| /* |
| * Intel 7300 class Memory Controllers kernel module (Clarksboro) |
| * |
| * This file may be distributed under the terms of the |
| * GNU General Public License version 2 only. |
| * |
| * Copyright (c) 2010 by: |
| * Mauro Carvalho Chehab <mchehab@redhat.com> |
| * |
| * Red Hat Inc. http://www.redhat.com |
| * |
| * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet |
| * http://www.intel.com/Assets/PDF/datasheet/318082.pdf |
| * |
| * TODO: The chipset allow checking for PCI Express errors also. Currently, |
| * the driver covers only memory error errors |
| * |
| * This driver uses "csrows" EDAC attribute to represent DIMM slot# |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/pci_ids.h> |
| #include <linux/slab.h> |
| #include <linux/edac.h> |
| #include <linux/mmzone.h> |
| |
| #include "edac_core.h" |
| |
| /* |
| * Alter this version for the I7300 module when modifications are made |
| */ |
| #define I7300_REVISION " Ver: 1.0.0" |
| |
| #define EDAC_MOD_STR "i7300_edac" |
| |
| #define i7300_printk(level, fmt, arg...) \ |
| edac_printk(level, "i7300", fmt, ##arg) |
| |
| #define i7300_mc_printk(mci, level, fmt, arg...) \ |
| edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg) |
| |
| /*********************************************** |
| * i7300 Limit constants Structs and static vars |
| ***********************************************/ |
| |
| /* |
| * Memory topology is organized as: |
| * Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0) |
| * Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0) |
| * Each channel can have to 8 DIMM sets (called as SLOTS) |
| * Slots should generally be filled in pairs |
| * Except on Single Channel mode of operation |
| * just slot 0/channel0 filled on this mode |
| * On normal operation mode, the two channels on a branch should be |
| * filled together for the same SLOT# |
| * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four |
| * channels on both branches should be filled |
| */ |
| |
| /* Limits for i7300 */ |
| #define MAX_SLOTS 8 |
| #define MAX_BRANCHES 2 |
| #define MAX_CH_PER_BRANCH 2 |
| #define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES) |
| #define MAX_MIR 3 |
| |
| #define to_channel(ch, branch) ((((branch)) << 1) | (ch)) |
| |
| #define to_csrow(slot, ch, branch) \ |
| (to_channel(ch, branch) | ((slot) << 2)) |
| |
| /* Device name and register DID (Device ID) */ |
| struct i7300_dev_info { |
| const char *ctl_name; /* name for this device */ |
| u16 fsb_mapping_errors; /* DID for the branchmap,control */ |
| }; |
| |
| /* Table of devices attributes supported by this driver */ |
| static const struct i7300_dev_info i7300_devs[] = { |
| { |
| .ctl_name = "I7300", |
| .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, |
| }, |
| }; |
| |
| struct i7300_dimm_info { |
| int megabytes; /* size, 0 means not present */ |
| }; |
| |
| /* driver private data structure */ |
| struct i7300_pvt { |
| struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */ |
| struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */ |
| struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */ |
| struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */ |
| |
| u16 tolm; /* top of low memory */ |
| u64 ambase; /* AMB BAR */ |
| |
| u32 mc_settings; /* Report several settings */ |
| u32 mc_settings_a; |
| |
| u16 mir[MAX_MIR]; /* Memory Interleave Reg*/ |
| |
| u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */ |
| u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */ |
| |
| /* DIMM information matrix, allocating architecture maximums */ |
| struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS]; |
| |
| /* Temporary buffer for use when preparing error messages */ |
| char *tmp_prt_buffer; |
| }; |
| |
| /* FIXME: Why do we need to have this static? */ |
| static struct edac_pci_ctl_info *i7300_pci; |
| |
| /*************************************************** |
| * i7300 Register definitions for memory enumeration |
| ***************************************************/ |
| |
| /* |
| * Device 16, |
| * Function 0: System Address (not documented) |
| * Function 1: Memory Branch Map, Control, Errors Register |
| */ |
| |
| /* OFFSETS for Function 0 */ |
| #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */ |
| #define MAXCH 0x56 /* Max Channel Number */ |
| #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */ |
| |
| /* OFFSETS for Function 1 */ |
| #define MC_SETTINGS 0x40 |
| #define IS_MIRRORED(mc) ((mc) & (1 << 16)) |
| #define IS_ECC_ENABLED(mc) ((mc) & (1 << 5)) |
| #define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31)) |
| #define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8)) |
| |
| #define MC_SETTINGS_A 0x58 |
| #define IS_SINGLE_MODE(mca) ((mca) & (1 << 14)) |
| |
| #define TOLM 0x6C |
| |
| #define MIR0 0x80 |
| #define MIR1 0x84 |
| #define MIR2 0x88 |
| |
| /* |
| * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available |
| * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it |
| * seems that we cannot use this information directly for the same usage. |
| * Each memory slot may have up to 2 AMB interfaces, one for income and another |
| * for outcome interface to the next slot. |
| * For now, the driver just stores the AMB present registers, but rely only at |
| * the MTR info to detect memory. |
| * Datasheet is also not clear about how to map each AMBPRESENT registers to |
| * one of the 4 available channels. |
| */ |
| #define AMBPRESENT_0 0x64 |
| #define AMBPRESENT_1 0x66 |
| |
| static const u16 mtr_regs[MAX_SLOTS] = { |
| 0x80, 0x84, 0x88, 0x8c, |
| 0x82, 0x86, 0x8a, 0x8e |
| }; |
| |
| /* |
| * Defines to extract the vaious fields from the |
| * MTRx - Memory Technology Registers |
| */ |
| #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8)) |
| #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7)) |
| #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4) |
| #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4) |
| #define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0) |
| #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3) |
| #define MTR_DRAM_BANKS_ADDR_BITS 2 |
| #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13) |
| #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3) |
| #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10) |
| |
| /************************************************ |
| * i7300 Register definitions for error detection |
| ************************************************/ |
| |
| /* |
| * Device 16.1: FBD Error Registers |
| */ |
| #define FERR_FAT_FBD 0x98 |
| static const char *ferr_fat_fbd_name[] = { |
| [22] = "Non-Redundant Fast Reset Timeout", |
| [2] = ">Tmid Thermal event with intelligent throttling disabled", |
| [1] = "Memory or FBD configuration CRC read error", |
| [0] = "Memory Write error on non-redundant retry or " |
| "FBD configuration Write error on retry", |
| }; |
| #define GET_FBD_FAT_IDX(fbderr) (((fbderr) >> 28) & 3) |
| #define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22)) |
| |
| #define FERR_NF_FBD 0xa0 |
| static const char *ferr_nf_fbd_name[] = { |
| [24] = "DIMM-Spare Copy Completed", |
| [23] = "DIMM-Spare Copy Initiated", |
| [22] = "Redundant Fast Reset Timeout", |
| [21] = "Memory Write error on redundant retry", |
| [18] = "SPD protocol Error", |
| [17] = "FBD Northbound parity error on FBD Sync Status", |
| [16] = "Correctable Patrol Data ECC", |
| [15] = "Correctable Resilver- or Spare-Copy Data ECC", |
| [14] = "Correctable Mirrored Demand Data ECC", |
| [13] = "Correctable Non-Mirrored Demand Data ECC", |
| [11] = "Memory or FBD configuration CRC read error", |
| [10] = "FBD Configuration Write error on first attempt", |
| [9] = "Memory Write error on first attempt", |
| [8] = "Non-Aliased Uncorrectable Patrol Data ECC", |
| [7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", |
| [6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC", |
| [5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC", |
| [4] = "Aliased Uncorrectable Patrol Data ECC", |
| [3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", |
| [2] = "Aliased Uncorrectable Mirrored Demand Data ECC", |
| [1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC", |
| [0] = "Uncorrectable Data ECC on Replay", |
| }; |
| #define GET_FBD_NF_IDX(fbderr) (((fbderr) >> 28) & 3) |
| #define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\ |
| (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\ |
| (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\ |
| (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\ |
| (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\ |
| (1 << 1) | (1 << 0)) |
| |
| #define EMASK_FBD 0xa8 |
| #define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\ |
| (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\ |
| (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\ |
| (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\ |
| (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\ |
| (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\ |
| (1 << 1) | (1 << 0)) |
| |
| /* |
| * Device 16.2: Global Error Registers |
| */ |
| |
| #define FERR_GLOBAL_HI 0x48 |
| static const char *ferr_global_hi_name[] = { |
| [3] = "FSB 3 Fatal Error", |
| [2] = "FSB 2 Fatal Error", |
| [1] = "FSB 1 Fatal Error", |
| [0] = "FSB 0 Fatal Error", |
| }; |
| #define ferr_global_hi_is_fatal(errno) 1 |
| |
| #define FERR_GLOBAL_LO 0x40 |
| static const char *ferr_global_lo_name[] = { |
| [31] = "Internal MCH Fatal Error", |
| [30] = "Intel QuickData Technology Device Fatal Error", |
| [29] = "FSB1 Fatal Error", |
| [28] = "FSB0 Fatal Error", |
| [27] = "FBD Channel 3 Fatal Error", |
| [26] = "FBD Channel 2 Fatal Error", |
| [25] = "FBD Channel 1 Fatal Error", |
| [24] = "FBD Channel 0 Fatal Error", |
| [23] = "PCI Express Device 7Fatal Error", |
| [22] = "PCI Express Device 6 Fatal Error", |
| [21] = "PCI Express Device 5 Fatal Error", |
| [20] = "PCI Express Device 4 Fatal Error", |
| [19] = "PCI Express Device 3 Fatal Error", |
| [18] = "PCI Express Device 2 Fatal Error", |
| [17] = "PCI Express Device 1 Fatal Error", |
| [16] = "ESI Fatal Error", |
| [15] = "Internal MCH Non-Fatal Error", |
| [14] = "Intel QuickData Technology Device Non Fatal Error", |
| [13] = "FSB1 Non-Fatal Error", |
| [12] = "FSB 0 Non-Fatal Error", |
| [11] = "FBD Channel 3 Non-Fatal Error", |
| [10] = "FBD Channel 2 Non-Fatal Error", |
| [9] = "FBD Channel 1 Non-Fatal Error", |
| [8] = "FBD Channel 0 Non-Fatal Error", |
| [7] = "PCI Express Device 7 Non-Fatal Error", |
| [6] = "PCI Express Device 6 Non-Fatal Error", |
| [5] = "PCI Express Device 5 Non-Fatal Error", |
| [4] = "PCI Express Device 4 Non-Fatal Error", |
| [3] = "PCI Express Device 3 Non-Fatal Error", |
| [2] = "PCI Express Device 2 Non-Fatal Error", |
| [1] = "PCI Express Device 1 Non-Fatal Error", |
| [0] = "ESI Non-Fatal Error", |
| }; |
| #define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1) |
| |
| #define NRECMEMA 0xbe |
| #define NRECMEMA_BANK(v) (((v) >> 12) & 7) |
| #define NRECMEMA_RANK(v) (((v) >> 8) & 15) |
| |
| #define NRECMEMB 0xc0 |
| #define NRECMEMB_IS_WR(v) ((v) & (1 << 31)) |
| #define NRECMEMB_CAS(v) (((v) >> 16) & 0x1fff) |
| #define NRECMEMB_RAS(v) ((v) & 0xffff) |
| |
| #define REDMEMA 0xdc |
| |
| #define REDMEMB 0x7c |
| #define IS_SECOND_CH(v) ((v) * (1 << 17)) |
| |
| #define RECMEMA 0xe0 |
| #define RECMEMA_BANK(v) (((v) >> 12) & 7) |
| #define RECMEMA_RANK(v) (((v) >> 8) & 15) |
| |
| #define RECMEMB 0xe4 |
| #define RECMEMB_IS_WR(v) ((v) & (1 << 31)) |
| #define RECMEMB_CAS(v) (((v) >> 16) & 0x1fff) |
| #define RECMEMB_RAS(v) ((v) & 0xffff) |
| |
| /******************************************** |
| * i7300 Functions related to error detection |
| ********************************************/ |
| |
| /** |
| * get_err_from_table() - Gets the error message from a table |
| * @table: table name (array of char *) |
| * @size: number of elements at the table |
| * @pos: position of the element to be returned |
| * |
| * This is a small routine that gets the pos-th element of a table. If the |
| * element doesn't exist (or it is empty), it returns "reserved". |
| * Instead of calling it directly, the better is to call via the macro |
| * GET_ERR_FROM_TABLE(), that automatically checks the table size via |
| * ARRAY_SIZE() macro |
| */ |
| static const char *get_err_from_table(const char *table[], int size, int pos) |
| { |
| if (unlikely(pos >= size)) |
| return "Reserved"; |
| |
| if (unlikely(!table[pos])) |
| return "Reserved"; |
| |
| return table[pos]; |
| } |
| |
| #define GET_ERR_FROM_TABLE(table, pos) \ |
| get_err_from_table(table, ARRAY_SIZE(table), pos) |
| |
| /** |
| * i7300_process_error_global() - Retrieve the hardware error information from |
| * the hardware global error registers and |
| * sends it to dmesg |
| * @mci: struct mem_ctl_info pointer |
| */ |
| static void i7300_process_error_global(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt; |
| u32 errnum, error_reg; |
| unsigned long errors; |
| const char *specific; |
| bool is_fatal; |
| |
| pvt = mci->pvt_info; |
| |
| /* read in the 1st FATAL error register */ |
| pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_HI, &error_reg); |
| if (unlikely(error_reg)) { |
| errors = error_reg; |
| errnum = find_first_bit(&errors, |
| ARRAY_SIZE(ferr_global_hi_name)); |
| specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum); |
| is_fatal = ferr_global_hi_is_fatal(errnum); |
| |
| /* Clear the error bit */ |
| pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_HI, error_reg); |
| |
| goto error_global; |
| } |
| |
| pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_LO, &error_reg); |
| if (unlikely(error_reg)) { |
| errors = error_reg; |
| errnum = find_first_bit(&errors, |
| ARRAY_SIZE(ferr_global_lo_name)); |
| specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum); |
| is_fatal = ferr_global_lo_is_fatal(errnum); |
| |
| /* Clear the error bit */ |
| pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_LO, error_reg); |
| |
| goto error_global; |
| } |
| return; |
| |
| error_global: |
| i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n", |
| is_fatal ? "Fatal" : "NOT fatal", specific); |
| } |
| |
| /** |
| * i7300_process_fbd_error() - Retrieve the hardware error information from |
| * the FBD error registers and sends it via |
| * EDAC error API calls |
| * @mci: struct mem_ctl_info pointer |
| */ |
| static void i7300_process_fbd_error(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt; |
| u32 errnum, value, error_reg; |
| u16 val16; |
| unsigned branch, channel, bank, rank, cas, ras; |
| u32 syndrome; |
| |
| unsigned long errors; |
| const char *specific; |
| bool is_wr; |
| |
| pvt = mci->pvt_info; |
| |
| /* read in the 1st FATAL error register */ |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_FAT_FBD, &error_reg); |
| if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) { |
| errors = error_reg & FERR_FAT_FBD_ERR_MASK ; |
| errnum = find_first_bit(&errors, |
| ARRAY_SIZE(ferr_fat_fbd_name)); |
| specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum); |
| branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0; |
| |
| pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, |
| NRECMEMA, &val16); |
| bank = NRECMEMA_BANK(val16); |
| rank = NRECMEMA_RANK(val16); |
| |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| NRECMEMB, &value); |
| is_wr = NRECMEMB_IS_WR(value); |
| cas = NRECMEMB_CAS(value); |
| ras = NRECMEMB_RAS(value); |
| |
| /* Clean the error register */ |
| pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_FAT_FBD, error_reg); |
| |
| snprintf(pvt->tmp_prt_buffer, PAGE_SIZE, |
| "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))", |
| bank, ras, cas, errors, specific); |
| |
| edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0, |
| branch, -1, rank, |
| is_wr ? "Write error" : "Read error", |
| pvt->tmp_prt_buffer); |
| |
| } |
| |
| /* read in the 1st NON-FATAL error register */ |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_NF_FBD, &error_reg); |
| if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) { |
| errors = error_reg & FERR_NF_FBD_ERR_MASK; |
| errnum = find_first_bit(&errors, |
| ARRAY_SIZE(ferr_nf_fbd_name)); |
| specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum); |
| branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0; |
| |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| REDMEMA, &syndrome); |
| |
| pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, |
| RECMEMA, &val16); |
| bank = RECMEMA_BANK(val16); |
| rank = RECMEMA_RANK(val16); |
| |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| RECMEMB, &value); |
| is_wr = RECMEMB_IS_WR(value); |
| cas = RECMEMB_CAS(value); |
| ras = RECMEMB_RAS(value); |
| |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| REDMEMB, &value); |
| channel = (branch << 1); |
| if (IS_SECOND_CH(value)) |
| channel++; |
| |
| /* Clear the error bit */ |
| pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_NF_FBD, error_reg); |
| |
| /* Form out message */ |
| snprintf(pvt->tmp_prt_buffer, PAGE_SIZE, |
| "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))", |
| bank, ras, cas, errors, specific); |
| |
| edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, |
| syndrome, |
| branch >> 1, channel % 2, rank, |
| is_wr ? "Write error" : "Read error", |
| pvt->tmp_prt_buffer); |
| } |
| return; |
| } |
| |
| /** |
| * i7300_check_error() - Calls the error checking subroutines |
| * @mci: struct mem_ctl_info pointer |
| */ |
| static void i7300_check_error(struct mem_ctl_info *mci) |
| { |
| i7300_process_error_global(mci); |
| i7300_process_fbd_error(mci); |
| }; |
| |
| /** |
| * i7300_clear_error() - Clears the error registers |
| * @mci: struct mem_ctl_info pointer |
| */ |
| static void i7300_clear_error(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt = mci->pvt_info; |
| u32 value; |
| /* |
| * All error values are RWC - we need to read and write 1 to the |
| * bit that we want to cleanup |
| */ |
| |
| /* Clear global error registers */ |
| pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_HI, &value); |
| pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_HI, value); |
| |
| pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_LO, &value); |
| pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_LO, value); |
| |
| /* Clear FBD error registers */ |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_FAT_FBD, &value); |
| pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_FAT_FBD, value); |
| |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_NF_FBD, &value); |
| pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_NF_FBD, value); |
| } |
| |
| /** |
| * i7300_enable_error_reporting() - Enable the memory reporting logic at the |
| * hardware |
| * @mci: struct mem_ctl_info pointer |
| */ |
| static void i7300_enable_error_reporting(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt = mci->pvt_info; |
| u32 fbd_error_mask; |
| |
| /* Read the FBD Error Mask Register */ |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| EMASK_FBD, &fbd_error_mask); |
| |
| /* Enable with a '0' */ |
| fbd_error_mask &= ~(EMASK_FBD_ERR_MASK); |
| |
| pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| EMASK_FBD, fbd_error_mask); |
| } |
| |
| /************************************************ |
| * i7300 Functions related to memory enumberation |
| ************************************************/ |
| |
| /** |
| * decode_mtr() - Decodes the MTR descriptor, filling the edac structs |
| * @pvt: pointer to the private data struct used by i7300 driver |
| * @slot: DIMM slot (0 to 7) |
| * @ch: Channel number within the branch (0 or 1) |
| * @branch: Branch number (0 or 1) |
| * @dinfo: Pointer to DIMM info where dimm size is stored |
| * @p_csrow: Pointer to the struct csrow_info that corresponds to that element |
| */ |
| static int decode_mtr(struct i7300_pvt *pvt, |
| int slot, int ch, int branch, |
| struct i7300_dimm_info *dinfo, |
| struct dimm_info *dimm) |
| { |
| int mtr, ans, addrBits, channel; |
| |
| channel = to_channel(ch, branch); |
| |
| mtr = pvt->mtr[slot][branch]; |
| ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0; |
| |
| edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n", |
| slot, channel, ans ? "" : "NOT "); |
| |
| /* Determine if there is a DIMM present in this DIMM slot */ |
| if (!ans) |
| return 0; |
| |
| /* Start with the number of bits for a Bank |
| * on the DRAM */ |
| addrBits = MTR_DRAM_BANKS_ADDR_BITS; |
| /* Add thenumber of ROW bits */ |
| addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); |
| /* add the number of COLUMN bits */ |
| addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); |
| /* add the number of RANK bits */ |
| addrBits += MTR_DIMM_RANKS(mtr); |
| |
| addrBits += 6; /* add 64 bits per DIMM */ |
| addrBits -= 20; /* divide by 2^^20 */ |
| addrBits -= 3; /* 8 bits per bytes */ |
| |
| dinfo->megabytes = 1 << addrBits; |
| |
| edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); |
| |
| edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n", |
| MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled"); |
| |
| edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); |
| edac_dbg(2, "\t\tNUMRANK: %s\n", |
| MTR_DIMM_RANKS(mtr) ? "double" : "single"); |
| edac_dbg(2, "\t\tNUMROW: %s\n", |
| MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" : |
| MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" : |
| MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" : |
| "65,536 - 16 rows"); |
| edac_dbg(2, "\t\tNUMCOL: %s\n", |
| MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" : |
| MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" : |
| MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" : |
| "reserved"); |
| edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes); |
| |
| /* |
| * The type of error detection actually depends of the |
| * mode of operation. When it is just one single memory chip, at |
| * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code. |
| * In normal or mirrored mode, it uses Lockstep mode, |
| * with the possibility of using an extended algorithm for x8 memories |
| * See datasheet Sections 7.3.6 to 7.3.8 |
| */ |
| |
| dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes); |
| dimm->grain = 8; |
| dimm->mtype = MEM_FB_DDR2; |
| if (IS_SINGLE_MODE(pvt->mc_settings_a)) { |
| dimm->edac_mode = EDAC_SECDED; |
| edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n"); |
| } else { |
| edac_dbg(2, "\t\tECC code is on Lockstep mode\n"); |
| if (MTR_DRAM_WIDTH(mtr) == 8) |
| dimm->edac_mode = EDAC_S8ECD8ED; |
| else |
| dimm->edac_mode = EDAC_S4ECD4ED; |
| } |
| |
| /* ask what device type on this row */ |
| if (MTR_DRAM_WIDTH(mtr) == 8) { |
| edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n", |
| IS_SCRBALGO_ENHANCED(pvt->mc_settings) ? |
| "enhanced" : "normal"); |
| |
| dimm->dtype = DEV_X8; |
| } else |
| dimm->dtype = DEV_X4; |
| |
| return mtr; |
| } |
| |
| /** |
| * print_dimm_size() - Prints dump of the memory organization |
| * @pvt: pointer to the private data struct used by i7300 driver |
| * |
| * Useful for debug. If debug is disabled, this routine do nothing |
| */ |
| static void print_dimm_size(struct i7300_pvt *pvt) |
| { |
| #ifdef CONFIG_EDAC_DEBUG |
| struct i7300_dimm_info *dinfo; |
| char *p; |
| int space, n; |
| int channel, slot; |
| |
| space = PAGE_SIZE; |
| p = pvt->tmp_prt_buffer; |
| |
| n = snprintf(p, space, " "); |
| p += n; |
| space -= n; |
| for (channel = 0; channel < MAX_CHANNELS; channel++) { |
| n = snprintf(p, space, "channel %d | ", channel); |
| p += n; |
| space -= n; |
| } |
| edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); |
| p = pvt->tmp_prt_buffer; |
| space = PAGE_SIZE; |
| n = snprintf(p, space, "-------------------------------" |
| "------------------------------"); |
| p += n; |
| space -= n; |
| edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); |
| p = pvt->tmp_prt_buffer; |
| space = PAGE_SIZE; |
| |
| for (slot = 0; slot < MAX_SLOTS; slot++) { |
| n = snprintf(p, space, "csrow/SLOT %d ", slot); |
| p += n; |
| space -= n; |
| |
| for (channel = 0; channel < MAX_CHANNELS; channel++) { |
| dinfo = &pvt->dimm_info[slot][channel]; |
| n = snprintf(p, space, "%4d MB | ", dinfo->megabytes); |
| p += n; |
| space -= n; |
| } |
| |
| edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); |
| p = pvt->tmp_prt_buffer; |
| space = PAGE_SIZE; |
| } |
| |
| n = snprintf(p, space, "-------------------------------" |
| "------------------------------"); |
| p += n; |
| space -= n; |
| edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); |
| p = pvt->tmp_prt_buffer; |
| space = PAGE_SIZE; |
| #endif |
| } |
| |
| /** |
| * i7300_init_csrows() - Initialize the 'csrows' table within |
| * the mci control structure with the |
| * addressing of memory. |
| * @mci: struct mem_ctl_info pointer |
| */ |
| static int i7300_init_csrows(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt; |
| struct i7300_dimm_info *dinfo; |
| int rc = -ENODEV; |
| int mtr; |
| int ch, branch, slot, channel; |
| struct dimm_info *dimm; |
| |
| pvt = mci->pvt_info; |
| |
| edac_dbg(2, "Memory Technology Registers:\n"); |
| |
| /* Get the AMB present registers for the four channels */ |
| for (branch = 0; branch < MAX_BRANCHES; branch++) { |
| /* Read and dump branch 0's MTRs */ |
| channel = to_channel(0, branch); |
| pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], |
| AMBPRESENT_0, |
| &pvt->ambpresent[channel]); |
| edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n", |
| channel, pvt->ambpresent[channel]); |
| |
| channel = to_channel(1, branch); |
| pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], |
| AMBPRESENT_1, |
| &pvt->ambpresent[channel]); |
| edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n", |
| channel, pvt->ambpresent[channel]); |
| } |
| |
| /* Get the set of MTR[0-7] regs by each branch */ |
| for (slot = 0; slot < MAX_SLOTS; slot++) { |
| int where = mtr_regs[slot]; |
| for (branch = 0; branch < MAX_BRANCHES; branch++) { |
| pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], |
| where, |
| &pvt->mtr[slot][branch]); |
| for (ch = 0; ch < MAX_CH_PER_BRANCH; ch++) { |
| int channel = to_channel(ch, branch); |
| |
| dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, |
| mci->n_layers, branch, ch, slot); |
| |
| dinfo = &pvt->dimm_info[slot][channel]; |
| |
| mtr = decode_mtr(pvt, slot, ch, branch, |
| dinfo, dimm); |
| |
| /* if no DIMMS on this row, continue */ |
| if (!MTR_DIMMS_PRESENT(mtr)) |
| continue; |
| |
| rc = 0; |
| |
| } |
| } |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * decode_mir() - Decodes Memory Interleave Register (MIR) info |
| * @int mir_no: number of the MIR register to decode |
| * @mir: array with the MIR data cached on the driver |
| */ |
| static void decode_mir(int mir_no, u16 mir[MAX_MIR]) |
| { |
| if (mir[mir_no] & 3) |
| edac_dbg(2, "MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n", |
| mir_no, |
| (mir[mir_no] >> 4) & 0xfff, |
| (mir[mir_no] & 1) ? "B0" : "", |
| (mir[mir_no] & 2) ? "B1" : ""); |
| } |
| |
| /** |
| * i7300_get_mc_regs() - Get the contents of the MC enumeration registers |
| * @mci: struct mem_ctl_info pointer |
| * |
| * Data read is cached internally for its usage when needed |
| */ |
| static int i7300_get_mc_regs(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt; |
| u32 actual_tolm; |
| int i, rc; |
| |
| pvt = mci->pvt_info; |
| |
| pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE, |
| (u32 *) &pvt->ambase); |
| |
| edac_dbg(2, "AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase); |
| |
| /* Get the Branch Map regs */ |
| pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm); |
| pvt->tolm >>= 12; |
| edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n", |
| pvt->tolm, pvt->tolm); |
| |
| actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28)); |
| edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n", |
| actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28); |
| |
| /* Get memory controller settings */ |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS, |
| &pvt->mc_settings); |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A, |
| &pvt->mc_settings_a); |
| |
| if (IS_SINGLE_MODE(pvt->mc_settings_a)) |
| edac_dbg(0, "Memory controller operating on single mode\n"); |
| else |
| edac_dbg(0, "Memory controller operating on %smirrored mode\n", |
| IS_MIRRORED(pvt->mc_settings) ? "" : "non-"); |
| |
| edac_dbg(0, "Error detection is %s\n", |
| IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled"); |
| edac_dbg(0, "Retry is %s\n", |
| IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled"); |
| |
| /* Get Memory Interleave Range registers */ |
| pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0, |
| &pvt->mir[0]); |
| pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1, |
| &pvt->mir[1]); |
| pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2, |
| &pvt->mir[2]); |
| |
| /* Decode the MIR regs */ |
| for (i = 0; i < MAX_MIR; i++) |
| decode_mir(i, pvt->mir); |
| |
| rc = i7300_init_csrows(mci); |
| if (rc < 0) |
| return rc; |
| |
| /* Go and determine the size of each DIMM and place in an |
| * orderly matrix */ |
| print_dimm_size(pvt); |
| |
| return 0; |
| } |
| |
| /************************************************* |
| * i7300 Functions related to device probe/release |
| *************************************************/ |
| |
| /** |
| * i7300_put_devices() - Release the PCI devices |
| * @mci: struct mem_ctl_info pointer |
| */ |
| static void i7300_put_devices(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt; |
| int branch; |
| |
| pvt = mci->pvt_info; |
| |
| /* Decrement usage count for devices */ |
| for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++) |
| pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]); |
| pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs); |
| pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map); |
| } |
| |
| /** |
| * i7300_get_devices() - Find and perform 'get' operation on the MCH's |
| * device/functions we want to reference for this driver |
| * @mci: struct mem_ctl_info pointer |
| * |
| * Access and prepare the several devices for usage: |
| * I7300 devices used by this driver: |
| * Device 16, functions 0,1 and 2: PCI_DEVICE_ID_INTEL_I7300_MCH_ERR |
| * Device 21 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB0 |
| * Device 22 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB1 |
| */ |
| static int i7300_get_devices(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt; |
| struct pci_dev *pdev; |
| |
| pvt = mci->pvt_info; |
| |
| /* Attempt to 'get' the MCH register we want */ |
| pdev = NULL; |
| while (!pvt->pci_dev_16_1_fsb_addr_map || |
| !pvt->pci_dev_16_2_fsb_err_regs) { |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev); |
| if (!pdev) { |
| /* End of list, leave */ |
| i7300_printk(KERN_ERR, |
| "'system address,Process Bus' " |
| "device not found:" |
| "vendor 0x%x device 0x%x ERR funcs " |
| "(broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I7300_MCH_ERR); |
| goto error; |
| } |
| |
| /* Store device 16 funcs 1 and 2 */ |
| switch (PCI_FUNC(pdev->devfn)) { |
| case 1: |
| pvt->pci_dev_16_1_fsb_addr_map = pdev; |
| break; |
| case 2: |
| pvt->pci_dev_16_2_fsb_err_regs = pdev; |
| break; |
| } |
| } |
| |
| edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n", |
| pci_name(pvt->pci_dev_16_0_fsb_ctlr), |
| pvt->pci_dev_16_0_fsb_ctlr->vendor, |
| pvt->pci_dev_16_0_fsb_ctlr->device); |
| edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n", |
| pci_name(pvt->pci_dev_16_1_fsb_addr_map), |
| pvt->pci_dev_16_1_fsb_addr_map->vendor, |
| pvt->pci_dev_16_1_fsb_addr_map->device); |
| edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n", |
| pci_name(pvt->pci_dev_16_2_fsb_err_regs), |
| pvt->pci_dev_16_2_fsb_err_regs->vendor, |
| pvt->pci_dev_16_2_fsb_err_regs->device); |
| |
| pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I7300_MCH_FB0, |
| NULL); |
| if (!pvt->pci_dev_2x_0_fbd_branch[0]) { |
| i7300_printk(KERN_ERR, |
| "MC: 'BRANCH 0' device not found:" |
| "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0); |
| goto error; |
| } |
| |
| pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I7300_MCH_FB1, |
| NULL); |
| if (!pvt->pci_dev_2x_0_fbd_branch[1]) { |
| i7300_printk(KERN_ERR, |
| "MC: 'BRANCH 1' device not found:" |
| "vendor 0x%x device 0x%x Func 0 " |
| "(broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I7300_MCH_FB1); |
| goto error; |
| } |
| |
| return 0; |
| |
| error: |
| i7300_put_devices(mci); |
| return -ENODEV; |
| } |
| |
| /** |
| * i7300_init_one() - Probe for one instance of the device |
| * @pdev: struct pci_dev pointer |
| * @id: struct pci_device_id pointer - currently unused |
| */ |
| static int i7300_init_one(struct pci_dev *pdev, const struct pci_device_id *id) |
| { |
| struct mem_ctl_info *mci; |
| struct edac_mc_layer layers[3]; |
| struct i7300_pvt *pvt; |
| int rc; |
| |
| /* wake up device */ |
| rc = pci_enable_device(pdev); |
| if (rc == -EIO) |
| return rc; |
| |
| edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n", |
| pdev->bus->number, |
| PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); |
| |
| /* We only are looking for func 0 of the set */ |
| if (PCI_FUNC(pdev->devfn) != 0) |
| return -ENODEV; |
| |
| /* allocate a new MC control structure */ |
| layers[0].type = EDAC_MC_LAYER_BRANCH; |
| layers[0].size = MAX_BRANCHES; |
| layers[0].is_virt_csrow = false; |
| layers[1].type = EDAC_MC_LAYER_CHANNEL; |
| layers[1].size = MAX_CH_PER_BRANCH; |
| layers[1].is_virt_csrow = true; |
| layers[2].type = EDAC_MC_LAYER_SLOT; |
| layers[2].size = MAX_SLOTS; |
| layers[2].is_virt_csrow = true; |
| mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); |
| if (mci == NULL) |
| return -ENOMEM; |
| |
| edac_dbg(0, "MC: mci = %p\n", mci); |
| |
| mci->pdev = &pdev->dev; /* record ptr to the generic device */ |
| |
| pvt = mci->pvt_info; |
| pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */ |
| |
| pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!pvt->tmp_prt_buffer) { |
| edac_mc_free(mci); |
| return -ENOMEM; |
| } |
| |
| /* 'get' the pci devices we want to reserve for our use */ |
| if (i7300_get_devices(mci)) |
| goto fail0; |
| |
| mci->mc_idx = 0; |
| mci->mtype_cap = MEM_FLAG_FB_DDR2; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE; |
| mci->edac_cap = EDAC_FLAG_NONE; |
| mci->mod_name = "i7300_edac.c"; |
| mci->mod_ver = I7300_REVISION; |
| mci->ctl_name = i7300_devs[0].ctl_name; |
| mci->dev_name = pci_name(pdev); |
| mci->ctl_page_to_phys = NULL; |
| |
| /* Set the function pointer to an actual operation function */ |
| mci->edac_check = i7300_check_error; |
| |
| /* initialize the MC control structure 'csrows' table |
| * with the mapping and control information */ |
| if (i7300_get_mc_regs(mci)) { |
| edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i7300_init_csrows() returned nonzero value\n"); |
| mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */ |
| } else { |
| edac_dbg(1, "MC: Enable error reporting now\n"); |
| i7300_enable_error_reporting(mci); |
| } |
| |
| /* add this new MC control structure to EDAC's list of MCs */ |
| if (edac_mc_add_mc(mci)) { |
| edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
| /* FIXME: perhaps some code should go here that disables error |
| * reporting if we just enabled it |
| */ |
| goto fail1; |
| } |
| |
| i7300_clear_error(mci); |
| |
| /* allocating generic PCI control info */ |
| i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); |
| if (!i7300_pci) { |
| printk(KERN_WARNING |
| "%s(): Unable to create PCI control\n", |
| __func__); |
| printk(KERN_WARNING |
| "%s(): PCI error report via EDAC not setup\n", |
| __func__); |
| } |
| |
| return 0; |
| |
| /* Error exit unwinding stack */ |
| fail1: |
| |
| i7300_put_devices(mci); |
| |
| fail0: |
| kfree(pvt->tmp_prt_buffer); |
| edac_mc_free(mci); |
| return -ENODEV; |
| } |
| |
| /** |
| * i7300_remove_one() - Remove the driver |
| * @pdev: struct pci_dev pointer |
| */ |
| static void i7300_remove_one(struct pci_dev *pdev) |
| { |
| struct mem_ctl_info *mci; |
| char *tmp; |
| |
| edac_dbg(0, "\n"); |
| |
| if (i7300_pci) |
| edac_pci_release_generic_ctl(i7300_pci); |
| |
| mci = edac_mc_del_mc(&pdev->dev); |
| if (!mci) |
| return; |
| |
| tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer; |
| |
| /* retrieve references to resources, and free those resources */ |
| i7300_put_devices(mci); |
| |
| kfree(tmp); |
| edac_mc_free(mci); |
| } |
| |
| /* |
| * pci_device_id: table for which devices we are looking for |
| * |
| * Has only 8086:360c PCI ID |
| */ |
| static DEFINE_PCI_DEVICE_TABLE(i7300_pci_tbl) = { |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)}, |
| {0,} /* 0 terminated list. */ |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, i7300_pci_tbl); |
| |
| /* |
| * i7300_driver: pci_driver structure for this module |
| */ |
| static struct pci_driver i7300_driver = { |
| .name = "i7300_edac", |
| .probe = i7300_init_one, |
| .remove = i7300_remove_one, |
| .id_table = i7300_pci_tbl, |
| }; |
| |
| /** |
| * i7300_init() - Registers the driver |
| */ |
| static int __init i7300_init(void) |
| { |
| int pci_rc; |
| |
| edac_dbg(2, "\n"); |
| |
| /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| opstate_init(); |
| |
| pci_rc = pci_register_driver(&i7300_driver); |
| |
| return (pci_rc < 0) ? pci_rc : 0; |
| } |
| |
| /** |
| * i7300_init() - Unregisters the driver |
| */ |
| static void __exit i7300_exit(void) |
| { |
| edac_dbg(2, "\n"); |
| pci_unregister_driver(&i7300_driver); |
| } |
| |
| module_init(i7300_init); |
| module_exit(i7300_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); |
| MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); |
| MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - " |
| I7300_REVISION); |
| |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |