blob: 43d09a24b2624ee936373388e6b195521922c8ff [file] [log] [blame]
/*
* cx18 ADEC audio functions
*
* Derived from cx25840-audio.c
*
* Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl>
* Copyright (C) 2008 Andy Walls <awalls@md.metrocast.net>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
#include "cx18-driver.h"
static int set_audclk_freq(struct cx18 *cx, u32 freq)
{
struct cx18_av_state *state = &cx->av_state;
if (freq != 32000 && freq != 44100 && freq != 48000)
return -EINVAL;
/*
* The PLL parameters are based on the external crystal frequency that
* would ideally be:
*
* NTSC Color subcarrier freq * 8 =
* 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
*
* The accidents of history and rationale that explain from where this
* combination of magic numbers originate can be found in:
*
* [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
* the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
*
* [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
* NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
*
* As Mike Bradley has rightly pointed out, it's not the exact crystal
* frequency that matters, only that all parts of the driver and
* firmware are using the same value (close to the ideal value).
*
* Since I have a strong suspicion that, if the firmware ever assumes a
* crystal value at all, it will assume 28.636360 MHz, the crystal
* freq used in calculations in this driver will be:
*
* xtal_freq = 28.636360 MHz
*
* an error of less than 0.13 ppm which is way, way better than any off
* the shelf crystal will have for accuracy anyway.
*
* Below I aim to run the PLLs' VCOs near 400 MHz to minimze error.
*
* Many thanks to Jeff Campbell and Mike Bradley for their extensive
* investigation, experimentation, testing, and suggested solutions of
* of audio/video sync problems with SVideo and CVBS captures.
*/
if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
switch (freq) {
case 32000:
/*
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
* AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
*/
cx18_av_write4(cx, 0x108, 0x200d040f);
/* VID_PLL Fraction = 0x2be2fe */
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
cx18_av_write4(cx, 0x10c, 0x002be2fe);
/* AUX_PLL Fraction = 0x176740c */
/* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/
cx18_av_write4(cx, 0x110, 0x0176740c);
/* src3/4/6_ctl */
/* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */
cx18_av_write4(cx, 0x900, 0x0801f77f);
cx18_av_write4(cx, 0x904, 0x0801f77f);
cx18_av_write4(cx, 0x90c, 0x0801f77f);
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
cx18_av_write(cx, 0x127, 0x60);
/* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
cx18_av_write4(cx, 0x12c, 0x11202fff);
/*
* EN_AV_LOCK = 0
* VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
* ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
*/
cx18_av_write4(cx, 0x128, 0xa00d2ef8);
break;
case 44100:
/*
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
* AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18
*/
cx18_av_write4(cx, 0x108, 0x180e040f);
/* VID_PLL Fraction = 0x2be2fe */
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
cx18_av_write4(cx, 0x10c, 0x002be2fe);
/* AUX_PLL Fraction = 0x062a1f2 */
/* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/
cx18_av_write4(cx, 0x110, 0x0062a1f2);
/* src3/4/6_ctl */
/* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */
cx18_av_write4(cx, 0x900, 0x08016d59);
cx18_av_write4(cx, 0x904, 0x08016d59);
cx18_av_write4(cx, 0x90c, 0x08016d59);
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */
cx18_av_write(cx, 0x127, 0x58);
/* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
cx18_av_write4(cx, 0x12c, 0x112092ff);
/*
* EN_AV_LOCK = 0
* VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
* ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
*/
cx18_av_write4(cx, 0x128, 0xa01d4bf8);
break;
case 48000:
/*
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
* AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16
*/
cx18_av_write4(cx, 0x108, 0x160e040f);
/* VID_PLL Fraction = 0x2be2fe */
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
cx18_av_write4(cx, 0x10c, 0x002be2fe);
/* AUX_PLL Fraction = 0x05227ad */
/* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/
cx18_av_write4(cx, 0x110, 0x005227ad);
/* src3/4/6_ctl */
/* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */
cx18_av_write4(cx, 0x900, 0x08014faa);
cx18_av_write4(cx, 0x904, 0x08014faa);
cx18_av_write4(cx, 0x90c, 0x08014faa);
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
cx18_av_write(cx, 0x127, 0x56);
/* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
cx18_av_write4(cx, 0x12c, 0x11205fff);
/*
* EN_AV_LOCK = 0
* VID_COUNT = 0x1193f8 = 143999.000 * 8 =
* ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
*/
cx18_av_write4(cx, 0x128, 0xa01193f8);
break;
}
} else {
switch (freq) {
case 32000:
/*
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
* AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30
*/
cx18_av_write4(cx, 0x108, 0x300d040f);
/* VID_PLL Fraction = 0x2be2fe */
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
cx18_av_write4(cx, 0x10c, 0x002be2fe);
/* AUX_PLL Fraction = 0x176740c */
/* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/
cx18_av_write4(cx, 0x110, 0x0176740c);
/* src1_ctl */
/* 0x1.0000 = 32000/32000 */
cx18_av_write4(cx, 0x8f8, 0x08010000);
/* src3/4/6_ctl */
/* 0x2.0000 = 2 * (32000/32000) */
cx18_av_write4(cx, 0x900, 0x08020000);
cx18_av_write4(cx, 0x904, 0x08020000);
cx18_av_write4(cx, 0x90c, 0x08020000);
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */
cx18_av_write(cx, 0x127, 0x70);
/* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
cx18_av_write4(cx, 0x12c, 0x11201fff);
/*
* EN_AV_LOCK = 0
* VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
* ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
*/
cx18_av_write4(cx, 0x128, 0xa00d2ef8);
break;
case 44100:
/*
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
* AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24
*/
cx18_av_write4(cx, 0x108, 0x240e040f);
/* VID_PLL Fraction = 0x2be2fe */
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
cx18_av_write4(cx, 0x10c, 0x002be2fe);
/* AUX_PLL Fraction = 0x062a1f2 */
/* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/
cx18_av_write4(cx, 0x110, 0x0062a1f2);
/* src1_ctl */
/* 0x1.60cd = 44100/32000 */
cx18_av_write4(cx, 0x8f8, 0x080160cd);
/* src3/4/6_ctl */
/* 0x1.7385 = 2 * (32000/44100) */
cx18_av_write4(cx, 0x900, 0x08017385);
cx18_av_write4(cx, 0x904, 0x08017385);
cx18_av_write4(cx, 0x90c, 0x08017385);
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */
cx18_av_write(cx, 0x127, 0x64);
/* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
cx18_av_write4(cx, 0x12c, 0x112061ff);
/*
* EN_AV_LOCK = 0
* VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
* ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
*/
cx18_av_write4(cx, 0x128, 0xa01d4bf8);
break;
case 48000:
/*
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
* AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
*/
cx18_av_write4(cx, 0x108, 0x200d040f);
/* VID_PLL Fraction = 0x2be2fe */
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
cx18_av_write4(cx, 0x10c, 0x002be2fe);
/* AUX_PLL Fraction = 0x176740c */
/* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/
cx18_av_write4(cx, 0x110, 0x0176740c);
/* src1_ctl */
/* 0x1.8000 = 48000/32000 */
cx18_av_write4(cx, 0x8f8, 0x08018000);
/* src3/4/6_ctl */
/* 0x1.5555 = 2 * (32000/48000) */
cx18_av_write4(cx, 0x900, 0x08015555);
cx18_av_write4(cx, 0x904, 0x08015555);
cx18_av_write4(cx, 0x90c, 0x08015555);
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
cx18_av_write(cx, 0x127, 0x60);
/* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
cx18_av_write4(cx, 0x12c, 0x11203fff);
/*
* EN_AV_LOCK = 0
* VID_COUNT = 0x1193f8 = 143999.000 * 8 =
* ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
*/
cx18_av_write4(cx, 0x128, 0xa01193f8);
break;
}
}
state->audclk_freq = freq;
return 0;
}
void cx18_av_audio_set_path(struct cx18 *cx)
{
struct cx18_av_state *state = &cx->av_state;
u8 v;
/* stop microcontroller */
v = cx18_av_read(cx, 0x803) & ~0x10;
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
/* assert soft reset */
v = cx18_av_read(cx, 0x810) | 0x01;
cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
/* Mute everything to prevent the PFFT! */
cx18_av_write(cx, 0x8d3, 0x1f);
if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) {
/* Set Path1 to Serial Audio Input */
cx18_av_write4(cx, 0x8d0, 0x01011012);
/* The microcontroller should not be started for the
* non-tuner inputs: autodetection is specific for
* TV audio. */
} else {
/* Set Path1 to Analog Demod Main Channel */
cx18_av_write4(cx, 0x8d0, 0x1f063870);
}
set_audclk_freq(cx, state->audclk_freq);
/* deassert soft reset */
v = cx18_av_read(cx, 0x810) & ~0x01;
cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
/* When the microcontroller detects the
* audio format, it will unmute the lines */
v = cx18_av_read(cx, 0x803) | 0x10;
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
}
}
static int get_volume(struct cx18 *cx)
{
/* Volume runs +18dB to -96dB in 1/2dB steps
* change to fit the msp3400 -114dB to +12dB range */
/* check PATH1_VOLUME */
int vol = 228 - cx18_av_read(cx, 0x8d4);
vol = (vol / 2) + 23;
return vol << 9;
}
static void set_volume(struct cx18 *cx, int volume)
{
/* First convert the volume to msp3400 values (0-127) */
int vol = volume >> 9;
/* now scale it up to cx18_av values
* -114dB to -96dB maps to 0
* this should be 19, but in my testing that was 4dB too loud */
if (vol <= 23)
vol = 0;
else
vol -= 23;
/* PATH1_VOLUME */
cx18_av_write(cx, 0x8d4, 228 - (vol * 2));
}
static int get_bass(struct cx18 *cx)
{
/* bass is 49 steps +12dB to -12dB */
/* check PATH1_EQ_BASS_VOL */
int bass = cx18_av_read(cx, 0x8d9) & 0x3f;
bass = (((48 - bass) * 0xffff) + 47) / 48;
return bass;
}
static void set_bass(struct cx18 *cx, int bass)
{
/* PATH1_EQ_BASS_VOL */
cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff));
}
static int get_treble(struct cx18 *cx)
{
/* treble is 49 steps +12dB to -12dB */
/* check PATH1_EQ_TREBLE_VOL */
int treble = cx18_av_read(cx, 0x8db) & 0x3f;
treble = (((48 - treble) * 0xffff) + 47) / 48;
return treble;
}
static void set_treble(struct cx18 *cx, int treble)
{
/* PATH1_EQ_TREBLE_VOL */
cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff));
}
static int get_balance(struct cx18 *cx)
{
/* balance is 7 bit, 0 to -96dB */
/* check PATH1_BAL_LEVEL */
int balance = cx18_av_read(cx, 0x8d5) & 0x7f;
/* check PATH1_BAL_LEFT */
if ((cx18_av_read(cx, 0x8d5) & 0x80) == 0)
balance = 0x80 - balance;
else
balance = 0x80 + balance;
return balance << 8;
}
static void set_balance(struct cx18 *cx, int balance)
{
int bal = balance >> 8;
if (bal > 0x80) {
/* PATH1_BAL_LEFT */
cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80);
/* PATH1_BAL_LEVEL */
cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f);
} else {
/* PATH1_BAL_LEFT */
cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00);
/* PATH1_BAL_LEVEL */
cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal);
}
}
static int get_mute(struct cx18 *cx)
{
/* check SRC1_MUTE_EN */
return cx18_av_read(cx, 0x8d3) & 0x2 ? 1 : 0;
}
static void set_mute(struct cx18 *cx, int mute)
{
struct cx18_av_state *state = &cx->av_state;
u8 v;
if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
/* Must turn off microcontroller in order to mute sound.
* Not sure if this is the best method, but it does work.
* If the microcontroller is running, then it will undo any
* changes to the mute register. */
v = cx18_av_read(cx, 0x803);
if (mute) {
/* disable microcontroller */
v &= ~0x10;
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
cx18_av_write(cx, 0x8d3, 0x1f);
} else {
/* enable microcontroller */
v |= 0x10;
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
}
} else {
/* SRC1_MUTE_EN */
cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00);
}
}
int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
struct cx18_av_state *state = &cx->av_state;
int retval;
u8 v;
if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
v = cx18_av_read(cx, 0x803) & ~0x10;
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
cx18_av_write(cx, 0x8d3, 0x1f);
}
v = cx18_av_read(cx, 0x810) | 0x1;
cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
retval = set_audclk_freq(cx, freq);
v = cx18_av_read(cx, 0x810) & ~0x1;
cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
v = cx18_av_read(cx, 0x803) | 0x10;
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
}
return retval;
}
int cx18_av_audio_g_ctrl(struct cx18 *cx, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_AUDIO_VOLUME:
ctrl->value = get_volume(cx);
break;
case V4L2_CID_AUDIO_BASS:
ctrl->value = get_bass(cx);
break;
case V4L2_CID_AUDIO_TREBLE:
ctrl->value = get_treble(cx);
break;
case V4L2_CID_AUDIO_BALANCE:
ctrl->value = get_balance(cx);
break;
case V4L2_CID_AUDIO_MUTE:
ctrl->value = get_mute(cx);
break;
default:
return -EINVAL;
}
return 0;
}
int cx18_av_audio_s_ctrl(struct cx18 *cx, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_AUDIO_VOLUME:
set_volume(cx, ctrl->value);
break;
case V4L2_CID_AUDIO_BASS:
set_bass(cx, ctrl->value);
break;
case V4L2_CID_AUDIO_TREBLE:
set_treble(cx, ctrl->value);
break;
case V4L2_CID_AUDIO_BALANCE:
set_balance(cx, ctrl->value);
break;
case V4L2_CID_AUDIO_MUTE:
set_mute(cx, ctrl->value);
break;
default:
return -EINVAL;
}
return 0;
}