX_POWER_INVALID; |
| hdev->adv_tx_power = HCI_TX_POWER_INVALID; |
| |
| hdev->sniff_max_interval = 800; |
| hdev->sniff_min_interval = 80; |
| |
| hdev->le_adv_channel_map = 0x07; |
| hdev->le_adv_min_interval = 0x0800; |
| hdev->le_adv_max_interval = 0x0800; |
| hdev->le_scan_interval = 0x0060; |
| hdev->le_scan_window = 0x0030; |
| hdev->le_conn_min_interval = 0x0028; |
| hdev->le_conn_max_interval = 0x0038; |
| hdev->le_conn_latency = 0x0000; |
| hdev->le_supv_timeout = 0x002a; |
| |
| hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; |
| hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; |
| hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; |
| hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; |
| |
| mutex_init(&hdev->lock); |
| mutex_init(&hdev->req_lock); |
| |
| INIT_LIST_HEAD(&hdev->mgmt_pending); |
| INIT_LIST_HEAD(&hdev->blacklist); |
| INIT_LIST_HEAD(&hdev->whitelist); |
| INIT_LIST_HEAD(&hdev->uuids); |
| INIT_LIST_HEAD(&hdev->link_keys); |
| INIT_LIST_HEAD(&hdev->long_term_keys); |
| INIT_LIST_HEAD(&hdev->identity_resolving_keys); |
| INIT_LIST_HEAD(&hdev->remote_oob_data); |
| INIT_LIST_HEAD(&hdev->le_white_list); |
| INIT_LIST_HEAD(&hdev->le_conn_params); |
| INIT_LIST_HEAD(&hdev->pend_le_conns); |
| INIT_LIST_HEAD(&hdev->pend_le_reports); |
| INIT_LIST_HEAD(&hdev->conn_hash.list); |
| |
| INIT_WORK(&hdev->rx_work, hci_rx_work); |
| INIT_WORK(&hdev->cmd_work, hci_cmd_work); |
| INIT_WORK(&hdev->tx_work, hci_tx_work); |
| INIT_WORK(&hdev->power_on, hci_power_on); |
| |
| INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); |
| INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off); |
| INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); |
| |
| skb_queue_head_init(&hdev->rx_q); |
| skb_queue_head_init(&hdev->cmd_q); |
| skb_queue_head_init(&hdev->raw_q); |
| |
| init_waitqueue_head(&hdev->req_wait_q); |
| |
| INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); |
| |
| hci_init_sysfs(hdev); |
| discovery_init(hdev); |
| |
| return hdev; |
| } |
| EXPORT_SYMBOL(hci_alloc_dev); |
| |
| /* Free HCI device */ |
| void hci_free_dev(struct hci_dev *hdev) |
| { |
| /* will free via device release */ |
| put_device(&hdev->dev); |
| } |
| EXPORT_SYMBOL(hci_free_dev); |
| |
| /* Register HCI device */ |
| int hci_register_dev(struct hci_dev *hdev) |
| { |
| int id, error; |
| |
| if (!hdev->open || !hdev->close || !hdev->send) |
| return -EINVAL; |
| |
| /* Do not allow HCI_AMP devices to register at index 0, |
| * so the index can be used as the AMP controller ID. |
| */ |
| switch (hdev->dev_type) { |
| case HCI_BREDR: |
| id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL); |
| break; |
| case HCI_AMP: |
| id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (id < 0) |
| return id; |
| |
| sprintf(hdev->name, "hci%d", id); |
| hdev->id = id; |
| |
| BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); |
| |
| hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND | |
| WQ_MEM_RECLAIM, 1, hdev->name); |
| if (!hdev->workqueue) { |
| error = -ENOMEM; |
| goto err; |
| } |
| |
| hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND | |
| WQ_MEM_RECLAIM, 1, hdev->name); |
| if (!hdev->req_workqueue) { |
| destroy_workqueue(hdev->workqueue); |
| error = -ENOMEM; |
| goto err; |
| } |
| |
| if (!IS_ERR_OR_NULL(bt_debugfs)) |
| hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); |
| |
| dev_set_name(&hdev->dev, "%s", hdev->name); |
| |
| error = hci_register_smp(hdev); |
| if (error) |
| goto err_wqueue; |
| |
| error = device_add(&hdev->dev); |
| if (error < 0) |
| goto err_smp; |
| |
| hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, |
| RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, |
| hdev); |
| if (hdev->rfkill) { |
| if (rfkill_register(hdev->rfkill) < 0) { |
| rfkill_destroy(hdev->rfkill); |
| hdev->rfkill = NULL; |
| } |
| } |
| |
| if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) |
| set_bit(HCI_RFKILLED, &hdev->dev_flags); |
| |
| set_bit(HCI_SETUP, &hdev->dev_flags); |
| set_bit(HCI_AUTO_OFF, &hdev->dev_flags); |
| |
| if (hdev->dev_type == HCI_BREDR) { |
| /* Assume BR/EDR support until proven otherwise (such as |
| * through reading supported features during init. |
| */ |
| set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags); |
| } |
| |
| write_lock(&hci_dev_list_lock); |
| list_add(&hdev->list, &hci_dev_list); |
| write_unlock(&hci_dev_list_lock); |
| |
| /* Devices that are marked for raw-only usage are unconfigured |
| * and should not be included in normal operation. |
| */ |
| if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) |
| set_bit(HCI_UNCONFIGURED, &hdev->dev_flags); |
| |
| hci_notify(hdev, HCI_DEV_REG); |
| hci_dev_hold(hdev); |
| |
| queue_work(hdev->req_workqueue, &hdev->power_on); |
| |
| return id; |
| |
| err_smp: |
| hci_unregister_smp(hdev); |
| err_wqueue: |
| destroy_workqueue(hdev->workqueue); |
| destroy_workqueue(hdev->req_workqueue); |
| err: |
| ida_simple_remove(&hci_index_ida, hdev->id); |
| |
| return error; |
| } |
| EXPORT_SYMBOL(hci_register_dev); |
| |
| /* Unregister HCI device */ |
| void hci_unregister_dev(struct hci_dev *hdev) |
| { |
| int i, id; |
| |
| BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); |
| |
| set_bit(HCI_UNREGISTER, &hdev->dev_flags); |
| |
| id = hdev->id; |
| |
| write_lock(&hci_dev_list_lock); |
| list_del(&hdev->list); |
| write_unlock(&hci_dev_list_lock); |
| |
| hci_dev_do_close(hdev); |
| |
| for (i = 0; i < NUM_REASSEMBLY; i++) |
| kfree_skb(hdev->reassembly[i]); |
| |
| cancel_work_sync(&hdev->power_on); |
| |
| if (!test_bit(HCI_INIT, &hdev->flags) && |
| !test_bit(HCI_SETUP, &hdev->dev_flags) && |
| !test_bit(HCI_CONFIG, &hdev->dev_flags)) { |
| hci_dev_lock(hdev); |
| mgmt_index_removed(hdev); |
| hci_dev_unlock(hdev); |
| } |
| |
| /* mgmt_index_removed should take care of emptying the |
| * pending list */ |
| BUG_ON(!list_empty(&hdev->mgmt_pending)); |
| |
| hci_notify(hdev, HCI_DEV_UNREG); |
| |
| if (hdev->rfkill) { |
| rfkill_unregister(hdev->rfkill); |
| rfkill_destroy(hdev->rfkill); |
| } |
| |
| hci_unregister_smp(hdev); |
| |
| device_del(&hdev->dev); |
| |
| debugfs_remove_recursive(hdev->debugfs); |
| |
| destroy_workqueue(hdev->workqueue); |
| destroy_workqueue(hdev->req_workqueue); |
| |
| hci_dev_lock(hdev); |
| hci_bdaddr_list_clear(&hdev->blacklist); |
| hci_bdaddr_list_clear(&hdev->whitelist); |
| hci_uuids_clear(hdev); |
| hci_link_keys_clear(hdev); |
| hci_smp_ltks_clear(hdev); |
| hci_smp_irks_clear(hdev); |
| hci_remote_oob_data_clear(hdev); |
| hci_bdaddr_list_clear(&hdev->le_white_list); |
| hci_conn_params_clear_all(hdev); |
| hci_dev_unlock(hdev); |
| |
| hci_dev_put(hdev); |
| |
| ida_simple_remove(&hci_index_ida, id); |
| } |
| EXPORT_SYMBOL(hci_unregister_dev); |
| |
| /* Suspend HCI device */ |
| int hci_suspend_dev(struct hci_dev *hdev) |
| { |
| hci_notify(hdev, HCI_DEV_SUSPEND); |
| return 0; |
| } |
| EXPORT_SYMBOL(hci_suspend_dev); |
| |
| /* Resume HCI device */ |
| int hci_resume_dev(struct hci_dev *hdev) |
| { |
| hci_notify(hdev, HCI_DEV_RESUME); |
| return 0; |
| } |
| EXPORT_SYMBOL(hci_resume_dev); |
| |
| /* Receive frame from HCI drivers */ |
| int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) |
| { |
| if (!hdev || (!test_bit(HCI_UP, &hdev->flags) |
| && !test_bit(HCI_INIT, &hdev->flags))) { |
| kfree_skb(skb); |
| return -ENXIO; |
| } |
| |
| /* Incoming skb */ |
| bt_cb(skb)->incoming = 1; |
| |
| /* Time stamp */ |
| __net_timestamp(skb); |
| |
| skb_queue_tail(&hdev->rx_q, skb); |
| queue_work(hdev->workqueue, &hdev->rx_work); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(hci_recv_frame); |
| |
| static int hci_reassembly(struct hci_dev *hdev, int type, void *data, |
| int count, __u8 index) |
| { |
| int len = 0; |
| int hlen = 0; |
| int remain = count; |
| struct sk_buff *skb; |
| struct bt_skb_cb *scb; |
| |
| if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) || |
| index >= NUM_REASSEMBLY) |
| return -EILSEQ; |
| |
| skb = hdev->reassembly[index]; |
| |
| if (!skb) { |
| switch (type) { |
| case HCI_ACLDATA_PKT: |
| len = HCI_MAX_FRAME_SIZE; |
| hlen = HCI_ACL_HDR_SIZE; |
| break; |
| case HCI_EVENT_PKT: |
| len = HCI_MAX_EVENT_SIZE; |
| hlen = HCI_EVENT_HDR_SIZE; |
| break; |
| case HCI_SCODATA_PKT: |
| len = HCI_MAX_SCO_SIZE; |
| hlen = HCI_SCO_HDR_SIZE; |
| break; |
| } |
| |
| skb = bt_skb_alloc(len, GFP_ATOMIC); |
| if (!skb) |
| return -ENOMEM; |
| |
| scb = (void *) skb->cb; |
| scb->expect = hlen; |
| scb->pkt_type = type; |
| |
| hdev->reassembly[index] = skb; |
| } |
| |
| while (count) { |
| scb = (void *) skb->cb; |
| len = min_t(uint, scb->expect, count); |
| |
| memcpy(skb_put(skb, len), data, len); |
| |
| count -= len; |
| data += len; |
| scb->expect -= len; |
| remain = count; |
| |
| switch (type) { |
| case HCI_EVENT_PKT: |
| if (skb->len == HCI_EVENT_HDR_SIZE) { |
| struct hci_event_hdr *h = hci_event_hdr(skb); |
| scb->expect = h->plen; |
| |
| if (skb_tailroom(skb) < scb->expect) { |
| kfree_skb(skb); |
| hdev->reassembly[index] = NULL; |
| return -ENOMEM; |
| } |
| } |
| break; |
| |
| case HCI_ACLDATA_PKT: |
| if (skb->len == HCI_ACL_HDR_SIZE) { |
| struct hci_acl_hdr *h = hci_acl_hdr(skb); |
| scb->expect = __le16_to_cpu(h->dlen); |
| |
| if (skb_tailroom(skb) < scb->expect) { |
| kfree_skb(skb); |
| hdev->reassembly[index] = NULL; |
| return -ENOMEM; |
| } |
| } |
| break; |
| |
| case HCI_SCODATA_PKT: |
| if (skb->len == HCI_SCO_HDR_SIZE) { |
| struct hci_sco_hdr *h = hci_sco_hdr(skb); |
| scb->expect = h->dlen; |
| |
| if (skb_tailroom(skb) < scb->expect) { |
| kfree_skb(skb); |
| hdev->reassembly[index] = NULL; |
| return -ENOMEM; |
| } |
| } |
| break; |
| } |
| |
| if (scb->expect == 0) { |
| /* Complete frame */ |
| |
| bt_cb(skb)->pkt_type = type; |
| hci_recv_frame(hdev, skb); |
| |
| hdev->reassembly[index] = NULL; |
| return remain; |
| } |
| } |
| |
| return remain; |
| } |
| |
| int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count) |
| { |
| int rem = 0; |
| |
| if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) |
| return -EILSEQ; |
| |
| while (count) { |
| rem = hci_reassembly(hdev, type, data, count, type - 1); |
| if (rem < 0) |
| return rem; |
| |
| data += (count - rem); |
| count = rem; |
| } |
| |
| return rem; |
| } |
| EXPORT_SYMBOL(hci_recv_fragment); |
| |
| #define STREAM_REASSEMBLY 0 |
| |
| int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count) |
| { |
| int type; |
| int rem = 0; |
| |
| while (count) { |
| struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY]; |
| |
| if (!skb) { |
| struct { char type; } *pkt; |
| |
| /* Start of the frame */ |
| pkt = data; |
| type = pkt->type; |
| |
| data++; |
| count--; |
| } else |
| type = bt_cb(skb)->pkt_type; |
| |
| rem = hci_reassembly(hdev, type, data, count, |
| STREAM_REASSEMBLY); |
| if (rem < 0) |
| return rem; |
| |
| data += (count - rem); |
| count = rem; |
| } |
| |
| return rem; |
| } |
| EXPORT_SYMBOL(hci_recv_stream_fragment); |
| |
| /* ---- Interface to upper protocols ---- */ |
| |
| int hci_register_cb(struct hci_cb *cb) |
| { |
| BT_DBG("%p name %s", cb, cb->name); |
| |
| write_lock(&hci_cb_list_lock); |
| list_add(&cb->list, &hci_cb_list); |
| write_unlock(&hci_cb_list_lock); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(hci_register_cb); |
| |
| int hci_unregister_cb(struct hci_cb *cb) |
| { |
| BT_DBG("%p name %s", cb, cb->name); |
| |
| write_lock(&hci_cb_list_lock); |
| list_del(&cb->list); |
| write_unlock(&hci_cb_list_lock); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(hci_unregister_cb); |
| |
| static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) |
| { |
| int err; |
| |
| BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len); |
| |
| /* Time stamp */ |
| __net_timestamp(skb); |
| |
| /* Send copy to monitor */ |
| hci_send_to_monitor(hdev, skb); |
| |
| if (atomic_read(&hdev->promisc)) { |
| /* Send copy to the sockets */ |
| hci_send_to_sock(hdev, skb); |
| } |
| |
| /* Get rid of skb owner, prior to sending to the driver. */ |
| skb_orphan(skb); |
| |
| err = hdev->send(hdev, skb); |
| if (err < 0) { |
| BT_ERR("%s sending frame failed (%d)", hdev->name, err); |
| kfree_skb(skb); |
| } |
| } |
| |
| void hci_req_init(struct hci_request *req, struct hci_dev *hdev) |
| { |
| skb_queue_head_init(&req->cmd_q); |
| req->hdev = hdev; |
| req->err = 0; |
| } |
| |
| int hci_req_run(struct hci_request *req, hci_req_complete_t complete) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct sk_buff *skb; |
| unsigned long flags; |
| |
| BT_DBG("length %u", skb_queue_len(&req->cmd_q)); |
| |
| /* If an error occured during request building, remove all HCI |
| * commands queued on the HCI request queue. |
| */ |
| if (req->err) { |
| skb_queue_purge(&req->cmd_q); |
| return req->err; |
| } |
| |
| /* Do not allow empty requests */ |
| if (skb_queue_empty(&req->cmd_q)) |
| return -ENODATA; |
| |
| skb = skb_peek_tail(&req->cmd_q); |
| bt_cb(skb)->req.complete = complete; |
| |
| spin_lock_irqsave(&hdev->cmd_q.lock, flags); |
| skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); |
| spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); |
| |
| queue_work(hdev->workqueue, &hdev->cmd_work); |
| |
| return 0; |
| } |
| |
| bool hci_req_pending(struct hci_dev *hdev) |
| { |
| return (hdev->req_status == HCI_REQ_PEND); |
| } |
| |
| static struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, |
| u32 plen, const void *param) |
| { |
| int len = HCI_COMMAND_HDR_SIZE + plen; |
| struct hci_command_hdr *hdr; |
| struct sk_buff *skb; |
| |
| skb = bt_skb_alloc(len, GFP_ATOMIC); |
| if (!skb) |
| return NULL; |
| |
| hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE); |
| hdr->opcode = cpu_to_le16(opcode); |
| hdr->plen = plen; |
| |
| if (plen) |
| memcpy(skb_put(skb, plen), param, plen); |
| |
| BT_DBG("skb len %d", skb->len); |
| |
| bt_cb(skb)->pkt_type = HCI_COMMAND_PKT; |
| |
| return skb; |
| } |
| |
| /* Send HCI command */ |
| int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, |
| const void *param) |
| { |
| struct sk_buff *skb; |
| |
| BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); |
| |
| skb = hci_prepare_cmd(hdev, opcode, plen, param); |
| if (!skb) { |
| BT_ERR("%s no memory for command", hdev->name); |
| return -ENOMEM; |
| } |
| |
| /* Stand-alone HCI commands must be flaged as |
| * single-command requests. |
| */ |
| bt_cb(skb)->req.start = true; |
| |
| skb_queue_tail(&hdev->cmd_q, skb); |
| queue_work(hdev->workqueue, &hdev->cmd_work); |
| |
| return 0; |
| } |
| |
| /* Queue a command to an asynchronous HCI request */ |
| void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, |
| const void *param, u8 event) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct sk_buff *skb; |
| |
| BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); |
| |
| /* If an error occured during request building, there is no point in |
| * queueing the HCI command. We can simply return. |
| */ |
| if (req->err) |
| return; |
| |
| skb = hci_prepare_cmd(hdev, opcode, plen, param); |
| if (!skb) { |
| BT_ERR("%s no memory for command (opcode 0x%4.4x)", |
| hdev->name, opcode); |
| req->err = -ENOMEM; |
| return; |
| } |
| |
| if (skb_queue_empty(&req->cmd_q)) |
| bt_cb(skb)->req.start = true; |
| |
| bt_cb(skb)->req.event = event; |
| |
| skb_queue_tail(&req->cmd_q, skb); |
| } |
| |
| void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, |
| const void *param) |
| { |
| hci_req_add_ev(req, opcode, plen, param, 0); |
| } |
| |
| /* Get data from the previously sent command */ |
| void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) |
| { |
| struct hci_command_hdr *hdr; |
| |
| if (!hdev->sent_cmd) |
| return NULL; |
| |
| hdr = (void *) hdev->sent_cmd->data; |
| |
| if (hdr->opcode != cpu_to_le16(opcode)) |
| return NULL; |
| |
| BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); |
| |
| return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; |
| } |
| |
| /* Send ACL data */ |
| static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) |
| { |
| struct hci_acl_hdr *hdr; |
| int len = skb->len; |
| |
| skb_push(skb, HCI_ACL_HDR_SIZE); |
| skb_reset_transport_header(skb); |
| hdr = (struct hci_acl_hdr *)skb_transport_header(skb); |
| hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); |
| hdr->dlen = cpu_to_le16(len); |
| } |
| |
| static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, |
| struct sk_buff *skb, __u16 flags) |
| { |
| struct hci_conn *conn = chan->conn; |
| struct hci_dev *hdev = conn->hdev; |
| struct sk_buff *list; |
| |
| skb->len = skb_headlen(skb); |
| skb->data_len = 0; |
| |
| bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT; |
| |
| switch (hdev->dev_type) { |
| case HCI_BREDR: |
| hci_add_acl_hdr(skb, conn->handle, flags); |
| break; |
| case HCI_AMP: |
| hci_add_acl_hdr(skb, chan->handle, flags); |
| break; |
| default: |
| BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type); |
| return; |
| } |
| |
| list = skb_shinfo(skb)->frag_list; |
| if (!list) { |
| /* Non fragmented */ |
| BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); |
| |
| skb_queue_tail(queue, skb); |
| } else { |
| /* Fragmented */ |
| BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); |
| |
| skb_shinfo(skb)->frag_list = NULL; |
| |
| /* Queue all fragments atomically */ |
| spin_lock(&queue->lock); |
| |
| __skb_queue_tail(queue, skb); |
| |
| flags &= ~ACL_START; |
| flags |= ACL_CONT; |
| do { |
| skb = list; list = list->next; |
| |
| bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT; |
| hci_add_acl_hdr(skb, conn->handle, flags); |
| |
| BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); |
| |
| __skb_queue_tail(queue, skb); |
| } while (list); |
| |
| spin_unlock(&queue->lock); |
| } |
| } |
| |
| void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) |
| { |
| struct hci_dev *hdev = chan->conn->hdev; |
| |
| BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); |
| |
| hci_queue_acl(chan, &chan->data_q, skb, flags); |
| |
| queue_work(hdev->workqueue, &hdev->tx_work); |
| } |
| |
| /* Send SCO data */ |
| void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| struct hci_sco_hdr hdr; |
| |
| BT_DBG("%s len %d", hdev->name, skb->len); |
| |
| hdr.handle = cpu_to_le16(conn->handle); |
| hdr.dlen = skb->len; |
| |
| skb_push(skb, HCI_SCO_HDR_SIZE); |
| skb_reset_transport_header(skb); |
| memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); |
| |
| bt_cb(skb)->pkt_type = HCI_SCODATA_PKT; |
| |
| skb_queue_tail(&conn->data_q, skb); |
| queue_work(hdev->workqueue, &hdev->tx_work); |
| } |
| |
| /* ---- HCI TX task (outgoing data) ---- */ |
| |
| /* HCI Connection scheduler */ |
| static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, |
| int *quote) |
| { |
| struct hci_conn_hash *h = &hdev->conn_hash; |
| struct hci_conn *conn = NULL, *c; |
| unsigned int num = 0, min = ~0; |
| |
| /* We don't have to lock device here. Connections are always |
| * added and removed with TX task disabled. */ |
| |
| rcu_read_lock(); |
| |
| list_for_each_entry_rcu(c, &h->list, list) { |
| if (c->type != type || skb_queue_empty(&c->data_q)) |
| continue; |
| |
| if (c->state != BT_CONNECTED && c->state != BT_CONFIG) |
| continue; |
| |
| num++; |
| |
| if (c->sent < min) { |
| min = c->sent; |
| conn = c; |
| } |
| |
| if (hci_conn_num(hdev, type) == num) |
| break; |
| } |
| |
| rcu_read_unlock(); |
| |
| if (conn) { |
| int cnt, q; |
| |
| switch (conn->type) { |
| case ACL_LINK: |
| cnt = hdev->acl_cnt; |
| break; |
| case SCO_LINK: |
| case ESCO_LINK: |
| cnt = hdev->sco_cnt; |
| break; |
| case LE_LINK: |
| cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; |
| break; |
| default: |
| cnt = 0; |
| BT_ERR("Unknown link type"); |
| } |
| |
| q = cnt / num; |
| *quote = q ? q : 1; |
| } else |
| *quote = 0; |
| |
| BT_DBG("conn %p quote %d", conn, *quote); |
| return conn; |
| } |
| |
| static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) |
| { |
| struct hci_conn_hash *h = &hdev->conn_hash; |
| struct hci_conn *c; |
| |
| BT_ERR("%s link tx timeout", hdev->name); |
| |
| rcu_read_lock(); |
| |
| /* Kill stalled connections */ |
| list_for_each_entry_rcu(c, &h->list, list) { |
| if (c->type == type && c->sent) { |
| BT_ERR("%s killing stalled connection %pMR", |
| hdev->name, &c->dst); |
| hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); |
| } |
| } |
| |
| rcu_read_unlock(); |
| } |
| |
| static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, |
| int *quote) |
| { |
| struct hci_conn_hash *h = &hdev->conn_hash; |
| struct hci_chan *chan = NULL; |
| unsigned int num = 0, min = ~0, cur_prio = 0; |
| struct hci_conn *conn; |
| int cnt, q, conn_num = 0; |
| |
| BT_DBG("%s", hdev->name); |
| |
| rcu_read_lock(); |
| |
| list_for_each_entry_rcu(conn, &h->list, list) { |
| struct hci_chan *tmp; |
| |
| if (conn->type != type) |
| continue; |
| |
| if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) |
| continue; |
| |
| conn_num++; |
| |
| list_for_each_entry_rcu(tmp, &conn->chan_list, list) { |
| struct sk_buff *skb; |
| |
| if (skb_queue_empty(&tmp->data_q)) |
| continue; |
| |
| skb = skb_peek(&tmp->data_q); |
| if (skb->priority < cur_prio) |
| continue; |
| |
| if (skb->priority > cur_prio) { |
| num = 0; |
| min = ~0; |
| cur_prio = skb->priority; |
| } |
| |
| num++; |
| |
| if (conn->sent < min) { |
| min = conn->sent; |
| chan = tmp; |
| } |
| } |
| |
| if (hci_conn_num(hdev, type) == conn_num) |
| break; |
| } |
| |
| rcu_read_unlock(); |
| |
| if (!chan) |
| return NULL; |
| |
| switch (chan->conn->type) { |
| case ACL_LINK: |
| cnt = hdev->acl_cnt; |
| break; |
| case AMP_LINK: |
| cnt = hdev->block_cnt; |
| break; |
| case SCO_LINK: |
| case ESCO_LINK: |
| cnt = hdev->sco_cnt; |
| break; |
| case LE_LINK: |
| cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; |
| break; |
| default: |
| cnt = 0; |
| BT_ERR("Unknown link type"); |
| } |
| |
| q = cnt / num; |
| *quote = q ? q : 1; |
| BT_DBG("chan %p quote %d", chan, *quote); |
| return chan; |
| } |
| |
| static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) |
| { |
| struct hci_conn_hash *h = &hdev->conn_hash; |
| struct hci_conn *conn; |
| int num = 0; |
| |
| BT_DBG("%s", hdev->name); |
| |
| rcu_read_lock(); |
| |
| list_for_each_entry_rcu(conn, &h->list, list) { |
| struct hci_chan *chan; |
| |
| if (conn->type != type) |
| continue; |
| |
| if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) |
| continue; |
| |
| num++; |
| |
| list_for_each_entry_rcu(chan, &conn->chan_list, list) { |
| struct sk_buff *skb; |
| |
| if (chan->sent) { |
| chan->sent = 0; |
| continue; |
| } |
| |
| if (skb_queue_empty(&chan->data_q)) |
| continue; |
| |
| skb = skb_peek(&chan->data_q); |
| if (skb->priority >= HCI_PRIO_MAX - 1) |
| continue; |
| |
| skb->priority = HCI_PRIO_MAX - 1; |
| |
| BT_DBG("chan %p skb %p promoted to %d", chan, skb, |
| skb->priority); |
| } |
| |
| if (hci_conn_num(hdev, type) == num) |
| break; |
| } |
| |
| rcu_read_unlock(); |
| |
| } |
| |
| static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) |
| { |
| /* Calculate count of blocks used by this packet */ |
| return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); |
| } |
| |
| static void __check_timeout(struct hci_dev *hdev, unsigned int cnt) |
| { |
| if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) { |
| /* ACL tx timeout must be longer than maximum |
| * link supervision timeout (40.9 seconds) */ |
| if (!cnt && time_after(jiffies, hdev->acl_last_tx + |
| HCI_ACL_TX_TIMEOUT)) |
| hci_link_tx_to(hdev, ACL_LINK); |
| } |
| } |
| |
| static void hci_sched_acl_pkt(struct hci_dev *hdev) |
| { |
| unsigned int cnt = hdev->acl_cnt; |
| struct hci_chan *chan; |
| struct sk_buff *skb; |
| int quote; |
| |
| __check_timeout(hdev, cnt); |
| |
| while (hdev->acl_cnt && |
| (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { |
| u32 priority = (skb_peek(&chan->data_q))->priority; |
| while (quote-- && (skb = skb_peek(&chan->data_q))) { |
| BT_DBG("chan %p skb %p len %d priority %u", chan, skb, |
| skb->len, skb->priority); |
| |
| /* Stop if priority has changed */ |
| if (skb->priority < priority) |
| break; |
| |
| skb = skb_dequeue(&chan->data_q); |
| |
| hci_conn_enter_active_mode(chan->conn, |
| bt_cb(skb)->force_active); |
| |
| hci_send_frame(hdev, skb); |
| hdev->acl_last_tx = jiffies; |
| |
| hdev->acl_cnt--; |
| chan->sent++; |
| chan->conn->sent++; |
| } |
| } |
| |
| if (cnt != hdev->acl_cnt) |
| hci_prio_recalculate(hdev, ACL_LINK); |
| } |
| |
| static void hci_sched_acl_blk(struct hci_dev *hdev) |
| { |
| unsigned int cnt = hdev->block_cnt; |
| struct hci_chan *chan; |
| struct sk_buff *skb; |
| int quote; |
| u8 type; |
| |
| __check_timeout(hdev, cnt); |
| |
| BT_DBG("%s", hdev->name); |
| |
| if (hdev->dev_type == HCI_AMP) |
| type = AMP_LINK; |
| else |
| type = ACL_LINK; |
| |
| while (hdev->block_cnt > 0 && |
| (chan = hci_chan_sent(hdev, type, "e))) { |
| u32 priority = (skb_peek(&chan->data_q))->priority; |
| while (quote > 0 && (skb = skb_peek(&chan->data_q))) { |
| int blocks; |
| |
| BT_DBG("chan %p skb %p len %d priority %u", chan, skb, |
| skb->len, skb->priority); |
| |
| /* Stop if priority has changed */ |
| if (skb->priority < priority) |
| break; |
| |
| skb = skb_dequeue(&chan->data_q); |
| |
| blocks = __get_blocks(hdev, skb); |
| if (blocks > hdev->block_cnt) |
| return; |
| |
| hci_conn_enter_active_mode(chan->conn, |
| bt_cb(skb)->force_active); |
| |
| hci_send_frame(hdev, skb); |
| hdev->acl_last_tx = jiffies; |
| |
| hdev->block_cnt -= blocks; |
| quote -= blocks; |
| |
| chan->sent += blocks; |
| chan->conn->sent += blocks; |
| } |
| } |
| |
| if (cnt != hdev->block_cnt) |
| hci_prio_recalculate(hdev, type); |
| } |
| |
| static void hci_sched_acl(struct hci_dev *hdev) |
| { |
| BT_DBG("%s", hdev->name); |
| |
| /* No ACL link over BR/EDR controller */ |
| if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR) |
| return; |
| |
| /* No AMP link over AMP controller */ |
| if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) |
| return; |
| |
| switch (hdev->flow_ctl_mode) { |
| case HCI_FLOW_CTL_MODE_PACKET_BASED: |
| hci_sched_acl_pkt(hdev); |
| break; |
| |
| case HCI_FLOW_CTL_MODE_BLOCK_BASED: |
| hci_sched_acl_blk(hdev); |
| break; |
| } |
| } |
| |
| /* Schedule SCO */ |
| static void hci_sched_sco(struct hci_dev *hdev) |
| { |
| struct hci_conn *conn; |
| struct sk_buff *skb; |
| int quote; |
| |
| BT_DBG("%s", hdev->name); |
| |
| if (!hci_conn_num(hdev, SCO_LINK)) |
| return; |
| |
| while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { |
| while (quote-- && (skb = skb_dequeue(&conn->data_q))) { |
| BT_DBG("skb %p len %d", skb, skb->len); |
| hci_send_frame(hdev, skb); |
| |
| conn->sent++; |
| if (conn->sent == ~0) |
| conn->sent = 0; |
| } |
| } |
| } |
| |
| static void hci_sched_esco(struct hci_dev *hdev) |
| { |
| struct hci_conn *conn; |
| struct sk_buff *skb; |
| int quote; |
| |
| BT_DBG("%s", hdev->name); |
| |
| if (!hci_conn_num(hdev, ESCO_LINK)) |
| return; |
| |
| while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, |
| "e))) { |
| while (quote-- && (skb = skb_dequeue(&conn->data_q))) { |
| BT_DBG("skb %p len %d", skb, skb->len); |
| hci_send_frame(hdev, skb); |
| |
| conn->sent++; |
| if (conn->sent == ~0) |
| conn->sent = 0; |
| } |
| } |
| } |
| |
| static void hci_sched_le(struct hci_dev *hdev) |
| { |
| struct hci_chan *chan; |
| struct sk_buff *skb; |
| int quote, cnt, tmp; |
| |
| BT_DBG("%s", hdev->name); |
| |
| if (!hci_conn_num(hdev, LE_LINK)) |
| return; |
| |
| if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) { |
| /* LE tx timeout must be longer than maximum |
| * link supervision timeout (40.9 seconds) */ |
| if (!hdev->le_cnt && hdev->le_pkts && |
| time_after(jiffies, hdev->le_last_tx + HZ * 45)) |
| hci_link_tx_to(hdev, LE_LINK); |
| } |
| |
| cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; |
| tmp = cnt; |
| while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { |
| u32 priority = (skb_peek(&chan->data_q))->priority; |
| while (quote-- && (skb = skb_peek(&chan->data_q))) { |
| BT_DBG("chan %p skb %p len %d priority %u", chan, skb, |
| skb->len, skb->priority); |
| |
| /* Stop if priority has changed */ |
| if (skb->priority < priority) |
| break; |
| |
| skb = skb_dequeue(&chan->data_q); |
| |
| hci_send_frame(hdev, skb); |
| hdev->le_last_tx = jiffies; |
| |
| cnt--; |
| chan->sent++; |
| chan->conn->sent++; |
| } |
| } |
| |
| if (hdev->le_pkts) |
| hdev->le_cnt = cnt; |
| else |
| hdev->acl_cnt = cnt; |
| |
| if (cnt != tmp) |
| hci_prio_recalculate(hdev, LE_LINK); |
| } |
| |
| static void hci_tx_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); |
| struct sk_buff *skb; |
| |
| BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt, |
| hdev->sco_cnt, hdev->le_cnt); |
| |
| if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { |
| /* Schedule queues and send stuff to HCI driver */ |
| hci_sched_acl(hdev); |
| hci_sched_sco(hdev); |
| hci_sched_esco(hdev); |
| hci_sched_le(hdev); |
| } |
| |
| /* Send next queued raw (unknown type) packet */ |
| while ((skb = skb_dequeue(&hdev->raw_q))) |
| hci_send_frame(hdev, skb); |
| } |
| |
| /* ----- HCI RX task (incoming data processing) ----- */ |
| |
| /* ACL data packet */ |
| static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) |
| { |
| struct hci_acl_hdr *hdr = (void *) skb->data; |
| struct hci_conn *conn; |
| __u16 handle, flags; |
| |
| skb_pull(skb, HCI_ACL_HDR_SIZE); |
| |
| handle = __le16_to_cpu(hdr->handle); |
| flags = hci_flags(handle); |
| handle = hci_handle(handle); |
| |
| BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, |
| handle, flags); |
| |
| hdev->stat.acl_rx++; |
| |
| hci_dev_lock(hdev); |
| conn = hci_conn_hash_lookup_handle(hdev, handle); |
| hci_dev_unlock(hdev); |
| |
| if (conn) { |
| hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); |
| |
| /* Send to upper protocol */ |
| l2cap_recv_acldata(conn, skb, flags); |
| return; |
| } else { |
| BT_ERR("%s ACL packet for unknown connection handle %d", |
| hdev->name, handle); |
| } |
| |
| kfree_skb(skb); |
| } |
| |
| /* SCO data packet */ |
| static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) |
| { |
| struct hci_sco_hdr *hdr = (void *) skb->data; |
| struct hci_conn *conn; |
| __u16 handle; |
| |
| skb_pull(skb, HCI_SCO_HDR_SIZE); |
| |
| handle = __le16_to_cpu(hdr->handle); |
| |
| BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle); |
| |
| hdev->stat.sco_rx++; |
| |
| hci_dev_lock(hdev); |
| conn = hci_conn_hash_lookup_handle(hdev, handle); |
| hci_dev_unlock(hdev); |
| |
| if (conn) { |
| /* Send to upper protocol */ |
| sco_recv_scodata(conn, skb); |
| return; |
| } else { |
| BT_ERR("%s SCO packet for unknown connection handle %d", |
| hdev->name, handle); |
| } |
| |
| kfree_skb(skb); |
| } |
| |
| static bool hci_req_is_complete(struct hci_dev *hdev) |
| { |
| struct sk_buff *skb; |
| |
| skb = skb_peek(&hdev->cmd_q); |
| if (!skb) |
| return true; |
| |
| return bt_cb(skb)->req.start; |
| } |
| |
| static void hci_resend_last(struct hci_dev *hdev) |
| { |
| struct hci_command_hdr *sent; |
| struct sk_buff *skb; |
| u16 opcode; |
| |
| if (!hdev->sent_cmd) |
| return; |
| |
| sent = (void *) hdev->sent_cmd->data; |
| opcode = __le16_to_cpu(sent->opcode); |
| if (opcode == HCI_OP_RESET) |
| return; |
| |
| skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); |
| if (!skb) |
| return; |
| |
| skb_queue_head(&hdev->cmd_q, skb); |
| queue_work(hdev->workqueue, &hdev->cmd_work); |
| } |
| |
| void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status) |
| { |
| hci_req_complete_t req_complete = NULL; |
| struct sk_buff *skb; |
| unsigned long flags; |
| |
| BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); |
| |
| /* If the completed command doesn't match the last one that was |
| * sent we need to do special handling of it. |
| */ |
| if (!hci_sent_cmd_data(hdev, opcode)) { |
| /* Some CSR based controllers generate a spontaneous |
| * reset complete event during init and any pending |
| * command will never be completed. In such a case we |
| * need to resend whatever was the last sent |
| * command. |
| */ |
| if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) |
| hci_resend_last(hdev); |
| |
| return; |
| } |
| |
| /* If the command succeeded and there's still more commands in |
| * this request the request is not yet complete. |
| */ |
| if (!status && !hci_req_is_complete(hdev)) |
| return; |
| |
| /* If this was the last command in a request the complete |
| * callback would be found in hdev->sent_cmd instead of the |
| * command queue (hdev->cmd_q). |
| */ |
| if (hdev->sent_cmd) { |
| req_complete = bt_cb(hdev->sent_cmd)->req.complete; |
| |
| if (req_complete) { |
| /* We must set the complete callback to NULL to |
| * avoid calling the callback more than once if |
| * this function gets called again. |
| */ |
| bt_cb(hdev->sent_cmd)->req.complete = NULL; |
| |
| goto call_complete; |
| } |
| } |
| |
| /* Remove all pending commands belonging to this request */ |
| spin_lock_irqsave(&hdev->cmd_q.lock, flags); |
| while ((skb = __skb_dequeue(&hdev->cmd_q))) { |
| if (bt_cb(skb)->req.start) { |
| __skb_queue_head(&hdev->cmd_q, skb); |
| break; |
| } |
| |
| req_complete = bt_cb(skb)->req.complete; |
| kfree_skb(skb); |
| } |
| spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); |
| |
| call_complete: |
| if (req_complete) |
| req_complete(hdev, status); |
| } |
| |
| static void hci_rx_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); |
| struct sk_buff *skb; |
| |
| BT_DBG("%s", hdev->name); |
| |
| while ((skb = skb_dequeue(&hdev->rx_q))) { |
| /* Send copy to monitor */ |
| hci_send_to_monitor(hdev, skb); |
| |
| if (atomic_read(&hdev->promisc)) { |
| /* Send copy to the sockets */ |
| hci_send_to_sock(hdev, skb); |
| } |
| |
| if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { |
| kfree_skb(skb); |
| continue; |
| } |
| |
| if (test_bit(HCI_INIT, &hdev->flags)) { |
| /* Don't process data packets in this states. */ |
| switch (bt_cb(skb)->pkt_type) { |
| case HCI_ACLDATA_PKT: |
| case HCI_SCODATA_PKT: |
| kfree_skb(skb); |
| continue; |
| } |
| } |
| |
| /* Process frame */ |
| switch (bt_cb(skb)->pkt_type) { |
| case HCI_EVENT_PKT: |
| BT_DBG("%s Event packet", hdev->name); |
| hci_event_packet(hdev, skb); |
| break; |
| |
| case HCI_ACLDATA_PKT: |
| BT_DBG("%s ACL data packet", hdev->name); |
| hci_acldata_packet(hdev, skb); |
| break; |
| |
| case HCI_SCODATA_PKT: |
| BT_DBG("%s SCO data packet", hdev->name); |
| hci_scodata_packet(hdev, skb); |
| break; |
| |
| default: |
| kfree_skb(skb); |
| break; |
| } |
| } |
| } |
| |
| static void hci_cmd_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); |
| struct sk_buff *skb; |
| |
| BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, |
| atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); |
| |
| /* Send queued commands */ |
| if (atomic_read(&hdev->cmd_cnt)) { |
| skb = skb_dequeue(&hdev->cmd_q); |
| if (!skb) |
| return; |
| |
| kfree_skb(hdev->sent_cmd); |
| |
| hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); |
| if (hdev->sent_cmd) { |
| atomic_dec(&hdev->cmd_cnt); |
| hci_send_frame(hdev, skb); |
| if (test_bit(HCI_RESET, &hdev->flags)) |
| cancel_delayed_work(&hdev->cmd_timer); |
| else |
| schedule_delayed_work(&hdev->cmd_timer, |
| HCI_CMD_TIMEOUT); |
| } else { |
| skb_queue_head(&hdev->cmd_q, skb); |
| queue_work(hdev->workqueue, &hdev->cmd_work); |
| } |
| } |
| } |
| |
| void hci_req_add_le_scan_disable(struct hci_request *req) |
| { |
| struct hci_cp_le_set_scan_enable cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.enable = LE_SCAN_DISABLE; |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); |
| } |
| |
| static void add_to_white_list(struct hci_request *req, |
| struct hci_conn_params *params) |
| { |
| struct hci_cp_le_add_to_white_list cp; |
| |
| cp.bdaddr_type = params->addr_type; |
| bacpy(&cp.bdaddr, ¶ms->addr); |
| |
| hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp); |
| } |
| |
| static u8 update_white_list(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_conn_params *params; |
| struct bdaddr_list *b; |
| uint8_t white_list_entries = 0; |
| |
| /* Go through the current white list programmed into the |
| * controller one by one and check if that address is still |
| * in the list of pending connections or list of devices to |
| * report. If not present in either list, then queue the |
| * command to remove it from the controller. |
| */ |
| list_for_each_entry(b, &hdev->le_white_list, list) { |
| struct hci_cp_le_del_from_white_list cp; |
| |
| if (hci_pend_le_action_lookup(&hdev->pend_le_conns, |
| &b->bdaddr, b->bdaddr_type) || |
| hci_pend_le_action_lookup(&hdev->pend_le_reports, |
| &b->bdaddr, b->bdaddr_type)) { |
| white_list_entries++; |
| continue; |
| } |
| |
| cp.bdaddr_type = b->bdaddr_type; |
| bacpy(&cp.bdaddr, &b->bdaddr); |
| |
| hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, |
| sizeof(cp), &cp); |
| } |
| |
| /* Since all no longer valid white list entries have been |
| * removed, walk through the list of pending connections |
| * and ensure that any new device gets programmed into |
| * the controller. |
| * |
| * If the list of the devices is larger than the list of |
| * available white list entries in the controller, then |
| * just abort and return filer policy value to not use the |
| * white list. |
| */ |
| list_for_each_entry(params, &hdev->pend_le_conns, action) { |
| if (hci_bdaddr_list_lookup(&hdev->le_white_list, |
| ¶ms->addr, params->addr_type)) |
| continue; |
| |
| if (white_list_entries >= hdev->le_white_list_size) { |
| /* Select filter policy to accept all advertising */ |
| return 0x00; |
| } |
| |
| if (hci_find_irk_by_addr(hdev, ¶ms->addr, |
| params->addr_type)) { |
| /* White list can not be used with RPAs */ |
| return 0x00; |
| } |
| |
| white_list_entries++; |
| add_to_white_list(req, params); |
| } |
| |
| /* After adding all new pending connections, walk through |
| * the list of pending reports and also add these to the |
| * white list if there is still space. |
| */ |
| list_for_each_entry(params, &hdev->pend_le_reports, action) { |
| if (hci_bdaddr_list_lookup(&hdev->le_white_list, |
| ¶ms->addr, params->addr_type)) |
| continue; |
| |
| if (white_list_entries >= hdev->le_white_list_size) { |
| /* Select filter policy to accept all advertising */ |
| return 0x00; |
| } |
| |
| if (hci_find_irk_by_addr(hdev, ¶ms->addr, |
| params->addr_type)) { |
| /* White list can not be used with RPAs */ |
| return 0x00; |
| } |
| |
| white_list_entries++; |
| add_to_white_list(req, params); |
| } |
| |
| /* Select filter policy to use white list */ |
| return 0x01; |
| } |
| |
| void hci_req_add_le_passive_scan(struct hci_request *req) |
| { |
| struct hci_cp_le_set_scan_param param_cp; |
| struct hci_cp_le_set_scan_enable enable_cp; |
| struct hci_dev *hdev = req->hdev; |
| u8 own_addr_type; |
| u8 filter_policy; |
| |
| /* Set require_privacy to false since no SCAN_REQ are send |
| * during passive scanning. Not using an unresolvable address |
| * here is important so that peer devices using direct |
| * advertising with our address will be correctly reported |
| * by the controller. |
| */ |
| if (hci_update_random_address(req, false, &own_addr_type)) |
| return; |
| |
| /* Adding or removing entries from the white list must |
| * happen before enabling scanning. The controller does |
| * not allow white list modification while scanning. |
| */ |
| filter_policy = update_white_list(req); |
| |
| memset(¶m_cp, 0, sizeof(param_cp)); |
| param_cp.type = LE_SCAN_PASSIVE; |
| param_cp.interval = cpu_to_le16(hdev->le_scan_interval); |
| param_cp.window = cpu_to_le16(hdev->le_scan_window); |
| param_cp.own_address_type = own_addr_type; |
| param_cp.filter_policy = filter_policy; |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), |
| ¶m_cp); |
| |
| memset(&enable_cp, 0, sizeof(enable_cp)); |
| enable_cp.enable = LE_SCAN_ENABLE; |
| enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), |
| &enable_cp); |
| } |
| |
| static void update_background_scan_complete(struct hci_dev *hdev, u8 status) |
| { |
| if (status) |
| BT_DBG("HCI request failed to update background scanning: " |
| "status 0x%2.2x", status); |
| } |
| |
| /* This function controls the background scanning based on hdev->pend_le_conns |
| * list. If there are pending LE connection we start the background scanning, |
| * otherwise we stop it. |
| * |
| * This function requires the caller holds hdev->lock. |
| */ |
| void hci_update_background_scan(struct hci_dev *hdev) |
| { |
| struct hci_request req; |
| struct hci_conn *conn; |
| int err; |
| |
| if (!test_bit(HCI_UP, &hdev->flags) || |
| test_bit(HCI_INIT, &hdev->flags) || |
| test_bit(HCI_SETUP, &hdev->dev_flags) || |
| test_bit(HCI_CONFIG, &hdev->dev_flags) || |
| test_bit(HCI_AUTO_OFF, &hdev->dev_flags) || |
| test_bit(HCI_UNREGISTER, &hdev->dev_flags)) |
| return; |
| |
| /* No point in doing scanning if LE support hasn't been enabled */ |
| if (!test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) |
| return; |
| |
| /* If discovery is active don't interfere with it */ |
| if (hdev->discovery.state != DISCOVERY_STOPPED) |
| return; |
| |
| hci_req_init(&req, hdev); |
| |
| if (list_empty(&hdev->pend_le_conns) && |
| list_empty(&hdev->pend_le_reports)) { |
| /* If there is no pending LE connections or devices |
| * to be scanned for, we should stop the background |
| * scanning. |
| */ |
| |
| /* If controller is not scanning we are done. */ |
| if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags)) |
| return; |
| |
| hci_req_add_le_scan_disable(&req); |
| |
| BT_DBG("%s stopping background scanning", hdev->name); |
| } else { |
| /* If there is at least one pending LE connection, we should |
| * keep the background scan running. |
| */ |
| |
| /* If controller is connecting, we should not start scanning |
| * since some controllers are not able to scan and connect at |
| * the same time. |
| */ |
| conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); |
| if (conn) |
| return; |
| |
| /* If controller is currently scanning, we stop it to ensure we |
| * don't miss any advertising (due to duplicates filter). |
| */ |
| if (test_bit(HCI_LE_SCAN, &hdev->dev_flags)) |
| hci_req_add_le_scan_disable(&req); |
| |
| hci_req_add_le_passive_scan(&req); |
| |
| BT_DBG("%s starting background scanning", hdev->name); |
| } |
| |
| err = hci_req_run(&req, update_background_scan_complete); |
| if (err) |
| BT_ERR("Failed to run HCI request: err %d", err); |
| } |
| |
| static bool disconnected_whitelist_entries(struct hci_dev *hdev) |
| { |
| struct bdaddr_list *b; |
| |
| list_for_each_entry(b, &hdev->whitelist, list) { |
| struct hci_conn *conn; |
| |
| conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); |
| if (!conn) |
| return true; |
| |
| if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void hci_update_page_scan(struct hci_dev *hdev, struct hci_request *req) |
| { |
| u8 scan; |
| |
| if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) |
| return; |
| |
| if (!hdev_is_powered(hdev)) |
| return; |
| |
| if (mgmt_powering_down(hdev)) |
| return; |
| |
| if (test_bit(HCI_CONNECTABLE, &hdev->dev_flags) || |
| disconnected_whitelist_entries(hdev)) |
| scan = SCAN_PAGE; |
| else |
| scan = SCAN_DISABLED; |
| |
| if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE)) |
| return; |
| |
| if (test_bit(HCI_DISCOVERABLE, &hdev->dev_flags)) |
| scan |= SCAN_INQUIRY; |
| |
| if (req) |
| hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); |
| else |
| hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); |
| } |