| /* |
| * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/iio/iio.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/math64.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/regmap.h> |
| #include <linux/slab.h> |
| #include <linux/log2.h> |
| |
| #include <dt-bindings/iio/qcom,spmi-vadc.h> |
| |
| /* VADC register and bit definitions */ |
| #define VADC_REVISION2 0x1 |
| #define VADC_REVISION2_SUPPORTED_VADC 1 |
| |
| #define VADC_PERPH_TYPE 0x4 |
| #define VADC_PERPH_TYPE_ADC 8 |
| |
| #define VADC_PERPH_SUBTYPE 0x5 |
| #define VADC_PERPH_SUBTYPE_VADC 1 |
| |
| #define VADC_STATUS1 0x8 |
| #define VADC_STATUS1_OP_MODE 4 |
| #define VADC_STATUS1_REQ_STS BIT(1) |
| #define VADC_STATUS1_EOC BIT(0) |
| #define VADC_STATUS1_REQ_STS_EOC_MASK 0x3 |
| |
| #define VADC_MODE_CTL 0x40 |
| #define VADC_OP_MODE_SHIFT 3 |
| #define VADC_OP_MODE_NORMAL 0 |
| #define VADC_AMUX_TRIM_EN BIT(1) |
| #define VADC_ADC_TRIM_EN BIT(0) |
| |
| #define VADC_EN_CTL1 0x46 |
| #define VADC_EN_CTL1_SET BIT(7) |
| |
| #define VADC_ADC_CH_SEL_CTL 0x48 |
| |
| #define VADC_ADC_DIG_PARAM 0x50 |
| #define VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT 2 |
| |
| #define VADC_HW_SETTLE_DELAY 0x51 |
| |
| #define VADC_CONV_REQ 0x52 |
| #define VADC_CONV_REQ_SET BIT(7) |
| |
| #define VADC_FAST_AVG_CTL 0x5a |
| #define VADC_FAST_AVG_EN 0x5b |
| #define VADC_FAST_AVG_EN_SET BIT(7) |
| |
| #define VADC_ACCESS 0xd0 |
| #define VADC_ACCESS_DATA 0xa5 |
| |
| #define VADC_PERH_RESET_CTL3 0xda |
| #define VADC_FOLLOW_WARM_RB BIT(2) |
| |
| #define VADC_DATA 0x60 /* 16 bits */ |
| |
| #define VADC_CONV_TIME_MIN_US 2000 |
| #define VADC_CONV_TIME_MAX_US 2100 |
| |
| /* Min ADC code represents 0V */ |
| #define VADC_MIN_ADC_CODE 0x6000 |
| /* Max ADC code represents full-scale range of 1.8V */ |
| #define VADC_MAX_ADC_CODE 0xa800 |
| |
| #define VADC_ABSOLUTE_RANGE_UV 625000 |
| #define VADC_RATIOMETRIC_RANGE_UV 1800000 |
| |
| #define VADC_DEF_PRESCALING 0 /* 1:1 */ |
| #define VADC_DEF_DECIMATION 0 /* 512 */ |
| #define VADC_DEF_HW_SETTLE_TIME 0 /* 0 us */ |
| #define VADC_DEF_AVG_SAMPLES 0 /* 1 sample */ |
| #define VADC_DEF_CALIB_TYPE VADC_CALIB_ABSOLUTE |
| |
| #define VADC_DECIMATION_MIN 512 |
| #define VADC_DECIMATION_MAX 4096 |
| |
| #define VADC_HW_SETTLE_DELAY_MAX 10000 |
| #define VADC_AVG_SAMPLES_MAX 512 |
| |
| #define KELVINMIL_CELSIUSMIL 273150 |
| |
| #define VADC_CHAN_MIN VADC_USBIN |
| #define VADC_CHAN_MAX VADC_LR_MUX3_BUF_PU1_PU2_XO_THERM |
| |
| /* |
| * VADC_CALIB_ABSOLUTE: uses the 625mV and 1.25V as reference channels. |
| * VADC_CALIB_RATIOMETRIC: uses the reference voltage (1.8V) and GND for |
| * calibration. |
| */ |
| enum vadc_calibration { |
| VADC_CALIB_ABSOLUTE = 0, |
| VADC_CALIB_RATIOMETRIC |
| }; |
| |
| /** |
| * struct vadc_linear_graph - Represent ADC characteristics. |
| * @dy: numerator slope to calculate the gain. |
| * @dx: denominator slope to calculate the gain. |
| * @gnd: A/D word of the ground reference used for the channel. |
| * |
| * Each ADC device has different offset and gain parameters which are |
| * computed to calibrate the device. |
| */ |
| struct vadc_linear_graph { |
| s32 dy; |
| s32 dx; |
| s32 gnd; |
| }; |
| |
| /** |
| * struct vadc_prescale_ratio - Represent scaling ratio for ADC input. |
| * @num: the inverse numerator of the gain applied to the input channel. |
| * @den: the inverse denominator of the gain applied to the input channel. |
| */ |
| struct vadc_prescale_ratio { |
| u32 num; |
| u32 den; |
| }; |
| |
| /** |
| * struct vadc_channel_prop - VADC channel property. |
| * @channel: channel number, refer to the channel list. |
| * @calibration: calibration type. |
| * @decimation: sampling rate supported for the channel. |
| * @prescale: channel scaling performed on the input signal. |
| * @hw_settle_time: the time between AMUX being configured and the |
| * start of conversion. |
| * @avg_samples: ability to provide single result from the ADC |
| * that is an average of multiple measurements. |
| */ |
| struct vadc_channel_prop { |
| unsigned int channel; |
| enum vadc_calibration calibration; |
| unsigned int decimation; |
| unsigned int prescale; |
| unsigned int hw_settle_time; |
| unsigned int avg_samples; |
| }; |
| |
| /** |
| * struct vadc_priv - VADC private structure. |
| * @regmap: pointer to struct regmap. |
| * @dev: pointer to struct device. |
| * @base: base address for the ADC peripheral. |
| * @nchannels: number of VADC channels. |
| * @chan_props: array of VADC channel properties. |
| * @iio_chans: array of IIO channels specification. |
| * @are_ref_measured: are reference points measured. |
| * @poll_eoc: use polling instead of interrupt. |
| * @complete: VADC result notification after interrupt is received. |
| * @graph: store parameters for calibration. |
| * @lock: ADC lock for access to the peripheral. |
| */ |
| struct vadc_priv { |
| struct regmap *regmap; |
| struct device *dev; |
| u16 base; |
| unsigned int nchannels; |
| struct vadc_channel_prop *chan_props; |
| struct iio_chan_spec *iio_chans; |
| bool are_ref_measured; |
| bool poll_eoc; |
| struct completion complete; |
| struct vadc_linear_graph graph[2]; |
| struct mutex lock; |
| }; |
| |
| static const struct vadc_prescale_ratio vadc_prescale_ratios[] = { |
| {.num = 1, .den = 1}, |
| {.num = 1, .den = 3}, |
| {.num = 1, .den = 4}, |
| {.num = 1, .den = 6}, |
| {.num = 1, .den = 20}, |
| {.num = 1, .den = 8}, |
| {.num = 10, .den = 81}, |
| {.num = 1, .den = 10} |
| }; |
| |
| static int vadc_read(struct vadc_priv *vadc, u16 offset, u8 *data) |
| { |
| return regmap_bulk_read(vadc->regmap, vadc->base + offset, data, 1); |
| } |
| |
| static int vadc_write(struct vadc_priv *vadc, u16 offset, u8 data) |
| { |
| return regmap_write(vadc->regmap, vadc->base + offset, data); |
| } |
| |
| static int vadc_reset(struct vadc_priv *vadc) |
| { |
| u8 data; |
| int ret; |
| |
| ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA); |
| if (ret) |
| return ret; |
| |
| ret = vadc_read(vadc, VADC_PERH_RESET_CTL3, &data); |
| if (ret) |
| return ret; |
| |
| ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA); |
| if (ret) |
| return ret; |
| |
| data |= VADC_FOLLOW_WARM_RB; |
| |
| return vadc_write(vadc, VADC_PERH_RESET_CTL3, data); |
| } |
| |
| static int vadc_set_state(struct vadc_priv *vadc, bool state) |
| { |
| return vadc_write(vadc, VADC_EN_CTL1, state ? VADC_EN_CTL1_SET : 0); |
| } |
| |
| static void vadc_show_status(struct vadc_priv *vadc) |
| { |
| u8 mode, sta1, chan, dig, en, req; |
| int ret; |
| |
| ret = vadc_read(vadc, VADC_MODE_CTL, &mode); |
| if (ret) |
| return; |
| |
| ret = vadc_read(vadc, VADC_ADC_DIG_PARAM, &dig); |
| if (ret) |
| return; |
| |
| ret = vadc_read(vadc, VADC_ADC_CH_SEL_CTL, &chan); |
| if (ret) |
| return; |
| |
| ret = vadc_read(vadc, VADC_CONV_REQ, &req); |
| if (ret) |
| return; |
| |
| ret = vadc_read(vadc, VADC_STATUS1, &sta1); |
| if (ret) |
| return; |
| |
| ret = vadc_read(vadc, VADC_EN_CTL1, &en); |
| if (ret) |
| return; |
| |
| dev_err(vadc->dev, |
| "mode:%02x en:%02x chan:%02x dig:%02x req:%02x sta1:%02x\n", |
| mode, en, chan, dig, req, sta1); |
| } |
| |
| static int vadc_configure(struct vadc_priv *vadc, |
| struct vadc_channel_prop *prop) |
| { |
| u8 decimation, mode_ctrl; |
| int ret; |
| |
| /* Mode selection */ |
| mode_ctrl = (VADC_OP_MODE_NORMAL << VADC_OP_MODE_SHIFT) | |
| VADC_ADC_TRIM_EN | VADC_AMUX_TRIM_EN; |
| ret = vadc_write(vadc, VADC_MODE_CTL, mode_ctrl); |
| if (ret) |
| return ret; |
| |
| /* Channel selection */ |
| ret = vadc_write(vadc, VADC_ADC_CH_SEL_CTL, prop->channel); |
| if (ret) |
| return ret; |
| |
| /* Digital parameter setup */ |
| decimation = prop->decimation << VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT; |
| ret = vadc_write(vadc, VADC_ADC_DIG_PARAM, decimation); |
| if (ret) |
| return ret; |
| |
| /* HW settle time delay */ |
| ret = vadc_write(vadc, VADC_HW_SETTLE_DELAY, prop->hw_settle_time); |
| if (ret) |
| return ret; |
| |
| ret = vadc_write(vadc, VADC_FAST_AVG_CTL, prop->avg_samples); |
| if (ret) |
| return ret; |
| |
| if (prop->avg_samples) |
| ret = vadc_write(vadc, VADC_FAST_AVG_EN, VADC_FAST_AVG_EN_SET); |
| else |
| ret = vadc_write(vadc, VADC_FAST_AVG_EN, 0); |
| |
| return ret; |
| } |
| |
| static int vadc_poll_wait_eoc(struct vadc_priv *vadc, unsigned int interval_us) |
| { |
| unsigned int count, retry; |
| u8 sta1; |
| int ret; |
| |
| retry = interval_us / VADC_CONV_TIME_MIN_US; |
| |
| for (count = 0; count < retry; count++) { |
| ret = vadc_read(vadc, VADC_STATUS1, &sta1); |
| if (ret) |
| return ret; |
| |
| sta1 &= VADC_STATUS1_REQ_STS_EOC_MASK; |
| if (sta1 == VADC_STATUS1_EOC) |
| return 0; |
| |
| usleep_range(VADC_CONV_TIME_MIN_US, VADC_CONV_TIME_MAX_US); |
| } |
| |
| vadc_show_status(vadc); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int vadc_read_result(struct vadc_priv *vadc, u16 *data) |
| { |
| int ret; |
| |
| ret = regmap_bulk_read(vadc->regmap, vadc->base + VADC_DATA, data, 2); |
| if (ret) |
| return ret; |
| |
| *data = clamp_t(u16, *data, VADC_MIN_ADC_CODE, VADC_MAX_ADC_CODE); |
| |
| return 0; |
| } |
| |
| static struct vadc_channel_prop *vadc_get_channel(struct vadc_priv *vadc, |
| unsigned int num) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < vadc->nchannels; i++) |
| if (vadc->chan_props[i].channel == num) |
| return &vadc->chan_props[i]; |
| |
| dev_dbg(vadc->dev, "no such channel %02x\n", num); |
| |
| return NULL; |
| } |
| |
| static int vadc_do_conversion(struct vadc_priv *vadc, |
| struct vadc_channel_prop *prop, u16 *data) |
| { |
| unsigned int timeout; |
| int ret; |
| |
| mutex_lock(&vadc->lock); |
| |
| ret = vadc_configure(vadc, prop); |
| if (ret) |
| goto unlock; |
| |
| if (!vadc->poll_eoc) |
| reinit_completion(&vadc->complete); |
| |
| ret = vadc_set_state(vadc, true); |
| if (ret) |
| goto unlock; |
| |
| ret = vadc_write(vadc, VADC_CONV_REQ, VADC_CONV_REQ_SET); |
| if (ret) |
| goto err_disable; |
| |
| timeout = BIT(prop->avg_samples) * VADC_CONV_TIME_MIN_US * 2; |
| |
| if (vadc->poll_eoc) { |
| ret = vadc_poll_wait_eoc(vadc, timeout); |
| } else { |
| ret = wait_for_completion_timeout(&vadc->complete, timeout); |
| if (!ret) { |
| ret = -ETIMEDOUT; |
| goto err_disable; |
| } |
| |
| /* Double check conversion status */ |
| ret = vadc_poll_wait_eoc(vadc, VADC_CONV_TIME_MIN_US); |
| if (ret) |
| goto err_disable; |
| } |
| |
| ret = vadc_read_result(vadc, data); |
| |
| err_disable: |
| vadc_set_state(vadc, false); |
| if (ret) |
| dev_err(vadc->dev, "conversion failed\n"); |
| unlock: |
| mutex_unlock(&vadc->lock); |
| return ret; |
| } |
| |
| static int vadc_measure_ref_points(struct vadc_priv *vadc) |
| { |
| struct vadc_channel_prop *prop; |
| u16 read_1, read_2; |
| int ret; |
| |
| vadc->graph[VADC_CALIB_RATIOMETRIC].dx = VADC_RATIOMETRIC_RANGE_UV; |
| vadc->graph[VADC_CALIB_ABSOLUTE].dx = VADC_ABSOLUTE_RANGE_UV; |
| |
| prop = vadc_get_channel(vadc, VADC_REF_1250MV); |
| ret = vadc_do_conversion(vadc, prop, &read_1); |
| if (ret) |
| goto err; |
| |
| /* Try with buffered 625mV channel first */ |
| prop = vadc_get_channel(vadc, VADC_SPARE1); |
| if (!prop) |
| prop = vadc_get_channel(vadc, VADC_REF_625MV); |
| |
| ret = vadc_do_conversion(vadc, prop, &read_2); |
| if (ret) |
| goto err; |
| |
| if (read_1 == read_2) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| vadc->graph[VADC_CALIB_ABSOLUTE].dy = read_1 - read_2; |
| vadc->graph[VADC_CALIB_ABSOLUTE].gnd = read_2; |
| |
| /* Ratiometric calibration */ |
| prop = vadc_get_channel(vadc, VADC_VDD_VADC); |
| ret = vadc_do_conversion(vadc, prop, &read_1); |
| if (ret) |
| goto err; |
| |
| prop = vadc_get_channel(vadc, VADC_GND_REF); |
| ret = vadc_do_conversion(vadc, prop, &read_2); |
| if (ret) |
| goto err; |
| |
| if (read_1 == read_2) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| vadc->graph[VADC_CALIB_RATIOMETRIC].dy = read_1 - read_2; |
| vadc->graph[VADC_CALIB_RATIOMETRIC].gnd = read_2; |
| err: |
| if (ret) |
| dev_err(vadc->dev, "measure reference points failed\n"); |
| |
| return ret; |
| } |
| |
| static s32 vadc_calibrate(struct vadc_priv *vadc, |
| const struct vadc_channel_prop *prop, u16 adc_code) |
| { |
| const struct vadc_prescale_ratio *prescale; |
| s64 voltage; |
| |
| voltage = adc_code - vadc->graph[prop->calibration].gnd; |
| voltage *= vadc->graph[prop->calibration].dx; |
| voltage = div64_s64(voltage, vadc->graph[prop->calibration].dy); |
| |
| if (prop->calibration == VADC_CALIB_ABSOLUTE) |
| voltage += vadc->graph[prop->calibration].dx; |
| |
| if (voltage < 0) |
| voltage = 0; |
| |
| prescale = &vadc_prescale_ratios[prop->prescale]; |
| |
| voltage = voltage * prescale->den; |
| |
| return div64_s64(voltage, prescale->num); |
| } |
| |
| static int vadc_decimation_from_dt(u32 value) |
| { |
| if (!is_power_of_2(value) || value < VADC_DECIMATION_MIN || |
| value > VADC_DECIMATION_MAX) |
| return -EINVAL; |
| |
| return __ffs64(value / VADC_DECIMATION_MIN); |
| } |
| |
| static int vadc_prescaling_from_dt(u32 num, u32 den) |
| { |
| unsigned int pre; |
| |
| for (pre = 0; pre < ARRAY_SIZE(vadc_prescale_ratios); pre++) |
| if (vadc_prescale_ratios[pre].num == num && |
| vadc_prescale_ratios[pre].den == den) |
| break; |
| |
| if (pre == ARRAY_SIZE(vadc_prescale_ratios)) |
| return -EINVAL; |
| |
| return pre; |
| } |
| |
| static int vadc_hw_settle_time_from_dt(u32 value) |
| { |
| if ((value <= 1000 && value % 100) || (value > 1000 && value % 2000)) |
| return -EINVAL; |
| |
| if (value <= 1000) |
| value /= 100; |
| else |
| value = value / 2000 + 10; |
| |
| return value; |
| } |
| |
| static int vadc_avg_samples_from_dt(u32 value) |
| { |
| if (!is_power_of_2(value) || value > VADC_AVG_SAMPLES_MAX) |
| return -EINVAL; |
| |
| return __ffs64(value); |
| } |
| |
| static int vadc_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, int *val, int *val2, |
| long mask) |
| { |
| struct vadc_priv *vadc = iio_priv(indio_dev); |
| struct vadc_channel_prop *prop; |
| u16 adc_code; |
| int ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_PROCESSED: |
| prop = &vadc->chan_props[chan->address]; |
| ret = vadc_do_conversion(vadc, prop, &adc_code); |
| if (ret) |
| break; |
| |
| *val = vadc_calibrate(vadc, prop, adc_code); |
| |
| /* 2mV/K, return milli Celsius */ |
| *val /= 2; |
| *val -= KELVINMIL_CELSIUSMIL; |
| return IIO_VAL_INT; |
| case IIO_CHAN_INFO_RAW: |
| prop = &vadc->chan_props[chan->address]; |
| ret = vadc_do_conversion(vadc, prop, &adc_code); |
| if (ret) |
| break; |
| |
| *val = vadc_calibrate(vadc, prop, adc_code); |
| return IIO_VAL_INT; |
| case IIO_CHAN_INFO_SCALE: |
| *val = 0; |
| *val2 = 1000; |
| return IIO_VAL_INT_PLUS_MICRO; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int vadc_of_xlate(struct iio_dev *indio_dev, |
| const struct of_phandle_args *iiospec) |
| { |
| struct vadc_priv *vadc = iio_priv(indio_dev); |
| unsigned int i; |
| |
| for (i = 0; i < vadc->nchannels; i++) |
| if (vadc->iio_chans[i].channel == iiospec->args[0]) |
| return i; |
| |
| return -EINVAL; |
| } |
| |
| static const struct iio_info vadc_info = { |
| .read_raw = vadc_read_raw, |
| .of_xlate = vadc_of_xlate, |
| .driver_module = THIS_MODULE, |
| }; |
| |
| struct vadc_channels { |
| const char *datasheet_name; |
| unsigned int prescale_index; |
| enum iio_chan_type type; |
| long info_mask; |
| }; |
| |
| #define VADC_CHAN(_dname, _type, _mask, _pre) \ |
| [VADC_##_dname] = { \ |
| .datasheet_name = __stringify(_dname), \ |
| .prescale_index = _pre, \ |
| .type = _type, \ |
| .info_mask = _mask \ |
| }, \ |
| |
| #define VADC_CHAN_TEMP(_dname, _pre) \ |
| VADC_CHAN(_dname, IIO_TEMP, BIT(IIO_CHAN_INFO_PROCESSED), _pre) \ |
| |
| #define VADC_CHAN_VOLT(_dname, _pre) \ |
| VADC_CHAN(_dname, IIO_VOLTAGE, \ |
| BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), \ |
| _pre) \ |
| |
| /* |
| * The array represents all possible ADC channels found in the supported PMICs. |
| * Every index in the array is equal to the channel number per datasheet. The |
| * gaps in the array should be treated as reserved channels. |
| */ |
| static const struct vadc_channels vadc_chans[] = { |
| VADC_CHAN_VOLT(USBIN, 4) |
| VADC_CHAN_VOLT(DCIN, 4) |
| VADC_CHAN_VOLT(VCHG_SNS, 3) |
| VADC_CHAN_VOLT(SPARE1_03, 1) |
| VADC_CHAN_VOLT(USB_ID_MV, 1) |
| VADC_CHAN_VOLT(VCOIN, 1) |
| VADC_CHAN_VOLT(VBAT_SNS, 1) |
| VADC_CHAN_VOLT(VSYS, 1) |
| VADC_CHAN_TEMP(DIE_TEMP, 0) |
| VADC_CHAN_VOLT(REF_625MV, 0) |
| VADC_CHAN_VOLT(REF_1250MV, 0) |
| VADC_CHAN_VOLT(CHG_TEMP, 0) |
| VADC_CHAN_VOLT(SPARE1, 0) |
| VADC_CHAN_VOLT(SPARE2, 0) |
| VADC_CHAN_VOLT(GND_REF, 0) |
| VADC_CHAN_VOLT(VDD_VADC, 0) |
| |
| VADC_CHAN_VOLT(P_MUX1_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX2_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX3_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX4_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX5_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX6_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX7_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX8_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX9_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX10_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX11_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX12_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX13_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX14_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX15_1_1, 0) |
| VADC_CHAN_VOLT(P_MUX16_1_1, 0) |
| |
| VADC_CHAN_VOLT(P_MUX1_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX2_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX3_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX4_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX5_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX6_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX7_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX8_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX9_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX10_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX11_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX12_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX13_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX14_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX15_1_3, 1) |
| VADC_CHAN_VOLT(P_MUX16_1_3, 1) |
| |
| VADC_CHAN_VOLT(LR_MUX1_BAT_THERM, 0) |
| VADC_CHAN_VOLT(LR_MUX2_BAT_ID, 0) |
| VADC_CHAN_VOLT(LR_MUX3_XO_THERM, 0) |
| VADC_CHAN_VOLT(LR_MUX4_AMUX_THM1, 0) |
| VADC_CHAN_VOLT(LR_MUX5_AMUX_THM2, 0) |
| VADC_CHAN_VOLT(LR_MUX6_AMUX_THM3, 0) |
| VADC_CHAN_VOLT(LR_MUX7_HW_ID, 0) |
| VADC_CHAN_VOLT(LR_MUX8_AMUX_THM4, 0) |
| VADC_CHAN_VOLT(LR_MUX9_AMUX_THM5, 0) |
| VADC_CHAN_VOLT(LR_MUX10_USB_ID, 0) |
| VADC_CHAN_VOLT(AMUX_PU1, 0) |
| VADC_CHAN_VOLT(AMUX_PU2, 0) |
| VADC_CHAN_VOLT(LR_MUX3_BUF_XO_THERM, 0) |
| |
| VADC_CHAN_VOLT(LR_MUX1_PU1_BAT_THERM, 0) |
| VADC_CHAN_VOLT(LR_MUX2_PU1_BAT_ID, 0) |
| VADC_CHAN_VOLT(LR_MUX3_PU1_XO_THERM, 0) |
| VADC_CHAN_VOLT(LR_MUX4_PU1_AMUX_THM1, 0) |
| VADC_CHAN_VOLT(LR_MUX5_PU1_AMUX_THM2, 0) |
| VADC_CHAN_VOLT(LR_MUX6_PU1_AMUX_THM3, 0) |
| VADC_CHAN_VOLT(LR_MUX7_PU1_AMUX_HW_ID, 0) |
| VADC_CHAN_VOLT(LR_MUX8_PU1_AMUX_THM4, 0) |
| VADC_CHAN_VOLT(LR_MUX9_PU1_AMUX_THM5, 0) |
| VADC_CHAN_VOLT(LR_MUX10_PU1_AMUX_USB_ID, 0) |
| VADC_CHAN_VOLT(LR_MUX3_BUF_PU1_XO_THERM, 0) |
| |
| VADC_CHAN_VOLT(LR_MUX1_PU2_BAT_THERM, 0) |
| VADC_CHAN_VOLT(LR_MUX2_PU2_BAT_ID, 0) |
| VADC_CHAN_VOLT(LR_MUX3_PU2_XO_THERM, 0) |
| VADC_CHAN_VOLT(LR_MUX4_PU2_AMUX_THM1, 0) |
| VADC_CHAN_VOLT(LR_MUX5_PU2_AMUX_THM2, 0) |
| VADC_CHAN_VOLT(LR_MUX6_PU2_AMUX_THM3, 0) |
| VADC_CHAN_VOLT(LR_MUX7_PU2_AMUX_HW_ID, 0) |
| VADC_CHAN_VOLT(LR_MUX8_PU2_AMUX_THM4, 0) |
| VADC_CHAN_VOLT(LR_MUX9_PU2_AMUX_THM5, 0) |
| VADC_CHAN_VOLT(LR_MUX10_PU2_AMUX_USB_ID, 0) |
| VADC_CHAN_VOLT(LR_MUX3_BUF_PU2_XO_THERM, 0) |
| |
| VADC_CHAN_VOLT(LR_MUX1_PU1_PU2_BAT_THERM, 0) |
| VADC_CHAN_VOLT(LR_MUX2_PU1_PU2_BAT_ID, 0) |
| VADC_CHAN_VOLT(LR_MUX3_PU1_PU2_XO_THERM, 0) |
| VADC_CHAN_VOLT(LR_MUX4_PU1_PU2_AMUX_THM1, 0) |
| VADC_CHAN_VOLT(LR_MUX5_PU1_PU2_AMUX_THM2, 0) |
| VADC_CHAN_VOLT(LR_MUX6_PU1_PU2_AMUX_THM3, 0) |
| VADC_CHAN_VOLT(LR_MUX7_PU1_PU2_AMUX_HW_ID, 0) |
| VADC_CHAN_VOLT(LR_MUX8_PU1_PU2_AMUX_THM4, 0) |
| VADC_CHAN_VOLT(LR_MUX9_PU1_PU2_AMUX_THM5, 0) |
| VADC_CHAN_VOLT(LR_MUX10_PU1_PU2_AMUX_USB_ID, 0) |
| VADC_CHAN_VOLT(LR_MUX3_BUF_PU1_PU2_XO_THERM, 0) |
| }; |
| |
| static int vadc_get_dt_channel_data(struct device *dev, |
| struct vadc_channel_prop *prop, |
| struct device_node *node) |
| { |
| const char *name = node->name; |
| u32 chan, value, varr[2]; |
| int ret; |
| |
| ret = of_property_read_u32(node, "reg", &chan); |
| if (ret) { |
| dev_err(dev, "invalid channel number %s\n", name); |
| return ret; |
| } |
| |
| if (chan > VADC_CHAN_MAX || chan < VADC_CHAN_MIN) { |
| dev_err(dev, "%s invalid channel number %d\n", name, chan); |
| return -EINVAL; |
| } |
| |
| /* the channel has DT description */ |
| prop->channel = chan; |
| |
| ret = of_property_read_u32(node, "qcom,decimation", &value); |
| if (!ret) { |
| ret = vadc_decimation_from_dt(value); |
| if (ret < 0) { |
| dev_err(dev, "%02x invalid decimation %d\n", |
| chan, value); |
| return ret; |
| } |
| prop->decimation = ret; |
| } else { |
| prop->decimation = VADC_DEF_DECIMATION; |
| } |
| |
| ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2); |
| if (!ret) { |
| ret = vadc_prescaling_from_dt(varr[0], varr[1]); |
| if (ret < 0) { |
| dev_err(dev, "%02x invalid pre-scaling <%d %d>\n", |
| chan, varr[0], varr[1]); |
| return ret; |
| } |
| prop->prescale = ret; |
| } else { |
| prop->prescale = vadc_chans[prop->channel].prescale_index; |
| } |
| |
| ret = of_property_read_u32(node, "qcom,hw-settle-time", &value); |
| if (!ret) { |
| ret = vadc_hw_settle_time_from_dt(value); |
| if (ret < 0) { |
| dev_err(dev, "%02x invalid hw-settle-time %d us\n", |
| chan, value); |
| return ret; |
| } |
| prop->hw_settle_time = ret; |
| } else { |
| prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME; |
| } |
| |
| ret = of_property_read_u32(node, "qcom,avg-samples", &value); |
| if (!ret) { |
| ret = vadc_avg_samples_from_dt(value); |
| if (ret < 0) { |
| dev_err(dev, "%02x invalid avg-samples %d\n", |
| chan, value); |
| return ret; |
| } |
| prop->avg_samples = ret; |
| } else { |
| prop->avg_samples = VADC_DEF_AVG_SAMPLES; |
| } |
| |
| if (of_property_read_bool(node, "qcom,ratiometric")) |
| prop->calibration = VADC_CALIB_RATIOMETRIC; |
| else |
| prop->calibration = VADC_CALIB_ABSOLUTE; |
| |
| dev_dbg(dev, "%02x name %s\n", chan, name); |
| |
| return 0; |
| } |
| |
| static int vadc_get_dt_data(struct vadc_priv *vadc, struct device_node *node) |
| { |
| const struct vadc_channels *vadc_chan; |
| struct iio_chan_spec *iio_chan; |
| struct vadc_channel_prop prop; |
| struct device_node *child; |
| unsigned int index = 0; |
| int ret; |
| |
| vadc->nchannels = of_get_available_child_count(node); |
| if (!vadc->nchannels) |
| return -EINVAL; |
| |
| vadc->iio_chans = devm_kcalloc(vadc->dev, vadc->nchannels, |
| sizeof(*vadc->iio_chans), GFP_KERNEL); |
| if (!vadc->iio_chans) |
| return -ENOMEM; |
| |
| vadc->chan_props = devm_kcalloc(vadc->dev, vadc->nchannels, |
| sizeof(*vadc->chan_props), GFP_KERNEL); |
| if (!vadc->chan_props) |
| return -ENOMEM; |
| |
| iio_chan = vadc->iio_chans; |
| |
| for_each_available_child_of_node(node, child) { |
| ret = vadc_get_dt_channel_data(vadc->dev, &prop, child); |
| if (ret) |
| return ret; |
| |
| vadc->chan_props[index] = prop; |
| |
| vadc_chan = &vadc_chans[prop.channel]; |
| |
| iio_chan->channel = prop.channel; |
| iio_chan->datasheet_name = vadc_chan->datasheet_name; |
| iio_chan->info_mask_separate = vadc_chan->info_mask; |
| iio_chan->type = vadc_chan->type; |
| iio_chan->indexed = 1; |
| iio_chan->address = index++; |
| |
| iio_chan++; |
| } |
| |
| /* These channels are mandatory, they are used as reference points */ |
| if (!vadc_get_channel(vadc, VADC_REF_1250MV)) { |
| dev_err(vadc->dev, "Please define 1.25V channel\n"); |
| return -ENODEV; |
| } |
| |
| if (!vadc_get_channel(vadc, VADC_REF_625MV)) { |
| dev_err(vadc->dev, "Please define 0.625V channel\n"); |
| return -ENODEV; |
| } |
| |
| if (!vadc_get_channel(vadc, VADC_VDD_VADC)) { |
| dev_err(vadc->dev, "Please define VDD channel\n"); |
| return -ENODEV; |
| } |
| |
| if (!vadc_get_channel(vadc, VADC_GND_REF)) { |
| dev_err(vadc->dev, "Please define GND channel\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static irqreturn_t vadc_isr(int irq, void *dev_id) |
| { |
| struct vadc_priv *vadc = dev_id; |
| |
| complete(&vadc->complete); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int vadc_check_revision(struct vadc_priv *vadc) |
| { |
| u8 val; |
| int ret; |
| |
| ret = vadc_read(vadc, VADC_PERPH_TYPE, &val); |
| if (ret) |
| return ret; |
| |
| if (val < VADC_PERPH_TYPE_ADC) { |
| dev_err(vadc->dev, "%d is not ADC\n", val); |
| return -ENODEV; |
| } |
| |
| ret = vadc_read(vadc, VADC_PERPH_SUBTYPE, &val); |
| if (ret) |
| return ret; |
| |
| if (val < VADC_PERPH_SUBTYPE_VADC) { |
| dev_err(vadc->dev, "%d is not VADC\n", val); |
| return -ENODEV; |
| } |
| |
| ret = vadc_read(vadc, VADC_REVISION2, &val); |
| if (ret) |
| return ret; |
| |
| if (val < VADC_REVISION2_SUPPORTED_VADC) { |
| dev_err(vadc->dev, "revision %d not supported\n", val); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static int vadc_probe(struct platform_device *pdev) |
| { |
| struct device_node *node = pdev->dev.of_node; |
| struct device *dev = &pdev->dev; |
| struct iio_dev *indio_dev; |
| struct vadc_priv *vadc; |
| struct regmap *regmap; |
| int ret, irq_eoc; |
| u32 reg; |
| |
| regmap = dev_get_regmap(dev->parent, NULL); |
| if (!regmap) |
| return -ENODEV; |
| |
| ret = of_property_read_u32(node, "reg", ®); |
| if (ret < 0) |
| return ret; |
| |
| indio_dev = devm_iio_device_alloc(dev, sizeof(*vadc)); |
| if (!indio_dev) |
| return -ENOMEM; |
| |
| vadc = iio_priv(indio_dev); |
| vadc->regmap = regmap; |
| vadc->dev = dev; |
| vadc->base = reg; |
| vadc->are_ref_measured = false; |
| init_completion(&vadc->complete); |
| mutex_init(&vadc->lock); |
| |
| ret = vadc_check_revision(vadc); |
| if (ret) |
| return ret; |
| |
| ret = vadc_get_dt_data(vadc, node); |
| if (ret) |
| return ret; |
| |
| irq_eoc = platform_get_irq(pdev, 0); |
| if (irq_eoc < 0) { |
| if (irq_eoc == -EPROBE_DEFER || irq_eoc == -EINVAL) |
| return irq_eoc; |
| vadc->poll_eoc = true; |
| } else { |
| ret = devm_request_irq(dev, irq_eoc, vadc_isr, 0, |
| "spmi-vadc", vadc); |
| if (ret) |
| return ret; |
| } |
| |
| ret = vadc_reset(vadc); |
| if (ret) { |
| dev_err(dev, "reset failed\n"); |
| return ret; |
| } |
| |
| ret = vadc_measure_ref_points(vadc); |
| if (ret) |
| return ret; |
| |
| indio_dev->dev.parent = dev; |
| indio_dev->dev.of_node = node; |
| indio_dev->name = pdev->name; |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| indio_dev->info = &vadc_info; |
| indio_dev->channels = vadc->iio_chans; |
| indio_dev->num_channels = vadc->nchannels; |
| |
| return devm_iio_device_register(dev, indio_dev); |
| } |
| |
| static const struct of_device_id vadc_match_table[] = { |
| { .compatible = "qcom,spmi-vadc" }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, vadc_match_table); |
| |
| static struct platform_driver vadc_driver = { |
| .driver = { |
| .name = "qcom-spmi-vadc", |
| .of_match_table = vadc_match_table, |
| }, |
| .probe = vadc_probe, |
| }; |
| module_platform_driver(vadc_driver); |
| |
| MODULE_ALIAS("platform:qcom-spmi-vadc"); |
| MODULE_DESCRIPTION("Qualcomm SPMI PMIC voltage ADC driver"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Stanimir Varbanov <svarbanov@mm-sol.com>"); |
| MODULE_AUTHOR("Ivan T. Ivanov <iivanov@mm-sol.com>"); |