blob: e51650ed49f2ebf0d479785df6aa8071c22ee9bd [file] [log] [blame]
/*
* EEPROM parser code for mac80211 Prism54 drivers
*
* Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
* Copyright (c) 2007-2009, Christian Lamparter <chunkeey@web.de>
* Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
*
* Based on:
* - the islsm (softmac prism54) driver, which is:
* Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
* - stlc45xx driver
* Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/firmware.h>
#include <linux/etherdevice.h>
#include <linux/sort.h>
#include <linux/slab.h>
#include <net/mac80211.h>
#include "p54.h"
#include "eeprom.h"
#include "lmac.h"
static struct ieee80211_rate p54_bgrates[] = {
{ .bitrate = 10, .hw_value = 0, },
{ .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60, .hw_value = 4, },
{ .bitrate = 90, .hw_value = 5, },
{ .bitrate = 120, .hw_value = 6, },
{ .bitrate = 180, .hw_value = 7, },
{ .bitrate = 240, .hw_value = 8, },
{ .bitrate = 360, .hw_value = 9, },
{ .bitrate = 480, .hw_value = 10, },
{ .bitrate = 540, .hw_value = 11, },
};
static struct ieee80211_rate p54_arates[] = {
{ .bitrate = 60, .hw_value = 4, },
{ .bitrate = 90, .hw_value = 5, },
{ .bitrate = 120, .hw_value = 6, },
{ .bitrate = 180, .hw_value = 7, },
{ .bitrate = 240, .hw_value = 8, },
{ .bitrate = 360, .hw_value = 9, },
{ .bitrate = 480, .hw_value = 10, },
{ .bitrate = 540, .hw_value = 11, },
};
#define CHAN_HAS_CAL BIT(0)
#define CHAN_HAS_LIMIT BIT(1)
#define CHAN_HAS_CURVE BIT(2)
#define CHAN_HAS_ALL (CHAN_HAS_CAL | CHAN_HAS_LIMIT | CHAN_HAS_CURVE)
struct p54_channel_entry {
u16 freq;
u16 data;
int index;
enum ieee80211_band band;
};
struct p54_channel_list {
struct p54_channel_entry *channels;
size_t entries;
size_t max_entries;
size_t band_channel_num[IEEE80211_NUM_BANDS];
};
static int p54_get_band_from_freq(u16 freq)
{
/* FIXME: sync these values with the 802.11 spec */
if ((freq >= 2412) && (freq <= 2484))
return IEEE80211_BAND_2GHZ;
if ((freq >= 4920) && (freq <= 5825))
return IEEE80211_BAND_5GHZ;
return -1;
}
static int p54_compare_channels(const void *_a,
const void *_b)
{
const struct p54_channel_entry *a = _a;
const struct p54_channel_entry *b = _b;
return a->index - b->index;
}
static int p54_fill_band_bitrates(struct ieee80211_hw *dev,
struct ieee80211_supported_band *band_entry,
enum ieee80211_band band)
{
/* TODO: generate rate array dynamically */
switch (band) {
case IEEE80211_BAND_2GHZ:
band_entry->bitrates = p54_bgrates;
band_entry->n_bitrates = ARRAY_SIZE(p54_bgrates);
break;
case IEEE80211_BAND_5GHZ:
band_entry->bitrates = p54_arates;
band_entry->n_bitrates = ARRAY_SIZE(p54_arates);
break;
default:
return -EINVAL;
}
return 0;
}
static int p54_generate_band(struct ieee80211_hw *dev,
struct p54_channel_list *list,
enum ieee80211_band band)
{
struct p54_common *priv = dev->priv;
struct ieee80211_supported_band *tmp, *old;
unsigned int i, j;
int ret = -ENOMEM;
if ((!list->entries) || (!list->band_channel_num[band]))
return -EINVAL;
tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
if (!tmp)
goto err_out;
tmp->channels = kzalloc(sizeof(struct ieee80211_channel) *
list->band_channel_num[band], GFP_KERNEL);
if (!tmp->channels)
goto err_out;
ret = p54_fill_band_bitrates(dev, tmp, band);
if (ret)
goto err_out;
for (i = 0, j = 0; (j < list->band_channel_num[band]) &&
(i < list->entries); i++) {
if (list->channels[i].band != band)
continue;
if (list->channels[i].data != CHAN_HAS_ALL) {
printk(KERN_ERR "%s:%s%s%s is/are missing for "
"channel:%d [%d MHz].\n",
wiphy_name(dev->wiphy),
(list->channels[i].data & CHAN_HAS_CAL ? "" :
" [iqauto calibration data]"),
(list->channels[i].data & CHAN_HAS_LIMIT ? "" :
" [output power limits]"),
(list->channels[i].data & CHAN_HAS_CURVE ? "" :
" [curve data]"),
list->channels[i].index, list->channels[i].freq);
continue;
}
tmp->channels[j].band = list->channels[i].band;
tmp->channels[j].center_freq = list->channels[i].freq;
j++;
}
if (j == 0) {
printk(KERN_ERR "%s: Disabling totally damaged %s band.\n",
wiphy_name(dev->wiphy), (band == IEEE80211_BAND_2GHZ) ?
"2 GHz" : "5 GHz");
ret = -ENODATA;
goto err_out;
}
tmp->n_channels = j;
old = priv->band_table[band];
priv->band_table[band] = tmp;
if (old) {
kfree(old->channels);
kfree(old);
}
return 0;
err_out:
if (tmp) {
kfree(tmp->channels);
kfree(tmp);
}
return ret;
}
static void p54_update_channel_param(struct p54_channel_list *list,
u16 freq, u16 data)
{
int band, i;
/*
* usually all lists in the eeprom are mostly sorted.
* so it's very likely that the entry we are looking for
* is right at the end of the list
*/
for (i = list->entries; i >= 0; i--) {
if (freq == list->channels[i].freq) {
list->channels[i].data |= data;
break;
}
}
if ((i < 0) && (list->entries < list->max_entries)) {
/* entry does not exist yet. Initialize a new one. */
band = p54_get_band_from_freq(freq);
/*
* filter out frequencies which don't belong into
* any supported band.
*/
if (band < 0)
return ;
i = list->entries++;
list->band_channel_num[band]++;
list->channels[i].freq = freq;
list->channels[i].data = data;
list->channels[i].band = band;
list->channels[i].index = ieee80211_frequency_to_channel(freq);
/* TODO: parse output_limit and fill max_power */
}
}
static int p54_generate_channel_lists(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
struct p54_channel_list *list;
unsigned int i, j, max_channel_num;
int ret = 0;
u16 freq;
if ((priv->iq_autocal_len != priv->curve_data->entries) ||
(priv->iq_autocal_len != priv->output_limit->entries))
printk(KERN_ERR "%s: Unsupported or damaged EEPROM detected. "
"You may not be able to use all channels.\n",
wiphy_name(dev->wiphy));
max_channel_num = max_t(unsigned int, priv->output_limit->entries,
priv->iq_autocal_len);
max_channel_num = max_t(unsigned int, max_channel_num,
priv->curve_data->entries);
list = kzalloc(sizeof(*list), GFP_KERNEL);
if (!list) {
ret = -ENOMEM;
goto free;
}
list->max_entries = max_channel_num;
list->channels = kzalloc(sizeof(struct p54_channel_entry) *
max_channel_num, GFP_KERNEL);
if (!list->channels)
goto free;
for (i = 0; i < max_channel_num; i++) {
if (i < priv->iq_autocal_len) {
freq = le16_to_cpu(priv->iq_autocal[i].freq);
p54_update_channel_param(list, freq, CHAN_HAS_CAL);
}
if (i < priv->output_limit->entries) {
freq = le16_to_cpup((__le16 *) (i *
priv->output_limit->entry_size +
priv->output_limit->offset +
priv->output_limit->data));
p54_update_channel_param(list, freq, CHAN_HAS_LIMIT);
}
if (i < priv->curve_data->entries) {
freq = le16_to_cpup((__le16 *) (i *
priv->curve_data->entry_size +
priv->curve_data->offset +
priv->curve_data->data));
p54_update_channel_param(list, freq, CHAN_HAS_CURVE);
}
}
/* sort the list by the channel index */
sort(list->channels, list->entries, sizeof(struct p54_channel_entry),
p54_compare_channels, NULL);
for (i = 0, j = 0; i < IEEE80211_NUM_BANDS; i++) {
if (p54_generate_band(dev, list, i) == 0)
j++;
}
if (j == 0) {
/* no useable band available. */
ret = -EINVAL;
}
free:
if (list) {
kfree(list->channels);
kfree(list);
}
return ret;
}
static int p54_convert_rev0(struct ieee80211_hw *dev,
struct pda_pa_curve_data *curve_data)
{
struct p54_common *priv = dev->priv;
struct p54_pa_curve_data_sample *dst;
struct pda_pa_curve_data_sample_rev0 *src;
size_t cd_len = sizeof(*curve_data) +
(curve_data->points_per_channel*sizeof(*dst) + 2) *
curve_data->channels;
unsigned int i, j;
void *source, *target;
priv->curve_data = kmalloc(sizeof(*priv->curve_data) + cd_len,
GFP_KERNEL);
if (!priv->curve_data)
return -ENOMEM;
priv->curve_data->entries = curve_data->channels;
priv->curve_data->entry_size = sizeof(__le16) +
sizeof(*dst) * curve_data->points_per_channel;
priv->curve_data->offset = offsetof(struct pda_pa_curve_data, data);
priv->curve_data->len = cd_len;
memcpy(priv->curve_data->data, curve_data, sizeof(*curve_data));
source = curve_data->data;
target = ((struct pda_pa_curve_data *) priv->curve_data->data)->data;
for (i = 0; i < curve_data->channels; i++) {
__le16 *freq = source;
source += sizeof(__le16);
*((__le16 *)target) = *freq;
target += sizeof(__le16);
for (j = 0; j < curve_data->points_per_channel; j++) {
dst = target;
src = source;
dst->rf_power = src->rf_power;
dst->pa_detector = src->pa_detector;
dst->data_64qam = src->pcv;
/* "invent" the points for the other modulations */
#define SUB(x, y) (u8)(((x) - (y)) > (x) ? 0 : (x) - (y))
dst->data_16qam = SUB(src->pcv, 12);
dst->data_qpsk = SUB(dst->data_16qam, 12);
dst->data_bpsk = SUB(dst->data_qpsk, 12);
dst->data_barker = SUB(dst->data_bpsk, 14);
#undef SUB
target += sizeof(*dst);
source += sizeof(*src);
}
}
return 0;
}
static int p54_convert_rev1(struct ieee80211_hw *dev,
struct pda_pa_curve_data *curve_data)
{
struct p54_common *priv = dev->priv;
struct p54_pa_curve_data_sample *dst;
struct pda_pa_curve_data_sample_rev1 *src;
size_t cd_len = sizeof(*curve_data) +
(curve_data->points_per_channel*sizeof(*dst) + 2) *
curve_data->channels;
unsigned int i, j;
void *source, *target;
priv->curve_data = kzalloc(cd_len + sizeof(*priv->curve_data),
GFP_KERNEL);
if (!priv->curve_data)
return -ENOMEM;
priv->curve_data->entries = curve_data->channels;
priv->curve_data->entry_size = sizeof(__le16) +
sizeof(*dst) * curve_data->points_per_channel;
priv->curve_data->offset = offsetof(struct pda_pa_curve_data, data);
priv->curve_data->len = cd_len;
memcpy(priv->curve_data->data, curve_data, sizeof(*curve_data));
source = curve_data->data;
target = ((struct pda_pa_curve_data *) priv->curve_data->data)->data;
for (i = 0; i < curve_data->channels; i++) {
__le16 *freq = source;
source += sizeof(__le16);
*((__le16 *)target) = *freq;
target += sizeof(__le16);
for (j = 0; j < curve_data->points_per_channel; j++) {
memcpy(target, source, sizeof(*src));
target += sizeof(*dst);
source += sizeof(*src);
}
source++;
}
return 0;
}
static const char *p54_rf_chips[] = { "INVALID-0", "Duette3", "Duette2",
"Frisbee", "Xbow", "Longbow", "INVALID-6", "INVALID-7" };
static void p54_parse_rssical(struct ieee80211_hw *dev, void *data, int len,
u16 type)
{
struct p54_common *priv = dev->priv;
int offset = (type == PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) ? 2 : 0;
int entry_size = sizeof(struct pda_rssi_cal_entry) + offset;
int num_entries = (type == PDR_RSSI_LINEAR_APPROXIMATION) ? 1 : 2;
int i;
if (len != (entry_size * num_entries)) {
printk(KERN_ERR "%s: unknown rssi calibration data packing "
" type:(%x) len:%d.\n",
wiphy_name(dev->wiphy), type, len);
print_hex_dump_bytes("rssical:", DUMP_PREFIX_NONE,
data, len);
printk(KERN_ERR "%s: please report this issue.\n",
wiphy_name(dev->wiphy));
return;
}
for (i = 0; i < num_entries; i++) {
struct pda_rssi_cal_entry *cal = data +
(offset + i * entry_size);
priv->rssical_db[i].mul = (s16) le16_to_cpu(cal->mul);
priv->rssical_db[i].add = (s16) le16_to_cpu(cal->add);
}
}
static void p54_parse_default_country(struct ieee80211_hw *dev,
void *data, int len)
{
struct pda_country *country;
if (len != sizeof(*country)) {
printk(KERN_ERR "%s: found possible invalid default country "
"eeprom entry. (entry size: %d)\n",
wiphy_name(dev->wiphy), len);
print_hex_dump_bytes("country:", DUMP_PREFIX_NONE,
data, len);
printk(KERN_ERR "%s: please report this issue.\n",
wiphy_name(dev->wiphy));
return;
}
country = (struct pda_country *) data;
if (country->flags == PDR_COUNTRY_CERT_CODE_PSEUDO)
regulatory_hint(dev->wiphy, country->alpha2);
else {
/* TODO:
* write a shared/common function that converts
* "Regulatory domain codes" (802.11-2007 14.8.2.2)
* into ISO/IEC 3166-1 alpha2 for regulatory_hint.
*/
}
}
static int p54_convert_output_limits(struct ieee80211_hw *dev,
u8 *data, size_t len)
{
struct p54_common *priv = dev->priv;
if (len < 2)
return -EINVAL;
if (data[0] != 0) {
printk(KERN_ERR "%s: unknown output power db revision:%x\n",
wiphy_name(dev->wiphy), data[0]);
return -EINVAL;
}
if (2 + data[1] * sizeof(struct pda_channel_output_limit) > len)
return -EINVAL;
priv->output_limit = kmalloc(data[1] *
sizeof(struct pda_channel_output_limit) +
sizeof(*priv->output_limit), GFP_KERNEL);
if (!priv->output_limit)
return -ENOMEM;
priv->output_limit->offset = 0;
priv->output_limit->entries = data[1];
priv->output_limit->entry_size =
sizeof(struct pda_channel_output_limit);
priv->output_limit->len = priv->output_limit->entry_size *
priv->output_limit->entries +
priv->output_limit->offset;
memcpy(priv->output_limit->data, &data[2],
data[1] * sizeof(struct pda_channel_output_limit));
return 0;
}
static struct p54_cal_database *p54_convert_db(struct pda_custom_wrapper *src,
size_t total_len)
{
struct p54_cal_database *dst;
size_t payload_len, entries, entry_size, offset;
payload_len = le16_to_cpu(src->len);
entries = le16_to_cpu(src->entries);
entry_size = le16_to_cpu(src->entry_size);
offset = le16_to_cpu(src->offset);
if (((entries * entry_size + offset) != payload_len) ||
(payload_len + sizeof(*src) != total_len))
return NULL;
dst = kmalloc(sizeof(*dst) + payload_len, GFP_KERNEL);
if (!dst)
return NULL;
dst->entries = entries;
dst->entry_size = entry_size;
dst->offset = offset;
dst->len = payload_len;
memcpy(dst->data, src->data, payload_len);
return dst;
}
int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
{
struct p54_common *priv = dev->priv;
struct eeprom_pda_wrap *wrap;
struct pda_entry *entry;
unsigned int data_len, entry_len;
void *tmp;
int err;
u8 *end = (u8 *)eeprom + len;
u16 synth = 0;
wrap = (struct eeprom_pda_wrap *) eeprom;
entry = (void *)wrap->data + le16_to_cpu(wrap->len);
/* verify that at least the entry length/code fits */
while ((u8 *)entry <= end - sizeof(*entry)) {
entry_len = le16_to_cpu(entry->len);
data_len = ((entry_len - 1) << 1);
/* abort if entry exceeds whole structure */
if ((u8 *)entry + sizeof(*entry) + data_len > end)
break;
switch (le16_to_cpu(entry->code)) {
case PDR_MAC_ADDRESS:
if (data_len != ETH_ALEN)
break;
SET_IEEE80211_PERM_ADDR(dev, entry->data);
break;
case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
if (priv->output_limit)
break;
err = p54_convert_output_limits(dev, entry->data,
data_len);
if (err)
goto err;
break;
case PDR_PRISM_PA_CAL_CURVE_DATA: {
struct pda_pa_curve_data *curve_data =
(struct pda_pa_curve_data *)entry->data;
if (data_len < sizeof(*curve_data)) {
err = -EINVAL;
goto err;
}
switch (curve_data->cal_method_rev) {
case 0:
err = p54_convert_rev0(dev, curve_data);
break;
case 1:
err = p54_convert_rev1(dev, curve_data);
break;
default:
printk(KERN_ERR "%s: unknown curve data "
"revision %d\n",
wiphy_name(dev->wiphy),
curve_data->cal_method_rev);
err = -ENODEV;
break;
}
if (err)
goto err;
}
break;
case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
priv->iq_autocal = kmemdup(entry->data, data_len,
GFP_KERNEL);
if (!priv->iq_autocal) {
err = -ENOMEM;
goto err;
}
priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
break;
case PDR_DEFAULT_COUNTRY:
p54_parse_default_country(dev, entry->data, data_len);
break;
case PDR_INTERFACE_LIST:
tmp = entry->data;
while ((u8 *)tmp < entry->data + data_len) {
struct exp_if *exp_if = tmp;
if (exp_if->if_id == cpu_to_le16(IF_ID_ISL39000))
synth = le16_to_cpu(exp_if->variant);
tmp += sizeof(*exp_if);
}
break;
case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
if (data_len < 2)
break;
priv->version = *(u8 *)(entry->data + 1);
break;
case PDR_RSSI_LINEAR_APPROXIMATION:
case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
p54_parse_rssical(dev, entry->data, data_len,
le16_to_cpu(entry->code));
break;
case PDR_RSSI_LINEAR_APPROXIMATION_CUSTOM: {
__le16 *src = (void *) entry->data;
s16 *dst = (void *) &priv->rssical_db;
int i;
if (data_len != sizeof(priv->rssical_db)) {
err = -EINVAL;
goto err;
}
for (i = 0; i < sizeof(priv->rssical_db) /
sizeof(*src); i++)
*(dst++) = (s16) le16_to_cpu(*(src++));
}
break;
case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS_CUSTOM: {
struct pda_custom_wrapper *pda = (void *) entry->data;
if (priv->output_limit || data_len < sizeof(*pda))
break;
priv->output_limit = p54_convert_db(pda, data_len);
}
break;
case PDR_PRISM_PA_CAL_CURVE_DATA_CUSTOM: {
struct pda_custom_wrapper *pda = (void *) entry->data;
if (priv->curve_data || data_len < sizeof(*pda))
break;
priv->curve_data = p54_convert_db(pda, data_len);
}
break;
case PDR_END:
/* make it overrun */
entry_len = len;
break;
default:
break;
}
entry = (void *)entry + (entry_len + 1)*2;
}
if (!synth || !priv->iq_autocal || !priv->output_limit ||
!priv->curve_data) {
printk(KERN_ERR "%s: not all required entries found in eeprom!\n",
wiphy_name(dev->wiphy));
err = -EINVAL;
goto err;
}
err = p54_generate_channel_lists(dev);
if (err)
goto err;
priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
if (priv->rxhw == PDR_SYNTH_FRONTEND_XBOW)
p54_init_xbow_synth(priv);
if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
dev->wiphy->bands[IEEE80211_BAND_2GHZ] =
priv->band_table[IEEE80211_BAND_2GHZ];
if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
dev->wiphy->bands[IEEE80211_BAND_5GHZ] =
priv->band_table[IEEE80211_BAND_5GHZ];
if ((synth & PDR_SYNTH_RX_DIV_MASK) == PDR_SYNTH_RX_DIV_SUPPORTED)
priv->rx_diversity_mask = 3;
if ((synth & PDR_SYNTH_TX_DIV_MASK) == PDR_SYNTH_TX_DIV_SUPPORTED)
priv->tx_diversity_mask = 3;
if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
u8 perm_addr[ETH_ALEN];
printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
wiphy_name(dev->wiphy));
random_ether_addr(perm_addr);
SET_IEEE80211_PERM_ADDR(dev, perm_addr);
}
printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
wiphy_name(dev->wiphy), dev->wiphy->perm_addr, priv->version,
p54_rf_chips[priv->rxhw]);
return 0;
err:
kfree(priv->iq_autocal);
kfree(priv->output_limit);
kfree(priv->curve_data);
priv->iq_autocal = NULL;
priv->output_limit = NULL;
priv->curve_data = NULL;
printk(KERN_ERR "%s: eeprom parse failed!\n",
wiphy_name(dev->wiphy));
return err;
}
EXPORT_SYMBOL_GPL(p54_parse_eeprom);
int p54_read_eeprom(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
int ret = -ENOMEM;
void *eeprom;
maxblocksize = EEPROM_READBACK_LEN;
if (priv->fw_var >= 0x509)
maxblocksize -= 0xc;
else
maxblocksize -= 0x4;
eeprom = kzalloc(eeprom_size, GFP_KERNEL);
if (unlikely(!eeprom))
goto free;
while (eeprom_size) {
blocksize = min(eeprom_size, maxblocksize);
ret = p54_download_eeprom(priv, (void *) (eeprom + offset),
offset, blocksize);
if (unlikely(ret))
goto free;
offset += blocksize;
eeprom_size -= blocksize;
}
ret = p54_parse_eeprom(dev, eeprom, offset);
free:
kfree(eeprom);
return ret;
}
EXPORT_SYMBOL_GPL(p54_read_eeprom);