| /* bnx2x_init.h: Broadcom Everest network driver. |
| * |
| * Copyright (c) 2007-2008 Broadcom Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation. |
| * |
| * Maintained by: Eilon Greenstein <eilong@broadcom.com> |
| * Written by: Eliezer Tamir |
| */ |
| |
| #ifndef BNX2X_INIT_H |
| #define BNX2X_INIT_H |
| |
| #define COMMON 0x1 |
| #define PORT0 0x2 |
| #define PORT1 0x4 |
| |
| #define INIT_EMULATION 0x1 |
| #define INIT_FPGA 0x2 |
| #define INIT_ASIC 0x4 |
| #define INIT_HARDWARE 0x7 |
| |
| #define STORM_INTMEM_SIZE_E1 (0x5800 / 4) |
| #define STORM_INTMEM_SIZE_E1H (0x10000 / 4) |
| #define TSTORM_INTMEM_ADDR 0x1a0000 |
| #define CSTORM_INTMEM_ADDR 0x220000 |
| #define XSTORM_INTMEM_ADDR 0x2a0000 |
| #define USTORM_INTMEM_ADDR 0x320000 |
| |
| |
| /* Init operation types and structures */ |
| /* Common for both E1 and E1H */ |
| #define OP_RD 0x1 /* read single register */ |
| #define OP_WR 0x2 /* write single register */ |
| #define OP_IW 0x3 /* write single register using mailbox */ |
| #define OP_SW 0x4 /* copy a string to the device */ |
| #define OP_SI 0x5 /* copy a string using mailbox */ |
| #define OP_ZR 0x6 /* clear memory */ |
| #define OP_ZP 0x7 /* unzip then copy with DMAE */ |
| #define OP_WR_64 0x8 /* write 64 bit pattern */ |
| #define OP_WB 0x9 /* copy a string using DMAE */ |
| |
| /* Operation specific for E1 */ |
| #define OP_RD_E1 0xa /* read single register */ |
| #define OP_WR_E1 0xb /* write single register */ |
| #define OP_IW_E1 0xc /* write single register using mailbox */ |
| #define OP_SW_E1 0xd /* copy a string to the device */ |
| #define OP_SI_E1 0xe /* copy a string using mailbox */ |
| #define OP_ZR_E1 0xf /* clear memory */ |
| #define OP_ZP_E1 0x10 /* unzip then copy with DMAE */ |
| #define OP_WR_64_E1 0x11 /* write 64 bit pattern on E1 */ |
| #define OP_WB_E1 0x12 /* copy a string using DMAE */ |
| |
| /* Operation specific for E1H */ |
| #define OP_RD_E1H 0x13 /* read single register */ |
| #define OP_WR_E1H 0x14 /* write single register */ |
| #define OP_IW_E1H 0x15 /* write single register using mailbox */ |
| #define OP_SW_E1H 0x16 /* copy a string to the device */ |
| #define OP_SI_E1H 0x17 /* copy a string using mailbox */ |
| #define OP_ZR_E1H 0x18 /* clear memory */ |
| #define OP_ZP_E1H 0x19 /* unzip then copy with DMAE */ |
| #define OP_WR_64_E1H 0x1a /* write 64 bit pattern on E1H */ |
| #define OP_WB_E1H 0x1b /* copy a string using DMAE */ |
| |
| /* FPGA and EMUL specific operations */ |
| #define OP_WR_EMUL_E1H 0x1c /* write single register on E1H Emul */ |
| #define OP_WR_EMUL 0x1d /* write single register on Emulation */ |
| #define OP_WR_FPGA 0x1e /* write single register on FPGA */ |
| #define OP_WR_ASIC 0x1f /* write single register on ASIC */ |
| |
| |
| struct raw_op { |
| u32 op:8; |
| u32 offset:24; |
| u32 raw_data; |
| }; |
| |
| struct op_read { |
| u32 op:8; |
| u32 offset:24; |
| u32 pad; |
| }; |
| |
| struct op_write { |
| u32 op:8; |
| u32 offset:24; |
| u32 val; |
| }; |
| |
| struct op_string_write { |
| u32 op:8; |
| u32 offset:24; |
| #ifdef __LITTLE_ENDIAN |
| u16 data_off; |
| u16 data_len; |
| #else /* __BIG_ENDIAN */ |
| u16 data_len; |
| u16 data_off; |
| #endif |
| }; |
| |
| struct op_zero { |
| u32 op:8; |
| u32 offset:24; |
| u32 len; |
| }; |
| |
| union init_op { |
| struct op_read read; |
| struct op_write write; |
| struct op_string_write str_wr; |
| struct op_zero zero; |
| struct raw_op raw; |
| }; |
| |
| #include "bnx2x_init_values.h" |
| |
| static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val); |
| static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len); |
| |
| static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data, |
| u32 len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| REG_WR(bp, addr + i*4, data[i]); |
| if (!(i % 10000)) { |
| touch_softlockup_watchdog(); |
| cpu_relax(); |
| } |
| } |
| } |
| |
| static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data, |
| u16 len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| REG_WR_IND(bp, addr + i*4, data[i]); |
| if (!(i % 10000)) { |
| touch_softlockup_watchdog(); |
| cpu_relax(); |
| } |
| } |
| } |
| |
| static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len) |
| { |
| #ifdef USE_DMAE |
| int offset = 0; |
| |
| if (bp->dmae_ready) { |
| while (len > DMAE_LEN32_WR_MAX) { |
| bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| addr + offset, DMAE_LEN32_WR_MAX); |
| offset += DMAE_LEN32_WR_MAX * 4; |
| len -= DMAE_LEN32_WR_MAX; |
| } |
| bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| addr + offset, len); |
| } else |
| bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len); |
| #else |
| bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len); |
| #endif |
| } |
| |
| static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) |
| { |
| if ((len * 4) > FW_BUF_SIZE) { |
| BNX2X_ERR("LARGE DMAE OPERATION ! addr 0x%x len 0x%x\n", |
| addr, len*4); |
| return; |
| } |
| memset(bp->gunzip_buf, fill, len * 4); |
| |
| bnx2x_write_big_buf(bp, addr, len); |
| } |
| |
| static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data, |
| u32 len64) |
| { |
| u32 buf_len32 = FW_BUF_SIZE/4; |
| u32 len = len64*2; |
| u64 data64 = 0; |
| int i; |
| |
| /* 64 bit value is in a blob: first low DWORD, then high DWORD */ |
| data64 = HILO_U64((*(data + 1)), (*data)); |
| len64 = min((u32)(FW_BUF_SIZE/8), len64); |
| for (i = 0; i < len64; i++) { |
| u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i; |
| |
| *pdata = data64; |
| } |
| |
| for (i = 0; i < len; i += buf_len32) { |
| u32 cur_len = min(buf_len32, len - i); |
| |
| bnx2x_write_big_buf(bp, addr + i * 4, cur_len); |
| } |
| } |
| |
| /********************************************************* |
| There are different blobs for each PRAM section. |
| In addition, each blob write operation is divided into a few operations |
| in order to decrease the amount of phys. contiguous buffer needed. |
| Thus, when we select a blob the address may be with some offset |
| from the beginning of PRAM section. |
| The same holds for the INT_TABLE sections. |
| **********************************************************/ |
| #define IF_IS_INT_TABLE_ADDR(base, addr) \ |
| if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) |
| |
| #define IF_IS_PRAM_ADDR(base, addr) \ |
| if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) |
| |
| static const u32 *bnx2x_sel_blob(u32 addr, const u32 *data, int is_e1) |
| { |
| IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) |
| data = is_e1 ? tsem_int_table_data_e1 : |
| tsem_int_table_data_e1h; |
| else |
| IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) |
| data = is_e1 ? csem_int_table_data_e1 : |
| csem_int_table_data_e1h; |
| else |
| IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) |
| data = is_e1 ? usem_int_table_data_e1 : |
| usem_int_table_data_e1h; |
| else |
| IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) |
| data = is_e1 ? xsem_int_table_data_e1 : |
| xsem_int_table_data_e1h; |
| else |
| IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) |
| data = is_e1 ? tsem_pram_data_e1 : tsem_pram_data_e1h; |
| else |
| IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) |
| data = is_e1 ? csem_pram_data_e1 : csem_pram_data_e1h; |
| else |
| IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) |
| data = is_e1 ? usem_pram_data_e1 : usem_pram_data_e1h; |
| else |
| IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) |
| data = is_e1 ? xsem_pram_data_e1 : xsem_pram_data_e1h; |
| |
| return data; |
| } |
| |
| static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data, |
| u32 len, int gunzip, int is_e1, u32 blob_off) |
| { |
| int offset = 0; |
| |
| data = bnx2x_sel_blob(addr, data, is_e1) + blob_off; |
| |
| if (gunzip) { |
| int rc; |
| #ifdef __BIG_ENDIAN |
| int i, size; |
| u32 *temp; |
| |
| temp = kmalloc(len, GFP_KERNEL); |
| size = (len / 4) + ((len % 4) ? 1 : 0); |
| for (i = 0; i < size; i++) |
| temp[i] = swab32(data[i]); |
| data = temp; |
| #endif |
| rc = bnx2x_gunzip(bp, (u8 *)data, len); |
| if (rc) { |
| BNX2X_ERR("gunzip failed ! rc %d\n", rc); |
| return; |
| } |
| len = bp->gunzip_outlen; |
| #ifdef __BIG_ENDIAN |
| kfree(temp); |
| for (i = 0; i < len; i++) |
| ((u32 *)bp->gunzip_buf)[i] = |
| swab32(((u32 *)bp->gunzip_buf)[i]); |
| #endif |
| } else { |
| if ((len * 4) > FW_BUF_SIZE) { |
| BNX2X_ERR("LARGE DMAE OPERATION ! " |
| "addr 0x%x len 0x%x\n", addr, len*4); |
| return; |
| } |
| memcpy(bp->gunzip_buf, data, len * 4); |
| } |
| |
| if (bp->dmae_ready) { |
| while (len > DMAE_LEN32_WR_MAX) { |
| bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| addr + offset, DMAE_LEN32_WR_MAX); |
| offset += DMAE_LEN32_WR_MAX * 4; |
| len -= DMAE_LEN32_WR_MAX; |
| } |
| bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| addr + offset, len); |
| } else |
| bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len); |
| } |
| |
| static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end) |
| { |
| int is_e1 = CHIP_IS_E1(bp); |
| int is_e1h = CHIP_IS_E1H(bp); |
| int is_emul_e1h = (CHIP_REV_IS_EMUL(bp) && is_e1h); |
| int hw_wr, i; |
| union init_op *op; |
| u32 op_type, addr, len; |
| const u32 *data, *data_base; |
| |
| if (CHIP_REV_IS_FPGA(bp)) |
| hw_wr = OP_WR_FPGA; |
| else if (CHIP_REV_IS_EMUL(bp)) |
| hw_wr = OP_WR_EMUL; |
| else |
| hw_wr = OP_WR_ASIC; |
| |
| if (is_e1) |
| data_base = init_data_e1; |
| else /* CHIP_IS_E1H(bp) */ |
| data_base = init_data_e1h; |
| |
| for (i = op_start; i < op_end; i++) { |
| |
| op = (union init_op *)&(init_ops[i]); |
| |
| op_type = op->str_wr.op; |
| addr = op->str_wr.offset; |
| len = op->str_wr.data_len; |
| data = data_base + op->str_wr.data_off; |
| |
| /* careful! it must be in order */ |
| if (unlikely(op_type > OP_WB)) { |
| |
| /* If E1 only */ |
| if (op_type <= OP_WB_E1) { |
| if (is_e1) |
| op_type -= (OP_RD_E1 - OP_RD); |
| |
| /* If E1H only */ |
| } else if (op_type <= OP_WB_E1H) { |
| if (is_e1h) |
| op_type -= (OP_RD_E1H - OP_RD); |
| } |
| |
| /* HW/EMUL specific */ |
| if (op_type == hw_wr) |
| op_type = OP_WR; |
| |
| /* EMUL on E1H is special */ |
| if ((op_type == OP_WR_EMUL_E1H) && is_emul_e1h) |
| op_type = OP_WR; |
| } |
| |
| switch (op_type) { |
| case OP_RD: |
| REG_RD(bp, addr); |
| break; |
| case OP_WR: |
| REG_WR(bp, addr, op->write.val); |
| break; |
| case OP_SW: |
| bnx2x_init_str_wr(bp, addr, data, len); |
| break; |
| case OP_WB: |
| bnx2x_init_wr_wb(bp, addr, data, len, 0, is_e1, 0); |
| break; |
| case OP_SI: |
| bnx2x_init_ind_wr(bp, addr, data, len); |
| break; |
| case OP_ZR: |
| bnx2x_init_fill(bp, addr, 0, op->zero.len); |
| break; |
| case OP_ZP: |
| bnx2x_init_wr_wb(bp, addr, data, len, 1, is_e1, |
| op->str_wr.data_off); |
| break; |
| case OP_WR_64: |
| bnx2x_init_wr_64(bp, addr, data, len); |
| break; |
| default: |
| /* happens whenever an op is of a diff HW */ |
| #if 0 |
| DP(NETIF_MSG_HW, "skipping init operation " |
| "index %d[%d:%d]: type %d addr 0x%x " |
| "len %d(0x%x)\n", |
| i, op_start, op_end, op_type, addr, len, len); |
| #endif |
| break; |
| } |
| } |
| } |
| |
| |
| /**************************************************************************** |
| * PXP |
| ****************************************************************************/ |
| /* |
| * This code configures the PCI read/write arbiter |
| * which implements a weighted round robin |
| * between the virtual queues in the chip. |
| * |
| * The values were derived for each PCI max payload and max request size. |
| * since max payload and max request size are only known at run time, |
| * this is done as a separate init stage. |
| */ |
| |
| #define NUM_WR_Q 13 |
| #define NUM_RD_Q 29 |
| #define MAX_RD_ORD 3 |
| #define MAX_WR_ORD 2 |
| |
| /* configuration for one arbiter queue */ |
| struct arb_line { |
| int l; |
| int add; |
| int ubound; |
| }; |
| |
| /* derived configuration for each read queue for each max request size */ |
| static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { |
| {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} }, |
| {{4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4} }, |
| {{4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {16 , 3 , 11}, {16 , 3 , 11} }, |
| {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} } |
| }; |
| |
| /* derived configuration for each write queue for each max request size */ |
| static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { |
| {{4 , 6 , 3}, {4 , 6 , 3}, {4 , 6 , 3} }, |
| {{4 , 2 , 3}, {4 , 2 , 3}, {4 , 2 , 3} }, |
| {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} }, |
| {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} }, |
| {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} }, |
| {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} }, |
| {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} }, |
| {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} }, |
| {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} }, |
| {{8 , 9 , 6}, {16 , 9 , 11}, {32 , 9 , 21} }, |
| {{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} }, |
| {{8 , 9 , 6}, {16 , 9 , 11}, {16 , 9 , 11} }, |
| {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} } |
| }; |
| |
| /* register addresses for read queues */ |
| static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { |
| {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, |
| PXP2_REG_RQ_BW_RD_UBOUND0}, |
| {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, |
| PXP2_REG_PSWRQ_BW_UB1}, |
| {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, |
| PXP2_REG_PSWRQ_BW_UB2}, |
| {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, |
| PXP2_REG_PSWRQ_BW_UB3}, |
| {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, |
| PXP2_REG_RQ_BW_RD_UBOUND4}, |
| {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, |
| PXP2_REG_RQ_BW_RD_UBOUND5}, |
| {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, |
| PXP2_REG_PSWRQ_BW_UB6}, |
| {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, |
| PXP2_REG_PSWRQ_BW_UB7}, |
| {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, |
| PXP2_REG_PSWRQ_BW_UB8}, |
| {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, |
| PXP2_REG_PSWRQ_BW_UB9}, |
| {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, |
| PXP2_REG_PSWRQ_BW_UB10}, |
| {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, |
| PXP2_REG_PSWRQ_BW_UB11}, |
| {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, |
| PXP2_REG_RQ_BW_RD_UBOUND12}, |
| {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, |
| PXP2_REG_RQ_BW_RD_UBOUND13}, |
| {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, |
| PXP2_REG_RQ_BW_RD_UBOUND14}, |
| {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, |
| PXP2_REG_RQ_BW_RD_UBOUND15}, |
| {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, |
| PXP2_REG_RQ_BW_RD_UBOUND16}, |
| {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, |
| PXP2_REG_RQ_BW_RD_UBOUND17}, |
| {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, |
| PXP2_REG_RQ_BW_RD_UBOUND18}, |
| {PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, |
| PXP2_REG_RQ_BW_RD_UBOUND19}, |
| {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, |
| PXP2_REG_RQ_BW_RD_UBOUND20}, |
| {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, |
| PXP2_REG_RQ_BW_RD_UBOUND22}, |
| {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, |
| PXP2_REG_RQ_BW_RD_UBOUND23}, |
| {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, |
| PXP2_REG_RQ_BW_RD_UBOUND24}, |
| {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, |
| PXP2_REG_RQ_BW_RD_UBOUND25}, |
| {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, |
| PXP2_REG_RQ_BW_RD_UBOUND26}, |
| {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, |
| PXP2_REG_RQ_BW_RD_UBOUND27}, |
| {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, |
| PXP2_REG_PSWRQ_BW_UB28} |
| }; |
| |
| /* register addresses for write queues */ |
| static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { |
| {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, |
| PXP2_REG_PSWRQ_BW_UB1}, |
| {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, |
| PXP2_REG_PSWRQ_BW_UB2}, |
| {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, |
| PXP2_REG_PSWRQ_BW_UB3}, |
| {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, |
| PXP2_REG_PSWRQ_BW_UB6}, |
| {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, |
| PXP2_REG_PSWRQ_BW_UB7}, |
| {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, |
| PXP2_REG_PSWRQ_BW_UB8}, |
| {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, |
| PXP2_REG_PSWRQ_BW_UB9}, |
| {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, |
| PXP2_REG_PSWRQ_BW_UB10}, |
| {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, |
| PXP2_REG_PSWRQ_BW_UB11}, |
| {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, |
| PXP2_REG_PSWRQ_BW_UB28}, |
| {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, |
| PXP2_REG_RQ_BW_WR_UBOUND29}, |
| {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, |
| PXP2_REG_RQ_BW_WR_UBOUND30} |
| }; |
| |
| static void bnx2x_init_pxp(struct bnx2x *bp) |
| { |
| u16 devctl; |
| int r_order, w_order; |
| u32 val, i; |
| |
| pci_read_config_word(bp->pdev, |
| bp->pcie_cap + PCI_EXP_DEVCTL, &devctl); |
| DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); |
| w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); |
| r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); |
| |
| if (r_order > MAX_RD_ORD) { |
| DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n", |
| r_order, MAX_RD_ORD); |
| r_order = MAX_RD_ORD; |
| } |
| if (w_order > MAX_WR_ORD) { |
| DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n", |
| w_order, MAX_WR_ORD); |
| w_order = MAX_WR_ORD; |
| } |
| if (CHIP_REV_IS_FPGA(bp)) { |
| DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n"); |
| w_order = 0; |
| } |
| DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order); |
| |
| for (i = 0; i < NUM_RD_Q-1; i++) { |
| REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); |
| REG_WR(bp, read_arb_addr[i].add, |
| read_arb_data[i][r_order].add); |
| REG_WR(bp, read_arb_addr[i].ubound, |
| read_arb_data[i][r_order].ubound); |
| } |
| |
| for (i = 0; i < NUM_WR_Q-1; i++) { |
| if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || |
| (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { |
| |
| REG_WR(bp, write_arb_addr[i].l, |
| write_arb_data[i][w_order].l); |
| |
| REG_WR(bp, write_arb_addr[i].add, |
| write_arb_data[i][w_order].add); |
| |
| REG_WR(bp, write_arb_addr[i].ubound, |
| write_arb_data[i][w_order].ubound); |
| } else { |
| |
| val = REG_RD(bp, write_arb_addr[i].l); |
| REG_WR(bp, write_arb_addr[i].l, |
| val | (write_arb_data[i][w_order].l << 10)); |
| |
| val = REG_RD(bp, write_arb_addr[i].add); |
| REG_WR(bp, write_arb_addr[i].add, |
| val | (write_arb_data[i][w_order].add << 10)); |
| |
| val = REG_RD(bp, write_arb_addr[i].ubound); |
| REG_WR(bp, write_arb_addr[i].ubound, |
| val | (write_arb_data[i][w_order].ubound << 7)); |
| } |
| } |
| |
| val = write_arb_data[NUM_WR_Q-1][w_order].add; |
| val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; |
| val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; |
| REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); |
| |
| val = read_arb_data[NUM_RD_Q-1][r_order].add; |
| val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; |
| val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; |
| REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); |
| |
| REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); |
| REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); |
| REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); |
| REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); |
| |
| if (r_order == MAX_RD_ORD) |
| REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); |
| |
| REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); |
| |
| if (CHIP_IS_E1H(bp)) { |
| REG_WR(bp, PXP2_REG_WR_HC_MPS, w_order+1); |
| REG_WR(bp, PXP2_REG_WR_USDM_MPS, w_order+1); |
| REG_WR(bp, PXP2_REG_WR_CSDM_MPS, w_order+1); |
| REG_WR(bp, PXP2_REG_WR_TSDM_MPS, w_order+1); |
| REG_WR(bp, PXP2_REG_WR_XSDM_MPS, w_order+1); |
| REG_WR(bp, PXP2_REG_WR_QM_MPS, w_order+1); |
| REG_WR(bp, PXP2_REG_WR_TM_MPS, w_order+1); |
| REG_WR(bp, PXP2_REG_WR_SRC_MPS, w_order+1); |
| REG_WR(bp, PXP2_REG_WR_DBG_MPS, w_order+1); |
| REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */ |
| REG_WR(bp, PXP2_REG_WR_CDU_MPS, w_order+1); |
| } |
| } |
| |
| |
| /**************************************************************************** |
| * CDU |
| ****************************************************************************/ |
| |
| #define CDU_REGION_NUMBER_XCM_AG 2 |
| #define CDU_REGION_NUMBER_UCM_AG 4 |
| |
| /** |
| * String-to-compress [31:8] = CID (all 24 bits) |
| * String-to-compress [7:4] = Region |
| * String-to-compress [3:0] = Type |
| */ |
| #define CDU_VALID_DATA(_cid, _region, _type) \ |
| (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf))) |
| #define CDU_CRC8(_cid, _region, _type) \ |
| calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff) |
| #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \ |
| (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f)) |
| #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \ |
| (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7)) |
| #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80) |
| |
| /***************************************************************************** |
| * Description: |
| * Calculates crc 8 on a word value: polynomial 0-1-2-8 |
| * Code was translated from Verilog. |
| ****************************************************************************/ |
| static u8 calc_crc8(u32 data, u8 crc) |
| { |
| u8 D[32]; |
| u8 NewCRC[8]; |
| u8 C[8]; |
| u8 crc_res; |
| u8 i; |
| |
| /* split the data into 31 bits */ |
| for (i = 0; i < 32; i++) { |
| D[i] = data & 1; |
| data = data >> 1; |
| } |
| |
| /* split the crc into 8 bits */ |
| for (i = 0; i < 8; i++) { |
| C[i] = crc & 1; |
| crc = crc >> 1; |
| } |
| |
| NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^ |
| D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^ |
| C[6] ^ C[7]; |
| NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^ |
| D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^ |
| D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6]; |
| NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^ |
| D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^ |
| C[0] ^ C[1] ^ C[4] ^ C[5]; |
| NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^ |
| D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^ |
| C[1] ^ C[2] ^ C[5] ^ C[6]; |
| NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^ |
| D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^ |
| C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7]; |
| NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^ |
| D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^ |
| C[3] ^ C[4] ^ C[7]; |
| NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^ |
| D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^ |
| C[5]; |
| NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^ |
| D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^ |
| C[6]; |
| |
| crc_res = 0; |
| for (i = 0; i < 8; i++) |
| crc_res |= (NewCRC[i] << i); |
| |
| return crc_res; |
| } |
| |
| /* registers addresses are not in order |
| so these arrays help simplify the code */ |
| static const int cm_start[E1H_FUNC_MAX][9] = { |
| {MISC_FUNC0_START, TCM_FUNC0_START, UCM_FUNC0_START, CCM_FUNC0_START, |
| XCM_FUNC0_START, TSEM_FUNC0_START, USEM_FUNC0_START, CSEM_FUNC0_START, |
| XSEM_FUNC0_START}, |
| {MISC_FUNC1_START, TCM_FUNC1_START, UCM_FUNC1_START, CCM_FUNC1_START, |
| XCM_FUNC1_START, TSEM_FUNC1_START, USEM_FUNC1_START, CSEM_FUNC1_START, |
| XSEM_FUNC1_START}, |
| {MISC_FUNC2_START, TCM_FUNC2_START, UCM_FUNC2_START, CCM_FUNC2_START, |
| XCM_FUNC2_START, TSEM_FUNC2_START, USEM_FUNC2_START, CSEM_FUNC2_START, |
| XSEM_FUNC2_START}, |
| {MISC_FUNC3_START, TCM_FUNC3_START, UCM_FUNC3_START, CCM_FUNC3_START, |
| XCM_FUNC3_START, TSEM_FUNC3_START, USEM_FUNC3_START, CSEM_FUNC3_START, |
| XSEM_FUNC3_START}, |
| {MISC_FUNC4_START, TCM_FUNC4_START, UCM_FUNC4_START, CCM_FUNC4_START, |
| XCM_FUNC4_START, TSEM_FUNC4_START, USEM_FUNC4_START, CSEM_FUNC4_START, |
| XSEM_FUNC4_START}, |
| {MISC_FUNC5_START, TCM_FUNC5_START, UCM_FUNC5_START, CCM_FUNC5_START, |
| XCM_FUNC5_START, TSEM_FUNC5_START, USEM_FUNC5_START, CSEM_FUNC5_START, |
| XSEM_FUNC5_START}, |
| {MISC_FUNC6_START, TCM_FUNC6_START, UCM_FUNC6_START, CCM_FUNC6_START, |
| XCM_FUNC6_START, TSEM_FUNC6_START, USEM_FUNC6_START, CSEM_FUNC6_START, |
| XSEM_FUNC6_START}, |
| {MISC_FUNC7_START, TCM_FUNC7_START, UCM_FUNC7_START, CCM_FUNC7_START, |
| XCM_FUNC7_START, TSEM_FUNC7_START, USEM_FUNC7_START, CSEM_FUNC7_START, |
| XSEM_FUNC7_START} |
| }; |
| |
| static const int cm_end[E1H_FUNC_MAX][9] = { |
| {MISC_FUNC0_END, TCM_FUNC0_END, UCM_FUNC0_END, CCM_FUNC0_END, |
| XCM_FUNC0_END, TSEM_FUNC0_END, USEM_FUNC0_END, CSEM_FUNC0_END, |
| XSEM_FUNC0_END}, |
| {MISC_FUNC1_END, TCM_FUNC1_END, UCM_FUNC1_END, CCM_FUNC1_END, |
| XCM_FUNC1_END, TSEM_FUNC1_END, USEM_FUNC1_END, CSEM_FUNC1_END, |
| XSEM_FUNC1_END}, |
| {MISC_FUNC2_END, TCM_FUNC2_END, UCM_FUNC2_END, CCM_FUNC2_END, |
| XCM_FUNC2_END, TSEM_FUNC2_END, USEM_FUNC2_END, CSEM_FUNC2_END, |
| XSEM_FUNC2_END}, |
| {MISC_FUNC3_END, TCM_FUNC3_END, UCM_FUNC3_END, CCM_FUNC3_END, |
| XCM_FUNC3_END, TSEM_FUNC3_END, USEM_FUNC3_END, CSEM_FUNC3_END, |
| XSEM_FUNC3_END}, |
| {MISC_FUNC4_END, TCM_FUNC4_END, UCM_FUNC4_END, CCM_FUNC4_END, |
| XCM_FUNC4_END, TSEM_FUNC4_END, USEM_FUNC4_END, CSEM_FUNC4_END, |
| XSEM_FUNC4_END}, |
| {MISC_FUNC5_END, TCM_FUNC5_END, UCM_FUNC5_END, CCM_FUNC5_END, |
| XCM_FUNC5_END, TSEM_FUNC5_END, USEM_FUNC5_END, CSEM_FUNC5_END, |
| XSEM_FUNC5_END}, |
| {MISC_FUNC6_END, TCM_FUNC6_END, UCM_FUNC6_END, CCM_FUNC6_END, |
| XCM_FUNC6_END, TSEM_FUNC6_END, USEM_FUNC6_END, CSEM_FUNC6_END, |
| XSEM_FUNC6_END}, |
| {MISC_FUNC7_END, TCM_FUNC7_END, UCM_FUNC7_END, CCM_FUNC7_END, |
| XCM_FUNC7_END, TSEM_FUNC7_END, USEM_FUNC7_END, CSEM_FUNC7_END, |
| XSEM_FUNC7_END}, |
| }; |
| |
| static const int hc_limits[E1H_FUNC_MAX][2] = { |
| {HC_FUNC0_START, HC_FUNC0_END}, |
| {HC_FUNC1_START, HC_FUNC1_END}, |
| {HC_FUNC2_START, HC_FUNC2_END}, |
| {HC_FUNC3_START, HC_FUNC3_END}, |
| {HC_FUNC4_START, HC_FUNC4_END}, |
| {HC_FUNC5_START, HC_FUNC5_END}, |
| {HC_FUNC6_START, HC_FUNC6_END}, |
| {HC_FUNC7_START, HC_FUNC7_END} |
| }; |
| |
| #endif /* BNX2X_INIT_H */ |
| |